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Abstract
This paper is part of a project aimed at leveraging neuro-symbolic architectures to achieve a
sophisticated interaction between humanoid robots and individuals with cognitive impairments.
In our architecture, a symbolic reasoning module based on Answer Set Programming creates a
sequence of appropriate activities and monitors their execution in real-time. Large Language
Models (LLMs) are used to enhance the user experience in various ways. Among those, in this
paper we investigate methods for using LLMs to rewording text produced by the reasoning
component, while keeping length and vocabulary level consistent with the original text. The
study explores the effectiveness of metrics such as length and frequency of use, in comparing
the vocabulary level of the input with that of the output. We present a comparative analysis
of free or moderately priced LLMs, such as GPT-3.5, Google Gemini Pro, and Claude 3
Opus. A continuous validation process is also introduced, utilizing a critic that evaluates the
appropriateness of the generated output at run-time. Although preliminary, the findings appear
to indicate that while LLMs can often produce outputs with a vocabulary level comparable
to the inputs, there are areas needing improvement, particularly in handling specific domain
knowledge or less common phrases. This research contributes to the exploration of novel
neuro-symbolic architectures and to the practical application of LLMs in contexts where
controlled language use is essential for effective communication.
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1. Introduction
Humanoid robots employed in healthcare represent a diverse and rapidly evolving research
field that encompasses various areas of investigation. For instance, studies have explored
the use of AI-enabled devices in providing companionship and social interaction for
seniors, as highlighted in [1], underscoring the potential of humanoid robots to address
social isolation and promote well-being among elderly populations. Moreover, recent
research [2, 3] highlighted how AI can subtly guide individuals towards specific choices
with more effective nudging capabilities than humans, suggesting that an automated
assistant might be a useful tool for guiding patients towards healthier behaviors.

Workshop on Symbolic and Neuro-Symbolic Architectures for Intelligent Robotics Technology (SYNERGY)
co-located with the 21st International Conference on Principles of Knowledge Representation and Reasoning
(KR2024), November 2–8, 2024, Hanoi, Vietnam.
*Corresponding author.
†
These authors contributed equally.
$ ml10791538@sju.edu (M. Lutzen); mbalducc@sju.edu (M. Balduccini)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0
International (CC BY 4.0).

1

mailto:ml10791538@sju.edu
mailto:mbalducc@sju.edu
https://creativecommons.org/licenses/by/4.0


May Lutzen et al. CEUR Workshop Proceedings 1–15

This paper is part of a project stemming from a partnership with Bancroft (https:
//bancroft.org), a non-profit organization dedicated to helping individuals with autism,
intellectual and developmental disabilities, brain injury, and neurological conditions. A
challenge faced by service providers like Bancroft is that direct care facility staff may
become overwhelmed with routine tasks, leading to low job satisfaction and retention,
and hindering their performance in higher-level duties and communication with clinical
staff. High turnover exacerbates these issues, as new and temporary staff lack the specific
knowledge needed for effective patient care. All of these staff issues, in the long term,
cause reduced quality of care thus impacting the quality of life of the individuals served.
The goal of the project is to research methods at the intersection of symbolic reasoning,
machine learning, and robotics that can lead to enhancing both staff satisfaction and
resident care.

The project augments Iggy, a Pepper humanoid robot [4], with a neuro-symbolic
architecture, called IR4D1, which combines the powerful knowledge representation and
reasoning capabilities of Answer Set Programming (ASP) [5] with Large Language
Models (LLMs).

Given information on a group of patients, the reasoning module builds a sequence
of appropriate activities and monitors their execution, making real-time adjustments
based on user responses. Whenever a menu is presented on the robot’s display, the
reasoning module generates text that is read out by the robot to introduce the menu.
This is done not only for a more natural interaction but also because some of the patients
have minimal or no reading skills. Given that the robot controlled by the architecture
interacts with individuals with potentially impaired cognitive skills, the text produced by
the symbolic reasoning component is based on fragments that are carefully crafted by
psychologists in order to ensure that the vocabulary level is suitable for the audience.

Depending on the circumstances, the same menu may be displayed multiple times in a
row. In order to make the interaction more engaging for the audience and in order to
make the robot sound more natural, the robot automatically produces variations of the
text generated by the symbolic reasoning component. While LLM are a natural choice
for generating these variations, the variations must still match the audience’s capabilities,
and in particular their (receptive) vocabulary level.

In this paper, we present an initial evaluation of methods for controlling the vocabulary
level of the text produced by LLMs in rewording tasks, with a specific attention to the use
with individuals with cognitive impairment. We begin by considering different kinds of
metrics normally associated with the vocabulary level of text, and then evaluate the use
of a continuous validation process, in which the output produced by the LLM is vetted
at runtime by a critic that determines if the output is acceptable. Due to considerations
on practical use, in this paper we focus our evaluation on LLMs that are either free or
moderately priced, but also of sufficient power and ease of use, i.e. GPT 3.5, Google
Gemini Pro, and Claude 3 Opus. In a later phase of the study, we will evaluate more
powerful versions of these as well as self-hosted LLMs.

The paper is organized as follows. We begin with a discussion on methods of measuring

1IR4D stands for Intelligent Robotics for Disabilities
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the vocabulary of text and clarify the research questions that our analysis aims at an-
swering. The following sections analyze metrics of progressively increasing sophistication.
We conclude the paper with final considerations and a discussion on future work.

2. Measuring the Vocabulary Level of Text
Typically, the evaluation of the vocabulary level of text takes into account metrics such as
length, frequency of use, morphological complexity and semantic complexity, as discussed,
e.g., in [6, 7, 8]. Length refers to the number of characters, words, and syllables in the text,
as it is conceivable that longer text might require stronger cognitive efforts. Frequency of
use refers to how often words are used in everyday language. If they are less common,
they might be more complex and thereby more difficult to understand. Morphological
complexity refers to the complexity of a word’s internal structure and words with more
complex structures might be more difficult to understand. Lastly, semantic complexity
refers to the number of meanings or senses a word has. If a word has multiple meanings,
reaching the desired understanding of a word can be much more complex. In this paper,
we focus on the first two metrics, and use the following research questions to guide the
analysis:

• How capable are the LLMs of producing output that is of comparable length to
the input if instructed to do so? And how reliable is length as an indicator of
vocabulary level in the context of our application domain?

• How capable are LLMs of producing output in which frequency-of-use is comparable
to that of the input?

• Is there an algorithmic way of leveraging frequency-of-use as a way to improve the
vocabulary level of output text?

We conduct our analysis over a benchmark set of 10 passages that covers all the categories
of passages generated by the reasoning module during a session. Categories are represented
by a uniform number of passages in the benchmark set. The passages are show in Figure
1.

For each input passage, we produce three output passages for each LLM. We chose to
produce multiple output passages in order to limit the impact of statistical anomalies on
our analysis.

It is important to note that some of the passages contain the names of activities that
the audience can choose from using the robot’s display. Those names are familiar to the
audience. In preliminary experiments, we observed that the LLMs have a tendency to
reword the activity names, often making the activities difficult to recognize, sometimes
drastically altering the semantics of the names – for example, turning “a name that sound
game” into “a name-based sound game”, and even rewording “an emotion recognition
game” into “a mind-reading game”. To our surprise, we were only partially successful
at designing prompts that directly prevented the LLMs from rewording the activity
names, and resorted to an algorithmic approach for preserving them. In our algorithmic
preservation approach, the activity names are replaced by strings that the LLMs do
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Figure 1: Benchmark set used in the analysis

not appear to reword, such as “X1X”. After receiving the LLM’s output, they are then
converted back to produce the final output. While in our analysis we considered both
kinds of approaches to activity name preservation, in this paper we focus on the analysis
of the passages obtained through the algorithmic preservation approach. Additionally,
due to space considerations, in the sections that follow we will be providing only excerpts
of some of the tables. The complete tables can be found at https://g34r.short.gy/dataset.

3. Length-Based Metrics
Length of text is a readily-usable metric in the context of LLMs, as phrases such as “of
length comparable to the input” can be easily included in the prompt to an LLM. In
this section, we evaluate the output produced by the LLMs under consideration when
the prompt instructs the LLM to constrain the length of the output. Specifically, we use
the prompt:2

2One might argue that more sophisticated ways of phrasing the prompt should be considered. While
that is indeed possible, we intentionally stay away from the route of prompt engineering and focus
on analyzing what LLMs are capable of producing given a reasonably precise prompt that an average
human would likely be able to understand and act upon.
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“Take what I say after the new-line character and paraphrase it. The new text
should have a similar length to the one in input as well as the same tone and
language.”

The complete list of the output passages produced by the LLMs can be found at the link
provided earlier. We provide sample output passages – specifically for P10 – in Figure 2.

In this section, we compare the various LLMs in terms of number of characters, words,
and syllables of the output w.r.t. to those of the input.

Figure 2: Output passages produced for passage P10

For every metric and LLM, we calculate average change (i.e., difference between input
length and output length) for every passage, as well average change across all passages.
The results of the analysis on length in characters are shown in Figure 3. The analysis
of the average change, per LLM, on each input passage shows a clear trend. GPT has
the lowest average change, followed by Gemini and then Claude, which has the highest
average change. This is also the case for the aggregate average change on all passages,
which is shown in the 3 bottom rectangles for each metric, where GPT has 0% average
change, Gemini 10%, and Claude 44%. The results from the analysis of length measured
in characters is confirmed by looking at the average change in length measured by word
count where the average change on all the different passages by LLM for GPT is -4%,
Gemini shows 5% average change and Claude shows 34% average change.

While length and average change in length might show how well a large language model
is able to follow directions from a prompt, our analysis highlighted that, at least for our
target population, the length of the text is not a good indicator of the vocabulary level.
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Figure 3: Change in length measured in characters, word count and syllables

Consider for instance the input text:

Before we say goodbye, I have a little surprise for you. Here are some activities
that I hope you’ll like: “a name that sound game for David", “some dancing
fun", and “a name that sound game". Pick from one of the boxes on my screen
to start an activity! ”

The output created by Claude is:

Hold your horses! Before we part ways, I’ve got a treat in store. I’ve handpicked
some cracking activities that I reckon you’ll dig: “a name that sound game for
David”, “some dancing fun”, and “a name that sound game”. Go ahead and
click on any of the boxes on your screen to get the party started!

The vocabulary level of phrases such as “hold your horses”, “handpicked some cracking
activities” and “I reckon you’ll dig” is significantly different from “I have a little surprise”
and “I hope you’ll like”, even though the change in number of characters (13%) and in
number of words (12%) might be considered modest by comparison.

When it comes to syllables, Figure 3 shows that the overall average change in number of
syllables resembles follows trends similar to those of the number of characters and words.
GPT has the overall smallest average change with only 2% from input to output, Gemini is
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second with only 10% overall average change from input to output and Claude performed
the worst with 49% overall average change from input to output. The conclusion of this
analysis thereby shows that GPT is best at following directions in the prompt given to
it specifically about desired length in a paraphrased output whereas Gemini is slightly
worse but can still be considered acceptable as it within a 10% change. However, in
many of the 30 Claude cases in our analysis, the LLM includes part of the prompt in
its output, such as ’with the specified variables’.. It should therefore be noted that one
reason for Claude’s great positive change in length is due to the fact that Claude tends
to include part of the prompt in the output thereby increasing the length, however this
also shows how it is unable to follow directions from the prompt.

However, the number of syllables does not appear to have a strong relationship with
the vocabulary level, at least for the types of passages and population considered here.
Consider one of the outputs produced by Claude for P5:

• Input: Before we say goodbye, I have a little surprise for you. Here are some
activities that I hope you’ll like: “a Frosty the Snowman sing-along”, “a name that
sound game for David”, and “a name that tune game”. Pick from one of the boxes
on my screen to start an activity!

• Output: Before we part ways, I’ve got a special treat in store for you. Take a look
at these fun options I’ve prepared: “a Frosty the Snowman sing-along”, “a name
that sound game for David”, and “a name that tune game”. Simply select one of
the boxes displayed to embark on an exciting activity!

Here, phrases such as “part ways”, “special treat in store for you” and “embark on”
have a significantly different vocabulary level than “goodbye”, “little surprise” and “to
start”.

In conclusion, while the change in length between input and output can tell us how
well an LLM is at following directions related to the length of the output – and is useful
in preventing the output from being boring or wordy – it does not help ensure that the
vocabulary level of the output matches that of the input.

4. Frequency-of-Use Metric
Of the other possible options for estimating the vocabulary level of a passage, the
frequency of use (abbreviated uf in this paper) of its words appears to be a practically
viable metric. The intuition behind this metric is simple: frequency of use refers to how
often certain words are used in a corpus of text that is used as a reference; if words are
less common, it is conceivable that they are more complex or difficult to understand.

The minimum frequency of use (abbreviated min uf) across all the words of a passage
seems particularly useful in our application domain. After all, we are looking for text that,
when spoken by the robot, can be promptly understood by our target population. Even a
single word that is outside of the receptive vocabulary of the audience can be sufficient
to prevent them from promptly understanding the passage. It must be noted, however,
that it is not sufficient to consider the uf of individual words, as phrases, especially if
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idiomatic, may have a meaning that is different from that of their constituent words
and a frequency of use that is also different from of the constituent words. Consider for
example “let the fun begin”. While the individual words of this phrase are fairly common,
the specific combination is not as frequently used as, for example “let’s have fun.” For
this reason, we adopt the following approach.

Let 𝜏(𝑝) denote the parse tree associated with passage 𝑝 (if multiple parse trees exist,
we assume that a parse tree has been arbitrarily selected). For a node 𝑛 ∈ 𝜏(𝑝), let
𝑢𝑓(𝑛) denote the frequency of use of the text associated with 𝑛. 𝑢𝑓(𝑛) is undefined if no
frequency of use is available for the text.

Definition 1. A node 𝑛 of 𝜏(𝑝) is a uf-top node if:

• 𝑢𝑓(𝑛) is defined, and
• 𝑢𝑓(𝑛′) is undefined for every ancestor 𝑛′ of 𝑛 in 𝜏(𝑝).

We can now give the following:

Definition 2. Given a passage 𝑝:

• The min uf of 𝑝, written 𝑚𝑖𝑛−𝑢𝑓(𝑝), is

𝑚𝑖𝑛−𝑢𝑓(𝑝) =
∑︁

𝑛∈𝜏(𝑝)
𝑢𝑓(𝑛)

• The min-uf phrase of 𝑝 is the fragment of text associated with a uf-top node of 𝜏(𝑝)
that has minimum uf. (For simplicity, if multiple such nodes exist, we select the
first node in leftmost traversal of the parse tree.)

For the analysis that follows, the parse trees were generated using the spacy library3 with
the en_core_web_lg model. The uf of phrases has been obtained from the absTotal-
MatchCount metric of the ngrams tool4 with default settings5. ngrams uses the Google
Books Ngram Dataset v3 as the source of ngram data.

At least at first sight, the min uf appears to provide meaningful a indication of the
vocabulary level of passages. For example, the phrase “on my screen” which one might
consider fairly simple to understand, has a comparatively high min uf of 33090, while
phrases such as “our prior encounter” and “infringing on any copyrights,” which arguably
belong to a higher vocabulary level, have a comparatively low min uf of 72 and 42
respectively.

So, the question is: how capable are LLMs of producing output whose min uf is
comparable to the min uf of the input given our prompt?

To answer the question, we compared the min uf of our input and output passages,
and report the results of our analysis in Figure 4.
3https://spacy.io
4https://ngrams.dev/
5It is certainly possible that different settings may affect the results of our analysis, particularly if one
selects specific year ranges for the frequency of the ngrams. We defer an evaluation of the impact of
these settings to a later phase of our study.

8

https://spacy.io
https://ngrams.dev/


May Lutzen et al. CEUR Workshop Proceedings 1–15

Figure 4: Comparative change in min uf

Out of the 90 different cases we analyzed, in 68 of them the output’s min uf is either
equal to or greater than the input’s min uf. This means that in 76% of the cases the
output’s min uf is appropriate compared to the input’s.6

Breaking the results further by considering each LLM separately, we see that in GPT’s
case the output’s min uf is greater than or equal to that of the input in 83% of cases. In
Gemini’s case the output’s min uf compared to the input’s is greater than or equal to
that of the input in 77% of cases. In Claude’s case, the output’s min uf is greater than
or equal to that of the input in 67% of cases. Thus, GPT appears to have a fair margin
over Gemini, while Claude is the worst performer.

These numbers show that LLMs are rather satisfactory in their ability to produce
an output whose min uf is comparable to that of the input. However, upon further
investigation, we noticed that the observed good performance of the LLMs occurs for the
most part in cases in which the min-uf phrase of the input is an activity name. Table 5
provides a comparison of the min uf of input and output for the passages whose min-uf
phrases do not contain an activity name. Interestingly, in those cases the output’s min
uf is in almost always less than the input’s min uf.

Specifically, the min uf of the output is less than that of the input in 16 cases out of 18,
or 89% of the cases, thereby showing a complete switch in observed behavior compared
to the previous comparison.

The switch can be explained as follows. It so happens that some activity names are
rather infrequent in the corpus used for the calculation of min uf (even though they are
promptly understood by the audience), causing them to be the min-uf phrases. Since the

6One might argue that the min uf of the output should not simply be greater than, or equal to, that of
the input, but that the difference should be within a certain threshold. We defer such evaluation to a
later phase of our study.
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Figure 5: Change in min uf from input to output

rewording process ensures that the activity names are kept verbatim in the output, in
many cases those are also the min-uf phrases of the output. However, the fact that the
min uf of the input and of the output coincide does not tell us much about the quality
of the output produced by the LLMs, only that the uf of the phrases they produced is
no worse than that of the activity names. And because the uf of the activity names is
fairly low, that is not a particularly significant achievement.

For this reason, we decided to re-evaluate the passages disregarding the activity names
in the calculation of the min uf in those cases in which the activity names would have
otherwise been the min-uf phrases of both input and output, leading to the comparison
outlined in Figure 6. Looking at the secondary min uf phrase for these cases, we observed
that in 50% of cases the min uf of the output was worse than that of the input. That is,
in only 50% of the cases the passage produced by the LLM was satisfactory in terms of
min uf.

It is worth noting that a potential issue with the ngrams used for estimating frequency
of use. As seen from Figure 6, in a number of cases in which the min uf of the output
is greater than or equal to the min uf of the input, the min-uf phrase of the input is
“Which activity would you like.” For some reason, that phrase is assigned a rather low
uf, which causes most outputs to have a better min uf than the input passage – even
in cases where the min-uf phrase of the output is “with the specified variables”, which
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Figure 6: Change in min uf from revised input to revised output (excerpt)
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intuitively seems to be at a higher vocabulary level. As we discuss later in this paper, we
hypothesize that better quality ngram data may reduce this type of noise.

5. A Vocabulary Level Critic: an Evaluation
In the previous section, we saw how LLMs have some capability of producing output of
comparable vocabulary level to the input as estimated via uf, although the performance
of LLMs is less than ideal. In this section, we consider the possibility of algorithmically
filtering the output of the LLMs based on this metric, and evaluate whether uf provides
indeed a reliable filtering mechanism.

For our evaluation, we consider a simple filtering mechanism based on a continuous
validation of the output of the LLM being used. That is, we can leverage min uf to
develop a critic that compares the min uf of the output with that of the input. If the
min uf of the output is lower than that of the input, the critic rejects the output, and
the architecture may decide to either have the LLM produce a new output, or use the
input directly. In practice, the decision will be likely based on timeliness considerations:
given the statistical nature of LLMs, there is no telling how many times the output will
need to be regenerated before something of acceptable quality is produced, and long
delays before the robot speaks might make for an unnatural experience.

Our goal in this section is to answer the question: suppose the critic rejects the output
produced by the LLM; based on human judgement, is that a good decision or a bad
decision? This evaluation will give us some insights both on the reliability of min uf as
a filtering metric, and if the critic as a practically viable algorithmic filtering method.

The results of this evaluation are summarized in Figure 7, where a judgement of “good
decision” is indicated as a true positive, and a bad decision as a false positive. At this
early stage of the project, we relied on our own judgment to determine whether a decision
was good or bad. In the future, we plan to conduct a more rigorous evaluation with
independent test subjects. In spite of the simplicity of our validation method, we believe
that the evaluation provided some interesting results. As the figure illustrates, out of
53 cases flagged by the critic, 33 are true positives, which means that in 62% of cases,
min uf is a reliable indicator of whether the vocabulary level of the output produced by
an LLM is acceptable. Figure 8 provides a breakdown of the information for each LLM.
For GPT, the true positive rate is 61%, for Gemini it is 79%, and for Claude it is 52%.
One consideration to make is that the generation of the parse tree, and possibly also the
ngram data, appear to introduce some noise in the filtering process. For example, some
of the cases marked as false positives during our validation are due to the string “’s have
some fun” being the min-uf phrase in the output, and being associated with a low uf.
Those cases were marked as false positives during our validation because it is clear that
the string refers to “let’s have some fun”, and the vocabulary level of that phrase is low.
We speculate that, had the parse tree correctly extracted the string “let’s have some fun”,
its uf might have been higher and thus the output would not have been rejected on its
account. (A similar result would have been obtained if the ngram data had not included
the entry “’s have some fun”.) That is, we hypothesize that better quality of the parsing
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Figure 7: Human validation of revised min uf phrases
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Figure 8: Comparative results of the human validation process

process and of ngram data might lead to a higher accuracy of the filtering process.
The data also highlights another interesting aspect. In a certain number of cases

marked as false positives during the human validation, the min-uf phrases in question
contain place names related to the location of the robot, such as “Innovation Center” and
“Saint Joseph’s University.” Clearly, those names occur infrequently in the text corpus
used for determining the uf, but are well known to the audience. The results obtained
after excluding those place names from the calculation of the min uf are illustrated in
Figure 9. With this refinement, the percentage of true positives is substantially higher,

Figure 9: Comparative results of the human validation process excluding place names

standing at 70%, with a 67% for GPT, 91% for Gemini, and 61% for Claude.

6. Conclusions and Future Work
In this paper, we presented an initial evaluation of methods for controlling the vocabulary
level of the text produced by LLMs in rewording tasks, with specific attention to the use
with individuals whose cognitive capabilities are impaired. We considered length-based
metrics as well as frequency of use, and defined an approach for identifying which nodes
of the parse tree should be considered when measuring frequency of use. While there is
space for improvement, we hope our results provide an informative initial account on the
topic. For practical reasons, at this stage we considered a set of free or moderately-priced
LLMs. In the future, we plan to evaluate more powerful versions of those LLMs as well
as self-hosted LLMs. We will also conduct a human validation with independent test
subjects, investigate morphological and semantic complexity measures, and explore the
ability of more sophisticated prompt designs to ensure a consistent vocabulary level.
Acknowledgments. This paper was made possible in part by funding provided by Bancroft. The
passages evaluated in this paper were assembled from fragments prepared by Sara Girotto.
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