
CASP for Robot Control in Hybrid Domains

Ryan Young, Marcello Balduccini, and Ankush Israney

Drexel University

Abstract. The task of planning in hybrid domains has recently at-
tracted considerable attention, motivated by the potential for useful prac-
tical applications. Lately, approaches have been developed that resulted
in efficient planning algorithms. In this paper, we push the investigation
further and (1) develop execution monitoring and diagnostic algorithms
for hybrid domains based on Constraint ASP (CASP); (2) propose an
agent architecture that ties together planning, execution monitoring, and
diagnostics for hybrid domains; (3) demonstrate our approach on two
simple, but non-trivial scenarios, including one on a physical robot.

1 Introduction

A hybrid domain is a domain that combines discrete and continuous dynamic
behaviors. Many interesting problems involve reasoning about domains of this
kind, especially in robotics. The task of planning in hybrid domains has recently
attracted considerable attention, motivated by the potential for useful practical
applications. Reasoning in hybrid domains requires rich models to capture the
interactions between discrete and continuous change. Lately, breakthroughs in
research have enabled the development of efficient planning algorithms capa-
ble of handling hybrid domains. However, execution monitoring and diagnostic
reasoning tasks have not received as much attention.

In this paper, we push the investigation further, leveraging advances in Con-
straint Answer Set Programming (CASP) [3] to develop algorithms for execution
monitoring and diagnostic reasoning in hybrid domains, including domains with
non-linear dynamics. We propose an agent architecture tying together planning
with the other reasoning components. When unexpected conditions arise, our
architecture is not only capable of inferring their likely causes, but also of esti-
mating the values of related numerical properties. Inferred values can then be
used to find workarounds even when normal conditions cannot be restored.

Our approach extends techniques from Reasoning about Actions and Change
(RAC) [7] and reduces reasoning to finding models of logical theories. We use the
same formalization of knowledge (action description, goal, history, hypotheses)
for all reasoning tasks. To demonstrate the effectiveness of our architecture, we
implemented an agent control loop capable of running in simulated environments
and of operating a physical robot. We demonstrate our architecture on two
simple, yet non-trivial scenarios. Our first scenario is simulated, while our second
scenario is performed by a physical robot – to the best of our knowledge, the
first example of use of CASP for robot control in hybrid domains.



2 Ryan Young, Marcello Balduccini, and Ankush Israney

The paper is structured as follows. In the next section we present background
information necessary to understand our work and contributions. Next, we intro-
duce our agent architecture and reasoning algorithms. In the following section,
we present two scenarios that demonstrate our architecture. Finally, we discuss
related work and draw conclusions.

2 Preliminaries

In this section, we introduce CASP, a logic-based, declarative programming
paradigm that we will use in the rest of the paper for the representation of
hybrid domains and for the specification of reasoning algorithms. CASP extends
Answer Set Programming (ASP) and retains its non-monotonic nature, but en-
ables efficient solving of numerical problems. Constants, terms, atoms, literals are
defined as usual in logic programming. Traditional logic programming variables
are called discrete variables. The language also includes symbols for numerical
variables. Constraints are expressions of the form e1 ◦ e2, where ◦ is a compari-
son operator (e.g., =, <) and e1, e2 are mathematical expressions over numerical
variables, pre-defined mathematical functions and (numerical) constants. An ex-
tended literal is either a literal or a constraint. In the simplified version of CASP
that we consider, a rule r is a statement:

h1 ∨ . . . ∨ hk ← l1, . . . , lm, not l′1, . . . , not l′n. (1)

where h1, . . . , hk are extended literals, li, l′i are literals and “not” is the so called
default negation operator. The head of the rule (head(r)) is the set {h1, . . . , hk},
while {l1, . . . , not l′n} is its body (body(r)). If head(r) contains a constraint, then
head(r) must be a singleton. The intuitive meaning of (1) is that, if every li
holds and no l′i does, then at least one hi must hold; additionally, if the head
is a constraint, then the numerical variables that occur in it must be assigned
values that make the constraint true. If the body is empty, the rule is a called
fact and ← is dropped. If the head is empty, then the rule is called denial, and
intuitively means that its body must never be satisfied. A program is a set of
rules. Programs not containing default negation are called definite programs.
The semantics of CASP programs is defined in three steps, as follows.

A set A of extended literals is consistent if no two complementary literals,
a and ¬a, belong to A. An extended literal l is satisfied by a consistent set of
extended literals A (denoted by A |= l) if l ∈ A. A set {l1, . . . , lk} of extended
literals is satisfied by a set of extended literals A if each li is satisfied by A. A
consistent set of extended literals A is closed under a definite program Π if, for
every rule r of the form (1) such that body(r) is satisfied by A, head(r)∩A 6= ∅. A
consistent set A is an answer set of definite program Π under the ASP semantics
if A is closed under all the rules of Π and is set-theoretically minimal among all
sets closed under all the rules of Π.

To define answer sets of arbitrary programs, we introduce the notion of reduct
of a program Π with respect to a set of extended literals A, denoted by ΠA.
The reduct is obtained from Π by deleting every rule r such that l ∈ A for some



CASP for Robot Control in Hybrid Domains 3

expression of the form not l from body(r). When no rules are left that can be
deleted, all remaining expressions of the form not l are removed from the bodies
of the remaining rules. The notion of answer set under the ASP semantics can be
extended to arbitrary programs by stating that a consistent set A is an answer
set of Π under the ASP semantics if it is an answer set of ΠA.

For the final part of the definition of the semantics of CASP, we need the
following terminology. An assignment is a pair 〈xi, a〉, where xi is a numeri-
cal variable and a is a numerical constant. A compound assignment is a set of
assignments. A complete assignment w.r.t. a set X of numerical variables is a
compound assignment such that every variable of X is assigned a (unique) value.
A solution to a constraint γ is a complete assignment w.r.t. the variables in γ
that satisfies γ. A solution to a set C of constraints is an assignment that is a
solution to every γ ∈ C. Given an answer set A under the ASP semantics, η(A)
denotes the set of all constraints from A.

Definition 1. A pair 〈A,α〉 is an answer set of a program Π under the CASP
semantics iff A is an answer set of Π under the ASP semantics and α is a
solution of η(A).

In the rest of this paper, we drop the phrase “under the CASP semantics”
whenever possible. Next, we describe the agent architecture and its components.

3 Agent Architecture

Our architecture is based on the agent control loop shown in Algorithm 1. We
make the simplifying assumption that, while the environment may be partially
observable, observations are correct and initial knowledge about discrete prop-
erties is complete. We assume the existence of a clock providing an absolute
time. In our representation, each state has a duration, and is thus associated
with a beginning time, β, and an ending time, ε, both expressed in terms of
absolute time. In the following, we will sometimes refer to absolute times by the
term timepoint. Durative actions can be expressed as a pair of a start and stop
actions using the duration of the states between the start and stop to express
the duration of the action. At the start of the loop, the agent is given a goal
and knowledge about the initial state. Based on this information, the agent uses
an externally provided function to check whether the current state satisfies the
goal and, if so, the loop terminates.1 Otherwise, the agent finds a plan. In our
architecture a plan is a sequence of pairs, each consisting of a set of actions
and a state duration (of the following state) for a step of the plan. Once a plan
is found, the agent executes its first step. Actions are assumed to be executed
instantaneously by the underlying control module. Then, the agent waits for the
specified state duration before proceeding to the next step in the plan.

While the agent waits, it gathers observations and checks whether there are
any contradictions with what the agent expects. If contradictions are detected,
1 Goal-checking arbitrary continuous valued states is a difficult problem and is outside

the scope of this work.



4 Ryan Young, Marcello Balduccini, and Ankush Israney

the agent attempts to explain the discrepancy. This is achieved via diagnostic
reasoning. The diagnostic reasoning component of our architecture results in an
explanation. An explanation is a set of hypotheses about either (a) properties
that must have had a different initial value than expected, or (b) exogenous
actions that must have occurred undetected. Once a hypothesis is found, the
agent replans. if no unexpected observations are detected, the agent continues
executing the original plan.

Input: G: goal; OBS: observations about the initial state
unexpected obs found := true; // the planner must be run
HIST := OBS; HY P := {}; curr step := 0;
while not goal reached(G, HIST ∪ HY P, curr step) do

if unexpected obs found then
% Plan
P := plan(HIST ∪ HY P, curr step, G);

% Execute part of the plan
〈actions, state duration〉 := pop(P );
control.execute(actions);
HIST := update(HIST, actions);
% Move to the next state
curr step := curr step + 1;
% Observe the environment for the duration of the state
unexpected obs found := false;
while not elapsed(state duration) and unexpected obs found = false do

HIST := HIST ∪ control.observe(curr step, control.clock());
% Detect and explain any unexpected observations
if unexpected obs(HIST ∪ HY P ) then

HY P := explain(HIST, HY P, curr step);
unexpected obs found := true;

Algorithm 1: Agent Control Loop

3.1 Domain Representation

Our representation builds upon techniques from the research on RAC. We repre-
sent a state by a set of Boolean properties, beginning and end times of the state,
and a set numerical properties. Note that the value of numerical properties may
change over the duration of a state. Because of space considerations, we present
a slightly reduced fragment of our representation, and omit some elements that
are already present in the related work [5, 2].

Let B be a set of Boolean fluents, N be a set of numerical fluents, A be a
set of agent actions and E be a set of exogenous actions. All actions in A and
E are instantaneous. Durative actions are obtained by a pair of instantaneous
start/stop actions, as discussed earlier. A (Boolean) fluent literal is a Boolean



CASP for Robot Control in Hybrid Domains 5

fluent b or its negation ¬b. As usual, we represent the evolution of the domain
in terms of a linear sequence of discrete states and, thus, we relate the effects of
actions to steps in the evolution of the domain. The truth value of a fluent literal l
at (discrete) step i is represented by the CASP literals h(l, i) and ¬h(l, i). Notice
that truth value of fluent literals is expressed in terms of discrete steps. The value
of a numerical fluent n, on the other hand, is expressed in terms of absolute
time t, and is represented by a numerical CASP variable v(n, t). Additionally,
expressions β(i) and ε(i) represent the beginning and ending timepoints of step
i. Thus, the value of n at the beginning (resp., end) of step i is represented by
v(n, β(i)) (resp., v(n, ε(i))). Relation within(t, i) holds if timepoint t is within
the timespan of step i. The effects of actions are represented by CASP rules of
the following types:

h(l0, I + 1)← h(l1, I), . . . , h(ln, I), o(a, I). (2)

h(l0, I)← h(l1, I), . . . , h(ln, I). (3)

← h(l1, I), . . . , h(ln, I), o(a, I). (4)

v(n, T ) ◦ e(I, T )← within(T, I), h(l1, I), . . . , h(ln, I). (5)

ab(n, I)← h(l1, I), . . . , h(ln, I). (6)

where: I is a variable ranging over non-negative integers, representing steps in
the evolution of the domain; T represents absolute time2; l0, . . . , ln are fluent
literals; a is an action; n is a numerical fluent. Statements (2),(3), and (4) fol-
low the structure of traditional laws from action languages for discrete domains,
such as AL [7]. Specifically, (2) is a discrete dynamic law, saying that, if a oc-
curs (relation o) when all of l1, . . . , ln hold (relation h), then l0 holds in the
following state.3 Statement (3) is a discrete state constraint, stating that, when-
ever l1, . . . , ln hold, l0 also holds. Statement (4) is an executability condition,
specifying the conditions under which an action cannot be executed.

The next two laws are novel. We develop them specifically for the representa-
tion of hybrid domains and to allow for multi-modal reasoning on such represen-
tation. Statement (5) is a numerical state constraint, intuitively describing how
the value of numerical fluent n changes during the duration of the state at step
I in the evolution of the domain. Symbol ◦ denotes an arbitrary mathematical
comparison operator and e(I, T ) is a mathematical expression over numerical
constants and expressions β(I) and v(n, β(I)). Finally, (6) is an exception law,
which accompanies (5) and states that, under the given conditions, the value of
the numerical fluent changes within the duration of the state.

It is worth stressing that the fact that ◦ is not limited to equality in law
(5) distinguishes our representation from that of comparable state-of-the-art ap-
proaches. Our approach provides more flexibility in the representation of actions.

2 Technical readers may be concerned by the performance impact of having such a
variable. As will become clear later, the domain of this variable represents a small,
discrete set of timepoints, and, thus, does not significantly affect performance.

3 Representing combinations of Boolean and numerical conditions is possible with
more advanced types of rules, as demonstrated in [2].



6 Ryan Young, Marcello Balduccini, and Ankush Israney

For example, if a certain object being pushed may travel at a speed that is any-
where between 2 and 3 m/s, the distance it covers may be represented by the
law:

v(dist, T ) ≥ v(dist, β(I)) + 2 ∙ (T − β(I))← within(T, I), h(pushed, I).
v(dist, T ) ≤ v(dist, β(I)) + 3 ∙ (T − β(I))← within(T, I), h(pushed, I).

As we will see later, this is especially useful for the purpose of diagnostic rea-
soning.

An action description AD is a set of laws together with the general axioms:

h(B, I + 1)← h(B, I), not ¬h(B, I + 1). (7)

¬h(B, I + 1)← ¬h(B, I), not h(B, I + 1). (8)

v(N,T ) = v(N, β(I))← within(T, I), not ab(N, I). (9)

β(I + 1) = ε(I). (10)

within(β(I), I). (11)

within(ε(I), I). (12)

where B ranges over Boolean fluents, N over numerical fluents, and I over steps.
Rules (7) and (8) encode the well-known law of inertia for Boolean fluents.
We introduce (9), which we call the law of intra-state inertia, to capture the
intuition that the value of N should be assumed to stay the same within a state
unless explicitly changed. The purpose of (6) is to block the application of (9)
whenever the value of a fluent is known to change within a state. (10) formalizes
the instantaneous nature of the actions. The last two axioms specify that the
initial and final timepoints of a step are within the timespan of that step.
Initial state, history, hypotheses. The initial state is formalized as follows.
As usual, the value of Boolean fluents in the initial state is encoded by CASP
literals of the form h(l, 0). If the value of numerical fluent n at the beginning of
the initial state is known with certainty, then it is expressed by a fact:

v(n, β(0)) = ν.

In this work, however, we are interested in investigating combinations of diag-
nostic reasoning and forms of uncertainty. Thus, we allow for the specification
of assumptions about numerical fluents. The fact that a numerical fluent n is
assumed to have had value ν at the beginning of the initial state is encoded by
a rule:

v(n, β(0)) = ν ← not ¬expected(n).

Thanks to CASP’s non-monotonic nature, the numerical fluent is assumed to
have value ν in the initial state unless the reasoner concludes that there is evi-
dence to the contrary. Such evidence is expressed by CASP literal ¬expected(n).

A history HIST is the collection of observations about fluent values and
action occurrences. We assume that agent actions are fully observable, while
the observations about fluents and exogenous actions may be incomplete. For



CASP for Robot Control in Hybrid Domains 7

simplicity, at this stage observations are assumed to be correct.4 A history is a
collection of expressions of the form:

obs(b, true, i) (13)

obs(b, false, i) (14)

obs(n, t, i, ν) (15)

hpd(a, i) (16)

Expressions (13) and (14) state that Boolean fluent b was observed to be true
(resp., false) at step i. Expression (15) states that the value of numerical fluent
n was observed to be ν at step i and timepoint t. Finally, expression (16) states
that action a was observed to happen at step i.

A hypothesis HY P is a collection of statements about fluent values and ex-
ogenous action occurrences. A hypothesis is what the agent constructs in order
to explain observations that contradicts its expectations. The hypothesized oc-
currence of an exogenous action is represented by an expression o(e, i) where e
is an exogenous action. The hypothesis that a numerical fluent n had an unex-
pected initial value is represented by an expression ¬expected(n). Both histories
and hypotheses are used by our execution monitoring and diagnosis algorithms.

In our approach, reasoning is reduced to finding answer sets of suitable pro-
grams. For example, let AD be an action description and consider an initial state
that begins at timepoint τ1, ends at τ2 ,and whose fluent values are encoded by a
set of statements ι. The possible successor states resulting from the execution of
a are given by the answer sets of AD ∪ ι ∪ {β(0) = τ1. ε(0) = τ2.}∪{o(a, 0).}.

3.2 Planning

Following the approach from [5, 2], planning is reduced to computing an answer
set 〈A,α〉 of program HIST ∪HY P ∪MP ∪AD, whereMP follows the typical
structure of ASP planning modules, consisting of choice rules and denials for the
selection of occurrences of actions at the various steps up to a given maximum
plan length. The approach is well-known [2].

Function plan from Algorithm 1 finds a shortest plan by iterating the pro-
cess while increasing the maximum plan length. The plan is encoded by atoms
o(a, i) ∈ A. Beginning and end timepoints of states are given by the values of
β(i) and ε(i) in α. The expected fluent values are encoded by atoms h(l, i) ∈ A
and by the values assigned to v(n, t) by α.

It should be noted that concurrent durative actions are allowed in a straight-
forward way. In fact, the pair of start and stop actions that signal the beginning
and end of a durative action can be interleaved with those of other durative
actions, resulting in concurrent durative actions.

Execution monitoring and diagnostic reasoning in hybrid domains are dis-
cussed next.

4 This assumption can be lifted, but doing so is not the topic of the present paper.



8 Ryan Young, Marcello Balduccini, and Ankush Israney

3.3 Execution Monitoring and Diagnostics

Function unexpected obs from Algorithm 1 reduces the detection of unexpected
observations to the task of finding answer sets of suitable programs. The core of
the task is the monitoring module, MM , which includes the rules:

← obs(B, true, I),¬h(B, I). (17)

← obs(B, false, I), h(B, I). (18)

v(N,T ) = V ← obs(N,T, I, V ). (19)

within(T, I)← obs(N,T, I, V ). (20)

The first two rules encode the reality check axiom [1], which intuitively states
that it is impossible for the observations about Boolean fluents to contradict the
agent’s expectations. Rule (19) is a novel counterpart of the reality check axiom
for numerical fluents. Intuitively, the rule states that, if n was observed to have
value ν at timepoint t, then this must match the agent’s expectation about the
value of the fluent, i.e. v(n, t) must equal ν. Rule (20) links timepoints and steps
as provided by the available observations.

This approach can be easily elaborated to accommodate more sophisticated
monitoring. For instance, it is often unrealistic to expect that the observed value
of numerical fluents will match perfectly the agent’s expectations. Thus, rule
(19) can be replaced by:

v(N,T ) ≥ V − E ← obs(N,T, I, V ), error(N,E). (21)

v(N,T ) ≤ V + E ← obs(N,T, I, V ), error(N,E). (22)

¬error(N, 0)← error(N,V ), V 6= 0. (23)

error(N, 0)← not ¬error(N, 0). (24)

The first two rules intuitively state that, if n is observed to have value ν and
the measurement error on fluent n is ±e (encoded by an atom error(n, e)), then
the agent’s expected value for n, v(n, t), must be ν − e ≤ v(n, t) ≤ ν + e. The
next two rules state that the default measurement error is 0. The approach can
easily be extended further, e.g. by accounting for relative measurement errors.

Given a set HIST of observations and a set HY P of current hypotheses,
function unexpected obs reduces the task of checking for unexpected observa-
tions to that of checking whether the CASP program

HIST ∪HY P ∪MM ∪AD (25)

has an answer set. If the program has no answer set, then some observations are
unexpected. In that case, the explanations must be found, which is accomplished
by function explain, described next.

Function explain (Algorithm 2) takes as input the history of the domain, the
current set of hypotheses, and the current step. If needed, the function can com-
pletely revise the current hypotheses. This allows the control loop to commit to
a single set of hypotheses for planning and execution purposes, but to backtrack



CASP for Robot Control in Hybrid Domains 9

over it during diagnosis if later observations warrant that. The approach shown
in Algorithm 2 considers possible subsets of the current hypotheses, in the order
established by user-provided function prioritize. For each subset H selected, the
function invokes a CASP solver (function CASP solve) on the CASP program
discussed below to find a set of hypotheses that includes H and explains the
observations. If no such set can be found (Δ = ⊥), the function removes, from
the remaining subsets of HY P , those that can be ruled out based on the failed
attempt on H. For instance, it is easy to see that, if H did not lead to an expla-
nation, any H ′ ⊃ H can be dropped. At the core of the diagnostic task is the

Function explain(HIST, HY P, γ)
Input: HIST : history

HY P : current hypotheses
γ: current time step

Output: a set of hypotheses or ⊥ if no explanation exists
HY P space := prioritize(2HY P , HIST );
foreach H in HY P space do

Δ = CASP solve(HIST ∪ H ∪MD ∪ AD);
if Δ 6= ⊥ then

return extract hyp(Δ);

HY P space := remove subsumed(H, HY P space);
return ⊥;

Algorithm 2: Function explain

diagnostic module, MD, which consists of MM together with the rules:

o(E, I) ∨ ¬o(E, I)← I < curr step.
¬expected(N) ∨ expected(N).

The first rule states that the agent is allowed to hypothesize the unobserved
occurrence of any exogenous action E at any past step. The second rule says that
any numerical fluent may have had an unexpected initial value. An additional
directive (omitted) ensures that cardinality-minimal explanations are returned5.
An explanation can thus be found by computing an answer set of:

HIST ∪H ∪MD ∪AD. (26)

Next, we illustrate the behavior of the architecture by means of two examples.

4 Scenarios

To illustrate our approach, we present two scenarios featuring planning, execu-
tion monitoring, and diagnostic reasoning in the presence of non-linear dynamics,
the second of which was implemented on a robot.

5 This is achieved by the #minimize directive of the underlying clingo solver
(https://sourceforge.net/projects/potassco/files/guide/).



10 Ryan Young, Marcello Balduccini, and Ankush Israney

4.1 Scenario 1: Battery Charging

Consider a domain in which a robot needs to charge a battery to full capacity.
The robot can pick up the battery, insert it into a charger, remove it, start and
stop the charger. If the battery is faulty, the robot can also repair it, which can
be performed even with the battery in the charger, but only when charging is
stopped. When a functional battery is being charged, its charge level changes
over time according to the equation lv(t) = 100 + e−

t
20 (i − 100), where i is the

initial charge level, t is the charge time, and ex is the exponential function.6 If
the battery is faulty, it may charge faster or slower than normal. Additionally,
someone may bump into the robot at any time, causing the robot to become
misaligned with the charger. In that case, inserting the battery causes a bad
connection, and a slower charge rate than nominal. The robot is not allowed to
intentionally charge a badly connected battery. As a remedy to a bad connection,
the robot can remove the battery, which has the additional effect of realigning
the robot. The corresponding action description includes laws such as:

v(lv, T ) = 100+(v(lv, β(I))−100) ∙ exp(−0.05 ∙(T−β(I))))←
within(T, I), h(charging, I), ¬h(bad conn, I), h(ok(b), I).

v(lv, T ) < 100+(v(lv, β(I))−100) ∙ exp(−0.05 ∙(T−β(I))))←
within(T, I), h(charging, I), h(bad conn, I), h(ok(b), I).

ab(lv, I)← h(charging, I).

The first law describes the charging behavior of normal battery. The second
describes the behavior of a badly connected battery. The last rule states that, if
a battery is charging, its charge level may change within a state.

Let us consider how the agent copes with an undetected bump. Suppose
that, initially, the battery is discharged, functional, out of the charger and the
robot is properly aligned. The goal is to charge the battery to full capacity.
At the beginning of Algorithm 1, plan is invoked to find a plan for charging
the battery. It is not difficult to see that such a plan consists of the sequence of
actions: pick up the battery, insert it, start charging, end charging. Start and end
times are assigned accordingly. For instance, in our scenario, the time elapsed
between the start-charging and the end-charging actions is of 272 units.

Next, the plan is executed and monitored as specified in Algorithm 1. Let us
suppose that, 45 time units after the execution of the start-charging action, the
robot observes that the charge level is 43. The observation is added to history
HIST in the form of a statement obs(lv, 45, 3, 43), where step 3 corresponds
to the state between the start-charging and the end-charging actions. Next,
the algorithm executes unexpected obs. As can be easily seen from the above
formulas, the expected charge level under the stated conditions is 89. Hence, it is
not difficult to see that program HIST ∪HY P ∪MM ∪AD is inconsistent. (At
this point, HY P = ∅.) This triggers the execution of explain. An explanation
is found by computing an answer set of (26).

6 We developed this equation as an approximation of the non-linear charging character-
istics of various kinds batteries, e.g. http://www.ti.com/lit/an/snva557/snva557.pdf.



CASP for Robot Control in Hybrid Domains 11

Possible explanations are a battery failure or a bump.7 Assuming that the
former is selected, HY P is updated to include the hypothesis and the agent
replans. The new plan instructs it to stop charging, repair the battery, and
resume the charging process. Suppose that, in reality, the cause of the observed
charge rate is a bad connection. Then, when the robot resumes charging, it will
still observe an unexpectedly slow charge rate. History HIST is updated with the
new observation and function explain is triggered again. For simplicity, suppose
that user-supplied function prioritize is defined so that it selects the empty set
first. In principle, this might be due to a sequence of two battery-fail actions, one
of which after the battery was repaired. On the other hand, both observations of a
slow charge rate could be due to the occurrence of a bump that went undetected.
Because the diagnostic module finds cardinality-minimal diagnoses, it is obvious
that the answer set of (26) will encode the latter explanation. HY P is now
updated accordingly. The agent can now replan. According to the new plan, the
robot will remove and reinsert the battery, which will result in a correctly aligned
battery (unless a further bump occurs), and will then proceed to charging. If no
unexpected events occur, the battery will be charged as expected.

4.2 Scenario 2: Robot Navigation

In this experiment, we demonstrate how our agent is capable of inferring features
of the abnormal behavior of the domain and of using such information to its
advantage to achieve its goal. Note that this is different from several state-of-
the-art approaches, which are focused on dealing with the normal behavior of
the domain and on restoring such normal behavior, e.g. through repair actions,
when abnormalities occur.

This experiment has been carried out on a Pioneer P3-AT robot, tasked
with traveling from location (0cm, 0cm) to (150cm, 150cm) and only allowed
to perform 90◦ turns. All motion actions (forward, turn left, turn right) are
durative, so the robot must plan their respective durations accurately to achieve
the desired outcome.8 We assume instant acceleration to the max linear and
angular speeds, empirically measured at 27.29cm/s and 17.33◦/s. The actual
speeds depend on the charge level of the robot’s battery9. The action description
includes laws linking charge level, direction of travel and distance covered. For
instance, the law for the distance along the horizontal axis is:

v(x, T ) = v(x, β(I)) + v(lv, β(I)) ∙ smax ∙ (T − β(I)) ∙ cos(v(d, β(I)))← Γ. (27)

7 The diagnostic module will also find possible time steps at which the exogenous
actions must have occurred. We omit the details to save space.

8 The domain is chosen for illustration only. We do not necessarily advocate using
high-level planning for arbitrary navigation tasks.

9 In order to ensure repeatability of the experiments, we used a simulated charge level
rather than the actual one. That is, the robot’s low-level control module was modified
to reduce the speed proportionally to the value of the simulated charge level without
notifying the high-level control module.



12 Ryan Young, Marcello Balduccini, and Ankush Israney

where x is a numerical fluent representing x coordinate of the robot, lv is the
battery level, d is the direction (angle) of travel, smax is the maximum linear
speed, and Γ is a set of conditions that are satisfied while the forward action is
in progress. It is worth noting the non-linear nature of the expression.

The robot’s location is observable, while the battery level is non-observable
and assumed to be initially 100% by means of a rule:

v(lv, β(0)) = 100← not ¬expected(lv).

For simplicity, we assume that the level does not change during the experiment.
Under the assumption of a full charge, the plan found by function plan is:
forward for 5.5s10, turn left for 5.2s, forward for 5.5s. For illustration purposes,
suppose that the robot moves forward and then observes its position before
turning left. Also, suppose that the robot observes that its x coordinate is 80cm,
causing a statement obs(x, 5.5, 2, 80) to be added to HIST . Clearly, the addition
of such a statement causes CASP program (25) to be inconsistent, since the
expected value of x is 150cm. Hence, explain is triggered by Algorithm 1. It
is not difficult to see that the answer set found by explain contains a literal
¬expected(lv), indicating that the initial charge must have been different from its
expected value. Such literal is added to the set HY P of hypotheses. Additionally,
and remarkably, it can be shown that component α of the answer set includes
an assignment of value to numerical fluent lv corresponding to a charge of 53%.
That is, the diagnostic algorithm indirectly determines the initial charge level
from (27) and from the observed distance covered. Note that this is achieved
by means of the same general-purpose encoding used for planning and for the
detection of unexpected observations.

Next, the robot replans. The process seamlessly takes into account the in-
ferred battery level of 53% thanks to the content of HY P , which is passed to
plan. Because of that, the plan returned is adjusted for the lower battery level,
resulting in longer durative actions: first, the robot will move forward from its
current position for an extra 4.8s, in order to finally reach (150cm, 0cm). Then,
it will turn left for 9.73s. Then, forward for 10.3s. Assuming that no unexpected
events occur from this point on, it is easy to see that this plan will allow the
robot to reach its destination. It is worth stressing again that this is made pos-
sible by the architecture’s ability to infer the value of unobservable fluents from
the available observations and to leverage the inferred knowledge in subsequent
reasoning tasks.

The control loop is implemented in Python and uses CASP solver ezcsp
1.7.9. A video of the robot in action is at https://goo.gl/KuLRHH.

5 Related Work

While our work is situated in at an intersection of areas that is largely unex-
plored, there is a vast amount of literature on the individual topics. Due to space
10 Strictly speaking, this is encoded in the plan by a start(fwd) action at timepoint 0,

followed by stop(fwd) at timepoint 5.5s.



CASP for Robot Control in Hybrid Domains 13

considerations, we highlight only the approaches that are most closely related to
ours. [1] proposes an agent architecture capable of planning, execution monitor-
ing, diagnostic reasoning, and replanning. This approach is limited to discrete
domains. [5] address hybrid domains, but does not investigate execution mon-
itoring, diagnostics, or agent architectures. [2, 4] focus on planning in hybrid
domains from PDDL+ domain specifications. Effects of actions on numerical
properties do not include uncertainty; agent architecture, execution monitoring,
diagnostics are not considered. Various papers discuss the use of logic-based ar-
chitectures in robotics, such as [8, 6]. At the high level, however, they view the
domain as discrete, and typically rely on low-level control or ad-hoc computa-
tions for dealing with any non-discrete features.

6 Conclusion

We proposed what to the best of our knowledge are the first CASP-based repre-
sentation methodology and reasoning algorithms for execution monitoring and
diagnosis in hybrid domains, including those with non-linear dynamics. We also
presented an agent architecture tying together planning, execution monitoring
and diagnostic reasoning. When unexpected conditions arise, our architecture
is not only capable of inferring their likely causes but also of estimating the
values of related numerical properties. Inferred values can then be used to find
workarounds even when normal conditions cannot be restored. We demonstrated
our approach on two non-trivial examples, one of which on a physical robot.

References

1. Balduccini, M., Gelfond, M.: Diagnostic reasoning with A-Prolog. Journal of Theory
and Practice of Logic Programming (TPLP) 3(4–5), 425–461 (Jul 2003)

2. Balduccini, M., Magazzeni, D., Maratea, M.: A CASP-Based Approach to PDDL+
Planning. In: Constraint Satisfaction techniques for planning and Scheduling
(COPLAS16) (2016)

3. Baselice, S., Bonatti, P.A., Gelfond, M.: Towards an Integration of Answer Set and
Constraint Solving. In: Proceedings of ICLP 2005 (2005)

4. Bryce, D., Gao, S., Musliner, D., Goldman, R.: SMT-based Nonlinear PDDL+ Plan-
ning. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelli-
gence (AAAI’15). pp. 3247–3253 (2015)

5. Chintabathina, S., Gelfond, M., Watson, R.: Modeling Hybrid Domains Using Pro-
cess Description Language. In: Proceedings of ASP ’05 – Answer Set Programming:
Advances in Theory and Implementation. pp. 303–317 (2005)

6. Erdem, E., Patoglu, V., Saribatur, Z.G.: Diagnostic Reasoning for Robotics Using
Action Languages. In: 13th International Conference on Logic Programming and
Nonmonotonic Reasoning. pp. 317–331 (2015)

7. Gelfond, M., Lifschitz, V.: Action Languages. Electronic Transactions on AI 3(16)
(1998)

8. Zhang, S., Yang, F., Khandelwal, P., Stone, P.: Mobile Robot Planning using Action
Language BC with an Abstraction Hierarchy. In: 13th International Conference on
Logic Programming and Nonmonotonic Reasoning (2015)


