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1. Abstract 
Shortening technology development cycles in ICT (Information & Communication 

Technology) make it imperative to anticipate the emergence and evolution of new computing 

technologies and ecosystems. A wide range of questions must be answered to ensure that new 

technology environments are viable, including the examination of usability, efficiency, usage 

models, security, and privacy. These contextual aspects of new technologies are essential for 

their adoption. They are also important to understanding the potential of new types of 

cybercrime and requirements for the development of mitigation techniques. However, we lack 

methodologies to model and predict the features of the evolving ICT ecosystems and the 

requirements their evolution places on legal systems and regulatory frameworks. The absence 

of such models is a significant obstacle to creating consistent approaches necessary to forecast 

both the technology development and the trends in cybercrime. 

 

We discuss which potential methodologies could be used for forecasting cybersecurity 

concerns in disruptive technology areas and trends in cybercrime in complex environments. 

We believe a unified approach should be developed for predicting cybersecurity effects of 

innovative technologies and trends in cybercrime. We first examine concepts associated with 

emerging technologies and their impact on cybersecurity. We then look at approaches to 

modelling and analysis already developed in adjacent spaces, with focus on knowledge 

representation and risk engineering, and analyse representative examples to illustrate the 

benefits these approaches can bring. 
 

2. Technology Forecasting and Innovation  

2.1 Methodology for predicting trends in cybersecurity 

The term “technology” can denote products and services developed based on scientific and 

engineering knowledge, but it may also refer to related knowledge and its integration to solve 

complex application problems (see NIC 2016). Attempts to anticipate emerging technology 

areas and their impact are made routinely in the fields of policy, market analysis, research 

funding, and many more. Investments and policy decisions are made in anticipation of 

predicted developments. Research in the “disruptiveness” of new technologies may focus on 

the disruption of markets by innovation as in (Govindarajan and Kopalle 2006) or, more 

frequently, on softer metrics, attempting to forecast future trends based on past evolution, 

statistics, or superficially logical considerations. 

 

Such forecasts are rarely perfect, but they allow the broad community to define an area of focus 

for innovation. For example, in the United States, high-level research priorities in cybersecurity 



were established and tracked for a number of years, providing a relatively stable set of 

potentially disruptive technologies in cybersecurity and vocabulary for defining them.1 The 

resulting report divides potentially disruptive technologies into several descriptive areas, e.g., 

“moving target defence” and “security of cyber-physical systems,” and associates them with 

process-oriented activities, such as designed-in security, the establishment of scientific 

foundations of cybersecurity, or transition to practice. Although the resulting framework does 

not reliably forecast future technology environments, it allows us to talk about technology 

innovation and its influence on trends in cybercrime consistently when faced with cyberattacks 

of ever-increasing speed and scale. Can we do better than that? Below, we suggest approaches 

and provide examples to improve forecasts for disruptions in cybersecurity and for the 

evolution of cybercrime. 

 

 
Figure 1. Evolution of cyberattacks: The types of systems vulnerable to cyberattack have 

changed as technology and adversary methods have progressed. 

 

To understand the impact of emerging technologies on cybersecurity more accurately, we need 

a more formal and multi-disciplinary approach. Traditionally, “technology foresight” (Van 

Zwanenberg et al. 2009) is a structured activity, in which new possibilities of technological 

innovation are examined with a view toward harnessing the greatest economic or social value 

of future “technology assessment”. Van Zwanenberg et al.  focus on  predicting the impacts of 

technology as used by humans (foresight) and on creating methodologies to inform the 

selection and deployment of technology (assessment). These two approaches, foresight and 

assessment, are often combined to yield “strategic intelligence” (Kuhlmann et al. 1999). In the 

real world, planners frequently must think in terms of decades (foresight), but might also need 

to introduce new technology in the short- to medium- term (assessment). In increasingly smart 

cities, cybersecurity and crime are important aspects in both foresight and assessment activities. 
 

In fast-emerging areas, where new threats, threat vectors, attack methods, and defensive 

capabilities emerge daily, it is a challenge to link these developments to cybersecurity and 

cybercrime. However, it is not a bleak picture, and, as we discuss later, second-order 

predictions, such as trends in cybersecurity, are somewhat easier to capture. Forecasting of 

longer-term technology trends has been shown to be no better than random selection of 

possibilities, unless a low baseline is taken, focusing on obvious requirements (Quinn 1967). 

Views such as “security will continue to be important in electronic commerce” are likely to be 

correct, but they are obvious. We may not be able to anticipate even the types of technology 



that will exist at some future point, but some techniques could increase the likelihood of an 

actionable answer. Making well-founded assumptions about the technology environment in 

general makes it easier to predict impacts on the cybersecurity of citizens, systems, or entire 

infrastructures.  

 

Cybersecurity and trends in cybercrime are typically secondary impacts of the introduction of 

innovative technologies; they can be addressed with greater confidence than predictions for 

technology evolution in general. To illustrate, a prediction that flying autonomous vehicles will 

become common in twenty years (see NASA 2017) may be justified based on evolution of the 

technology up to now. But a more concrete prediction that 30% of new vehicles sold will be 

flying autonomous vehicles is hard to justify based on known technology and business trends. 

We lack scientific techniques to assess the probability of such a prediction. However, we have 

greater knowledge about the evolution of known cybersecurity and privacy threats, and 

vulnerabilities for flying autonomous vehicles based on what is known today. Although 

incomplete, this secondary assessment of cybersecurity could be more reliable than a more 

concrete technology prediction, because the secondary impacts of new technologies are more 

stable and depend more on the general technology environment than primary disruptive 

technologies. 

 

2.2 Possible techniques for prediction of future technology 
Let us consider specific techniques that can help anticipate cybersecurity and privacy concerns 

for innovative technologies with unknown usage models and evolution paths. How can we 

make sense of cybersecurity issues for technology environments that are too novel to be well 

understood or still evolving? Several approaches from adjacent research areas are available. 

1. Analysis based on past behaviours in similar environments. This approach permits 

a reasonably reliable core assessment based on known facts and techniques, but does 

not offer structured methodologies to extract novel components and problems. 

Studying past disruptive technological innovations may help us better understand how future 

disruptions or emerging technology with disruptive potential may influence the technological 

fabric that underpins modern societies and economies. As an example, the U.S government 

spent $1.5 billion in the late 1950s on developing a high-altitude strategic bomber, the XB-70 

Valkyrie. However, the emergence of surface-to-air missiles that could reach high altitudes led 

to swift cancellation of the project and a complete change in U.S. tactics. This apparent failure 

fostered research that created innovations in low observable design and coatings, greatly 

reducing the effectiveness of the aforementioned missile technology innovation (Rao & 

Mahulikar 2002). The Cold War environment did not exhibit either wide diffusion of emerging 

technology or capabilities analogous to current and emerging cybersecurity threats. It does not, 

therefore, qualify as a sufficiently similar environment. We must look to more recent use cases 

for guidance. 

 

With regard to modern developments, such as Bitcoin (Nakamoto 2008) and blockchain 

technology, analysis based on past trends could point to expansion to other areas requiring 

robust transaction records for auditing or operations. Aerospace, automotive, and supply 

chains, amongst others, could use blockchain and experience privacy and security issues 

detected for Bitcoin systems. We may suppose that sectors where blockchain is likely to be 

used will experience cybercrime trends informed by those detected for Bitcoin and/or for new 

sectors of blockchain use – with the necessary adjustment for new technology. 



2. Examining and combining analyses from different stakeholders. This approach 

permits incorporation of societal and economic considerations, but can be imprecise. 

The interpretation of the impact of technologies is partly a function of the objectives for the 

forecasting activity and the expertise of those who conduct it. Governments are interested in 

impacts on their societies and economies, including national security. International enterprises 

focus on financial impacts, their technological competitiveness, and impacts on trade and 

business models. Individuals are concerned with the impacts of emergent technology on their 

personal life and standard of living, in areas like food safety, online security, protection of 

personal data, and job prospects. Different technologies and stakeholders operate within 

different time horizons and tolerate different risks. In infrastructure-heavy sectors, such as 

telecommunications or manufacturing, longer-term analysis is needed than in areas such as 

software or consumer electronics, where planning horizons are shorter. In some areas, such as 

cyber-physical systems, time horizons vary between a lifespan of a few minutes (one-use 

medical sensors) and several decades (industrial control systems). But the essential 

technologies in these two areas are similar, leading to the need to develop models capable of 

evaluating both paradigms in one framework. 

 

Continuing our blockchain example, examination of cybersecurity threats from different 

market and government sectors in which blockchain is used can help anticipate some of the 

cybersecurity vulnerabilities that are likely to be important, and apply already known or newly 

created mitigation techniques. 

 

3. Collecting “signals” from the environment and analyzing their impact. Signals can 

include diverse evidence of evolving characteristics of the technology environment, job 

advertisements, information on acquisition and alliances, research publications, and 

many other elements. The success of this approach depends heavily on the data quality 

and interpretation of these signals. 

By collecting meaningful information over time on a wide range of topics, consistent trends 

can be constructed, including for cybersecurity. Although conclusions may not be immediately 

actionable, they can be improved by refining methods of signal interpretation. Artificial 

Intelligence techniques could be added to this methodology, potentially offering deep or 

unusual insights into current and future trends. 

 

To illustrate, signals and data from currently active blockchain markets and analysis of those 

signals could provide a practical, sometimes quantitative, foundation for more theoretical 

assumptions on the vulnerabilities of future blockchain systems described for the first two 

approaches. 

4. Creating models of disruptive technologies. Insights and results depend on the quality 

of the model and the viability of its assumptions, but they permit generalization of the 

methodology and evaluation of multiple scenarios. 

Emergent technology may be disruptive in several ways. Innovation can make past technology 

obsolete, diminishing returns on prior investments. Or it can challenge past business models, 

including the rationale for existing service or product platforms; note that none of the larger 

companies that produced computers based on analogue transistors survived the transition to 

digital transistors. Disruptions may also have important second order effects. For example, if 



almost all cars are both powered by electricity and fully autonomous, opportunities for energy 

savings through coordinated road usage and planned recharging may increase; however, this 

may increase preference for cars over public transportation, potentially increasing energy 

demands (see NIC 2016). Such insights can be refined through modelling and can assist theory 

development not only for the primary environment (autonomous cars), but also for emerging 

cybersecurity and privacy concerns in an environment with predominantly autonomous 

vehicles. 

 

Continuing our blockchain example, insights gleaned from approaches 1-3 (two theoretical 

approaches and one data-driven validation mechanism) are likely to provide enough useful 

information and strong assumptions to shape a model of blockchain-enabled environment. In 

such a model we can explore different use cases within a single framework, to enable 

examination of future impacts on cybersecurity and privacy and trends in cybercrime for this 

space. 

5. Ontology2-based analysis. Knowledge engineering3 techniques can support structured 

analysis of components of innovative environments. They can also enable reasoning 

about the relationships within these environments; finding hidden connections and 

constraints; and understanding how the same technology can be used for different 

scenarios, ranging from digital business and e-government to cybercrime. 

The intrinsic complexity of modern technology environments makes it hard to understand how 

innovative elements impact other environments and technology users. Traditional approaches 

provide silo-based analysis, but, without finding hidden connections, we cannot assess 

hypothetical situations that do not yet exist or have not yet been detected. What cybercriminal 

threats are there for a passenger in a flying autonomous vehicle? How can an old public ledger 

affect the security of an account created twenty years later? Reasoning algorithms in ontologies 

can help find answers to these questions. 

 

Returning to blockchain, an ontology and its reasoning engine can draw from the techniques 

described earlier, while highlighting implicit relationships and constraints not noticed before. 

We may thus identify a lack of alignment between requirements in regulatory frameworks in 

some areas (e.g., aerospace) and capabilities of blockchain systems or their potential ability to 

protect against or create the foundations for certain types of cybercrime. 

 

2.3 Trend forecasting and cybercrime 
The connection between innovative technologies and novel opportunities for cybercrime 

should be understood using a number of approaches. Because cybercrime covers a wide range 

of activities where information technology facilitates criminal purposes, the connection 

between the new technologies and the new forms of cybercrime is important. The same 

ecosystems are used for digital business and by cyber-criminals (Kraemer-Mbula et al. 2013). 

Thus, a better understanding of emerging technologies and business models should also lead 

to a better potential to anticipate mitigations for cybercrime. 

 

Quantum Computing and Post-Quantum Cryptography provide an example of the connection 

of emerging technologies and new types of cyber threats, and, consequently, cybercrime. The 

ability of Quantum Computing (Shor 1995) to potentially compromise existing digital 

signature solutions suggests that emergent technologies may not only threaten the 

cybersecurity of present systems, but may compromise the integrity of past commercial or legal 

transactions, potentially damaging the trustworthiness vital to a nation’s social contract. Digital 



signatures and authentication enabled by asymmetric cryptography rely on the fundamental 

assumption that only a signatory can produce a signature while anyone can verify it. For this 

assumption to hold, the task of synthesizing a signing key from a verification key and a message 

must be too complex to perform in any reasonable amount of time by a state-of-the-art 

computer. Thus, these schemes are particularly vulnerable in a Quantum Computing 

environment. To make things worse, they are as pervasively used as asymmetric cryptographic 

algorithms for data encryption. The emerging problem with this technology is widely known, 

providing additional time and opportunities for cybercriminals to develop new techniques. 

 

When fundamental changes in a paradigm are envisioned, as in Post-Quantum Cryptography 

(Bernstein 2009), ontological analysis can identify impacts on complex systems or legal and 

regulatory environments. Extending this example to blockchain, ontological views of 

blockchain systems and Post-Quantum Cryptography, informed by the outcomes of other forms 

of analysis, permit the developers to better understand the effect of fully functional quantum 

computers on blockchain systems and the effect of this paradigm change on cybercrime. 

 

To summarize, we cannot rely on proven approaches to identify and analyse emerging 

technology environments and their cybersecurity and privacy properties. But cybersecurity and 

privacy threats and vulnerabilities identified for older, yet similar, environments can be a useful 

guide because they represent derivative rather than primary insights. A number of techniques 

could improve the outcomes for anticipating disruptive technologies; an aggregation of these 

methodologies can improve the outlook. 

 

2.4 Disruptive technology and regulatory frameworks 
New technology environments have a profound effect on the efficacy and content of regulatory 

and legal frameworks, which are also influenced by the need to combat cybercrime. However, 

this influence is delayed. Consider the evolution of the concept of anonymity in the modern 

technology environment. Anonymity is an important foundation for privacy and data 

protection, but the ability to achieve relative anonymity online is also an enabler of cybercrime. 

 

Anonymity has gained importance largely due to European legislation on personal data 

protection. Anonymous data are not “personal data” and therefore are outside the field of 

application of, e.g., the EU General Data Protection Regulation.4 But is anonymity absolute? 

It cannot be in some contexts. A writer can be anonymous to readers, but not to the publisher. 

The multifaceted nature of anonymity is much more prominent in modern digital contexts. 

 



 
Figure 2. Cybercriminals and the law: This simplified systemigram illustrates how 

cybercriminals can get and remain ahead of cybersecurity regulatory frameworks. 

Data can be considered personal if a data subject is identifiable. The subject need not be directly 

identified, but can be identifiable in principle, for instance, through aggregation of data sources. 

As the number of potentially related data sources and diverse identifiers increases, the ability 

to re-identify a user through multiple data sources also grows. EU regulators adopted5 the idea 

of ‘reasonableness’ as a foundation for the establishment of whether the data should be 

considered personal or anonymous. The reasonableness test relies on the amount on effort 

needed to re-identify a data subject6. 

However, the complexity of the digital processes is likely to lead to further dilution of the strict 

definition of anonymity. It will become more difficult to interpret issues related to autonomy 

in the context of the latest technologies: for example, determining the appropriate level of 

anonymity within distributed ledgers or whether the distributed nature of many blockchain 

systems could violate requirements for, and place restrictions on, international data flows. In 

consequence, legal and regulatory approaches require continuing evaluation and modification 

of requirements to match the computing environment. It will also be necessary to reconcile, via 

technology adjustment and regulatory actions, the need to avoid re-identification to support 

data protection for users with the need to trace and combat cybercrime. 

 

2.5 Disruptive technology and threat landscapes 
A disruptive technology could dramatically change the cybersecurity threat landscape, yield 

effective new countermeasures against cybersecurity attacks, or influence the ecosystem in 

which cybersecurity attacks are realized and monetized. For example, the invention of Bitcoin 

(Nakamoto 2008, Narayanan et al. 2016) has the potential to make the flow of financial assets 

traceable, making it harder for cybercriminals to act through a combination of social and cyber-

attacks. But the pseudo-anonymity that Bitcoin affords to its users raises the interest of 



cybercriminals in Bitcoin transactions because such transactions may be hard to connect to 

legal actors. However, intelligent data analysis allows for the identification of particular 

Bitcoin users or operators of its clusters (Meiklejohn et al. 2016). This is an innovative 

environment with some features not previously encountered. The assessment of its impact on 

cybersecurity must draw from techniques described above to be comprehensive and reasonably 

pragmatic. Similarly to anonymity, the legal and regulatory aspects of cybersecurity with 

regard to blockchain-enabled environments are expected to gradually evolve, as will the 

regulatory frameworks for virtual currencies. Society will have to anticipate and resolve a range 

of issues as new technologies take hold, such as the use of blockchain-based cryptocurrencies 

for cybercrime. 

 

Anticipating gradual evolution of technology is easier than guessing the fundamentally new 

directions of distinctive innovations such as a digital transistor or software-defined radio, 

because incremental processes founded on known principles are easier to capture. However, it 

is important to understand that, while technology disruption through incremental change may 

be less opaque to researchers, in some situations secondary properties with regard to 

cybersecurity and privacy may abruptly lose their incremental nature. Thus, gradual change in 

the general technology environment may lead to abrupt deterioration or improvement in 

security, limiting the usefulness of analytical tools developed to reflect an earlier state of a 

similar technology environment. To overcome consequences of abrupt changes resulting from 

originally incremental developments,  good quality metrics and advanced risk models may be 

leveraged. 

 

We illustrate such gradual improvement in the use of military-grade GPS systems. The 

evolution of the features of the technology was obvious in military systems. But when GPS 

technologies became mature enough and cheap enough to support mass location services on 

non-dedicated devices, security and privacy concerns associated with location tracking 

emerged, requiring a separate solution.   

 



 
Figure 3. Anticipated threat themes: Information Security Forum cybersecurity threat themes 

for 2019. 

Today, a growing number of organizations view threat landscapes in a more general way, in an 

attempt to predict the areas of focus for threats rather than specific threats and their precise or 

relative impacts. In part, this is due to the complexity of today’s computing environment. But, 

in addition, the emphasis on the big picture is driven by the realization that it embeds the 

foundation, from which the details could be captured and addressed. Figure 3 illustrates this 

approach and shows a summary of the 2019 threat landscape released by the Information 

Security Forum (ISF).7  

 

The need for generalization is obvious in both cybersecurity threat and technology forecasting. 

Analysis through knowledge representation provides an opportunity to examine not only the 

components of the big pictures, but also the connections both between them and within the 

broader context of deployment or use.  

3. Knowledge representation and technology trend prediction 
In multi-disciplinary subjects like cybersecurity, knowledge representation approaches could 

be useful in assessing current and emerging technology spaces, for both research and 

technology deployment. Ontology-based reasoning can help us obtain a multi-dimensional 

view of the subject, incorporate consistent constraints, understand dependencies, and draw 

informed conclusions. 

  

How can we make sense of cybersecurity in a way that can enable multiple and potentially 

contrasting contexts, including the legitimate use of technology on the one hand, and 

cybercrime on the other? At a high level of abstraction, the idea is to create a landscape of 

existing technologies, using their distinguishing features to locate them as points in a multi-

dimensional space of concepts. Current trends can then be identified by studying the relative 

density of points in this space. Higher-density areas denote technologies that are heavily 



investigated, or where investment is stronger, while lower-density areas correspond to 

technologies that have received less interest. Extrapolations can be carried out to determine 

future trends – possibly by studying how density has changed over a period of time. 

  

But how can we concretely lay out these multi-dimensional points in such a concept space? 

Essential for a successful exploration of a complex landscape is the ability to link concepts 

based on their similarity and dependencies, so that more strongly related technologies are closer 

to each other in the space and can be considered part of a single set from a high-level view.  

  

With ontologies and ontology-based reasoning, it is possible to capture the arbitrary 

relationships among concepts and most notably class-subclass relationships. An ontology-

based approach could permit researchers and practitioners to link together disparate content 

that draws from similar premises (Iannacone et al. 2015), allowing technologists to reuse, share, 

and propagate knowledge. We think this approach, which offers mature reasoning capabilities, 

can be used very effectively to make more informed technology predictions.  

 

   3.1 Primary assessment of disruptive technologies 
Let us now consider the disruptive potential of distributed ledger technology from a 

cybersecurity perspective.  

 

Technology foresight and assessment can help to better understand the opportunities and risks 

for cybersecurity in blockchain by highlighting complex dependencies and risks that are 

difficult to notice without an ontology. We will illustrate this for the use of blockhain in Internet 

of Things (IoT) and supply chains. Below are some possible future scenarios to consider that 

can be developed to first approach the problem: these scenarios (S) are constructed for 

illustration, and based on assumptions informed by past behaviour. 

 

S1: All key workflows of supply chains including their CIA (Confidentiality, Integrity, 

Availability) cybersecurity properties, the making of payments, KYM (Known Your Machine) 

and GRC (Governance, Risk, and Compliance) are mediated through blockchain technology 

based on open systems. 

 

S2: Many workflows of supply chains, such as the making of payments, are mediated through 

open blockchains. Some other workflow aspects, such as GRC, cybersecurity, and IoT-

facilitated cyber insurance, will be mediated through blockchains ,in which nodes that elect the 

next block in the chain are controlled by stakeholders in these supply chains. 

 

S3: The paradigm of open blockchains, in which everyone is free to join the network, is not 

adopted by industries to support aspects of workflows for their supply chains. But blockchain 

technology is fruitfully and judiciously used to make supply chains more flexible, auditable, 

secure, and cost effective. 



 

Figure 4. Leveraging Ontologies: A simplified representation of ledgers and blockchains, as 

they may be used in the process of analysing the three sample scenarios 

 

What is the perceived likelihood of these scenarios and what might be the cybersecurity 

ramifications of their realization based on the analysis of past behaviour? 

 

Scenario S1 is unlikely because of risks associated with open blockchains: their currencies 

may not be valid, their governance models may not align with GRC requirements, and open 

blockchains may not be scalable enough. Confidentiality is a potential issue because 

transactions and their history would be public, enabling de-anonymization of transactors 

(Meiklejohn et al. 2016).  

 

Scenario S2 appears more likely to us. It is prudent to confine higher-risk aspects to 

blockchains that have access control (including control of the construction of the blocks) and 

confidentiality designed into them. And there are cybersecurity concerns about using open 

blockchains to create and maintain currencies. Smart payment contracts, a key innovation of 

blockchain, require complex run-time systems that are subject to conventional cyberattacks: 

the denial of service attack on Ethereum in 2016 (Siegel 2016) illustrates the risks of using a 

cryptocurrency with limited level of assurance.  

 

Scenario S3 is also likely: developers of cryptocurrencies such as Ethereum are interested in 

better control of blockchains, through a combination of private and open approaches, to reduce 

the risks of cyberattacks. Cybersecurity may also be enhanced through advances in privacy-
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preserving distributed storage, cryptographic support, more advanced protocols, and other 

technologies. 

 

Figure 4 above illustrates a simplified ontology as it might be used in the analysis of the 

scenarios. One of its top-level concepts is “Ledger”, which is refined into “DistributedLedger” 

and in its subclass “BlockchainDatabase”. A ledger “contains” one or more 

“TransactionRecord” items, each “recording” a set of “TransactionData”. “Block” is a subclass 

of “TransactionRecord”, and, as such, inherits relation “records”. It also extends its super-class 

by relations specific to the workings of blockchains, i.e. “linkedTo” and “linkedBlockHash”, 

which point to the previous block and store its hash, “blockHash”, which records the hash of 

the current block, and “dated”, which stores its timestamp. The hierarchical structure of the 

ontology enables both a high level of abstraction, e.g. viewing blockchain databases as any 

other ledger, and considering high-granularity details, e.g. using ontology-based reasoning to 

extract a blockchain from a database by leveraging the “linkedTo” relation. It would not be 

difficult to extend the ontology further by adding a representation of access control and 

trustworthiness elements in blockchains, as well as additional dimensions to cover privacy, 

anonymity, threat agents, and cybercrime. 

 

3.2 From likely scenario to an ontology 
Similar scenarios are frequently developed to understand the elements of a field or a use case. 

How can ontologies help here? As shown in Figure 4, an ontology is a hierarchical specification 

of classes of objects from a domain of interest, including their properties and relationships. As 

such, ontologies enable a principled organization of knowledge.  

 

The general-purpose, hierarchical nature of ontologies, their broad applicability, and the fact 

that all relevant information has an explicit, machine-accessible representation, make 

ontologies well suited for formalizing multidisciplinary concerns, such as the connection 

between disruptive technologies, regulatory frameworks, and cybercrime.  

 

When tackling multidisciplinary knowledge, it is useful to divide the formalization into upper 

ontology and (multiple) domain ontologies. An upper ontology encodes concepts that are 

common across all domains of interest. For securing cyber-physical systems, for instance, an 

upper ontology might define the high-level concept of “system component,” with its 

refinements of “computational device” and “physical device,” and the concept of 

“vulnerability.” Additionally, a relation “vulnerable-to” might be used to associate a system 

component with its known vulnerabilities. A high-level concept “activity” can be defined as a 

super-class of concepts such as “offence,” “analysis,” and “defence” to map out a research 

taxonomy. In turn, “defence” might be a super-class of “prevention,” “detection,” and 

“mitigation.” 

  

A domain ontology formalizes a specific knowledge domain. Concepts captured by a domain 

ontology are specializations of concepts from the upper ontology. For example, a domain 

ontology of smart grids might describe SCADA systems as kinds of computational devices, 

power generators as types of physical devices, and list a number of vulnerabilities specific to 

the smart grid. Relation “vulnerable-to” could then be used to indicate the specific 

vulnerabilities of smart grid components and types of cybercrime.  

  

Inference can then be applied to propagate relevant properties and relations throughout the 

ontology. For example, if a new vulnerability is discovered that affects certain system 

components, one can determine which components are directly vulnerable. A notion of a 



component being “affected by” the vulnerability, either directly or indirectly (connected to 

some other component that is affected by it) can then be analysed through inference to identify, 

across the ontology, any component that is affected by a vulnerability. This approach may be 

used in different contexts, to study different dependencies and relations, e.g., between 

regulatory changes and cybercrime, or technology deployment and cybercrime. 

 

This representation and reasoning framework is especially suited for situations in which 

knowledge from multiple fields must be captured at the same time. The aforementioned 

ontology would allow one to study exploits that may affect both the power system and the 

braking system in a connected vehicle, and also illustrate how cybercriminals might use this 

vulnerability. Multidisciplinary knowledge can be incrementally and seamlessly integrated, 

and sophisticated questions about the modelled systems can be answered by means of general-

purpose inference mechanisms without the need to develop dedicated algorithms. 

 

Knowledge representation permits us to capture relationships, constraints, and dependencies – 

important not only in forecasting future trends, but also in obtaining insights about completely 

different environmental contexts, such as digital business and cybercrime. As an example of 

this, consider the notion of value chain, a sequence of activities that are performed to produce 

a product or service and bring it to the market. The general concept of value chain can be easily 

captured by an ontology, in which activities are linked, by a relation “depends-on”, to the 

activities they depend on. In a business context, a value-chain ontology can enable the 

identification of bottlenecks and the evaluation of the effects of new suppliers. However, this 

ontology can also be applied to studying illegal activities. Kraemer-Mbula (et al. 2013) 

observed the existence of a cybercrime value-chain vulnerability detection → infection and 

distribution → exploitation: by applying the value-chain ontology to illegal activities, 

dependencies among the various illegal activities can be studied, leading to insights into critical 

links in the chain and methods for blocking them. 

 

It is worth stressing that all of this is made possible by the semantic nature of the approach. 

Having precisely defined semantics allows associating ontological languages with inference 

mechanisms that perform automated, provably correct reasoning. These inference mechanisms 

enable, for instance, expanding a class-subclass relationship into an ancestor/descendant one. 

In the value-chain example, the inference mechanisms’ ability to propagate dependencies 

through a value chain is the key to identifying bottlenecks and critical illegal activities. 
 

4. From knowledge models to risk models 
A comprehensive understanding of cybersecurity requirements brought forward by disruptive 

technologies is not an end goal. Anticipating and producing mitigation in novel environments 

and for novel uses of technologies is more important. Risk-based methodologies are helpful 

here. 

 

4.1 Risk Engineering 
Traditionally, risk assessments are done for specific, isolated aspects of an environment. 

Sometimes these aspects are very narrow, such as the functionality of a system component for 

a strictly defined use case or a reputational risk from a premature release of a potentially 

disruptive computing device. At other times, these assessments are broader, examining the risks 

from different threat agents or from actions by people, and the effects of poor processes and 

new technologies on government systems, examined along these three separate axes: people, 

processes, and technologies.  



 

The management of multi-domain risks reflecting the complexity of the computing 

environment can be improved if ICT systems themselves are engineered by explicitly reflecting 

risks of their use, be it in isolation or in a specific operational context. This approach requires 

that systems have specifications that articulate risks – be they informal, semi-formal or formal, 

qualitative or quantitative, given in textual form or within a mathematical model. The body of 

knowledge associated with various aspects of cybersecurity comprises ways of expressing such 

risk specifications and analysing the consequences of changing the risk picture. This technique 

can be also applied to cybercrime. 

 

There is relatively little work on making such specifications composable to scale, and on 

specifying risks that stem from the combination or interaction of different aspects of systems, 

such as safety and security. This is where risk engineering can help. Risk engineering can be 

defined as “incorporation of integrated risk analysis into system design and engineering 

processes” (Huth et al. 2016).  

 

Although full definitions of risk engineering methodologies are wanted, it is clear that they 

must support an integrated picture of risks, including, at least, the domains of security, privacy, 

safety, reliability, and resilience (NIST 2017). Success in this area requires several obstacles 

to be overcome. As mentioned earlier, one challenge is the creation of a comprehensive 

semantic framework to enable a consistent terminology and ability to reason about the 

environment based on shared views. A multi-domain ontology can accommodate this 

requirement. To illustrate this need, even elementary terms, such as “incident,” have different 

definitions within different risk communities: for safety, “incident” denotes an event that does 

not have safety-critical consequences, whereas for security, it refers to a serious breach.  

 

Another obstacle is lack of a consistent approach to metrics that objectively assess risk and 

impact, a serious problem when an integrated risk model is considered. To illustrate, failure 

probabilities in the risk domain of safety are extremely small. But probabilities of a breach in 

security and privacy, where diverse and evolving attacks must be taken into consideration, are 

much larger. Thus, successful risk engineering requires integrated, multi-scale risk metrics. 

 

Yet another challenge is risk composition, the ability to measure integrated risks that 

meaningfully compose risk parameters in multiple domains. 

 

As mentioned in Section 2.5, risk engineering techniques offer advantages for several types of 

analysis, but especially when applied to an environment experiencing incremental changes, 

gradually leading to escalation of initially moderate risks. Risk engineering permits us to model 

and anticipate necessary mitigations for several connected risk domains. To invoke our 

blockchain example once again, risk engineering helps evaluate, in an integrated fashion, 

safety, security, and privacy risks introduced by the use of blockchain techniques in 

autonomous vehicles employing blockchain as a mechanism to support operational data 

integrity. Subject risks could also include analysis of risks from cybercriminal activity. 

 

Examining cybercrime in isolation from the legitimate use of similar technologies during their 

lifecycle is not likely to be constructive. Only when cybercrime and technology in general are 

evaluated based on the same models, including risk models, can we devise a forward looking 

rather than reactive approach to cybersecurity and cybercrime. 

 



4.2 Cybersecurity Metrics 
One of the most serious challenges in cybersecurity is the development of consistent and 

actionable metrics that could provide insights useful in many areas, such as trends in 

cybercrime or technology development. Performance management professionals live by the 

maxim “measure what matters.” From this viewpoint, the purpose of metrics is to provide 

actionable insights to decision makers. This maxim is valid for technical and socio-technical 

systems. Cybersecurity metrics must, therefore, be guided by knowledge of what 

cybersecurity-related insights decision makers’ need, both on the security of systems they 

design or deploy and on the protection of these systems from cybercrime. These metrics will 

be constrained by the availability (at supportable cost) of suitable data or reliable proxies, and 

by the timeliness and ease of use of the assembled information.  

 

Understanding impacts is important for creating meaningful metrics based on the cost-

effectiveness of investments and operations, safety of persons and assets, legal liability, and 

similar characteristics. A recent report (Kelley et al. 2016) cited “reducing average incident 

response and resolution times” as the primary cybersecurity challenge of the executives 

surveyed. As a practical matter, metrics capable of enabling reliable estimation of direct and 

indirect impacts of system compromise will be essential to informed decision making.  

 

 
Figure 5. Cybersecurity Metrics and the OODA Loop: Effective cybersecurity metrics ensure 

decision makers have a fast, reliable OODA loop at multiple levels. 

Perfect cybersecurity capabilities would obviate the need for responses by enabling decision 

makers to prevent incidents. But, as Figure 5 illustrates, decision makers prefer capabilities that 

enable them to “observe, orient, decide and act” before their adversaries are able to complete 

the same cycle. While effective cyber reconnaissance and attack campaigns can take months 

or years to come to fruition, the fact that cyber capabilities operate at machine speed materially 

affects both the practical usefulness of metrics and the value of research to create them.  

 

In recent years, cybersecurity research and development activity has progressed from an 

emphasis on reactive cybersecurity, which seeks to create and improve tools and processes that 

can help analysts detect, respond to, mitigate and recover from cyber threats, toward proactive 

cybersecurity. Proactive cybersecurity focuses on creating a “science of cybersecurity” that 

enables the stakeholders to predict and, ideally, prevent cyber incidents before they happen, 

and understand when previously compromised nodes will once again become secure. 

 

Reactive cybersecurity capabilities typically centre on detecting anomalies in a system’s 

contents, environment or behaviour. Unfortunately, those who rely on reactive cybersecurity 

frequently find themselves at a disadvantage, as their strategies and tactics are constantly 



disrupted by threat actors finding innovative ways to discover, create, and exploit 

vulnerabilities.  

 

Proactive cybersecurity draws from metrics-based concepts such as “Cybersecurity Dynamics” 

developed by Shouhuai Xu and colleagues8 and relies on “risk-based security metrics” 

(Thuraisingham et al. 2016) that can evolve with the changing environment and proactively 

account for attack-countermeasure-response dependencies. Recent reports (NIST SPs 800-30, 

800-37, 800-39, 800-53, and 800-53A) developed additional dimensions for risk-based and 

other types of cybersecurity metrics and guidelines (Ross, Feldman and Witte 2016, 5).   

 

Decision makers must know in advance whether devices attempting to connect with their 

networks are sufficiently trustworthy. “[M]easures of trustworthiness are meaningful only to 

the extent that (a) the requirements are sufficiently complete and well defined, and (b) can be 

accurately evaluated” (Neumann 2004, viii; Ross, McEvilley and Oren 2016, 1). When coupled 

with cyber hygiene efforts, reliable metrics of the trustworthiness of a device or environment 

would offer significant benefits, including protection against cybercrime. Metrics enabling 

prediction of future failures as a result of attacks are highly valuable, as would be the ability to 

account for the uncertainty caused by gaps in available data (Newmeyer 2015). 

 

Many efforts noted above recognize that systems designed for reactive cybersecurity make 

inherent assumptions that may misinterpret or miss useful signals due to interpretational bias. 

Data-driven AI could also suffer biases as a result of the specific learning processes employed, 

but adversarial machine learning techniques (Huang et al. 2011) may help mitigate this.  

 

How can this concrete wisdom from practitioners be applied to improving the quality of 

predictions for cybersecurity and cybercrime trends in future technology environments? The 

challenge lies in adapting the operational signals and related metrics traditionally used in 

cybersecurity to the techniques for disruptive technology forecasting outlined in Section 2. 

Optimized cybersecurity metrics for current systems allow us to quantify some parameters of 

predictive models for disruptive technology, understand the meaning of environmental signals, 

and improve the building blocks for the ontology supporting more reliable forecasting. Further, 

such metrics could help improve methodologies for integrated risk engineering and, therefore, 

contribute to better cybersecurity and improved protections against cybercrime. 

 

5. Conclusions 
In “Principled Assuredly Trustworthy Composable Architectures,”9 Peter Neumann states: 

 

[T]here are no easy answers … [C]omplexity must be addressed through 

architectures that are composed of well-understood components whose interactions 

are well understood, and also through compositions that demonstrably do not 

compromise trustworthiness in the presence of certain untrustworthy components.” 

 

In an ideal system, trustworthiness results from the intrinsic logic of the system understood by 

all its stakeholders. For cybersecurity, this state may never be achievable. But in order to protect 

our digital infrastructures and combat cybercrime, we need to be ahead of attackers, understand 

the current state of the ecosystem and its evolution, and comprehend trends in disruptive 

information technologies, to enable us to anticipate and mitigate cybercrime.  

 



In this chapter, we provided some recipes, techniques, methodologies, and examples that can 

help technologists and regulators more reliably anticipate the technology trends and develop 

necessary cybersecurity protections. Most important is to develop cybersecurity models that 

are broadly applicable and usable for full technology lifecycles and varied use cases as well as 

for the analysis of cybercrime. Today, use fragmentation in this area makes consistent analysis 

and reliable forecasts impossible. 

 

Among the tools that can help us make sense of disruptive technologies and render insights to 

combat cybercrime, several directions of analysis, evaluated in this chapter, appear to be 

productive. Broader methodological approaches, such as reliance on knowledge representation, 

development of risk engineering, and creation of objective metrics should be key areas of focus 

in the multi-disciplinary technology community. 

 

NOTES

1 See, e.g. “Report on Implementing Federal Cybersecurity Research and Development 

Strategy,” https://www.nitrd.gov/PUBS/ImplFedCybersecurityRDStrategy-June2014.pdf 
2 According to Wikipedia ( ),” In computer science and information science, an ontology is a 

formal naming and definition of the types, properties, and interrelationships of the entities that 
really or fundamentally exist for a particular domain of discourse. It is thus a practical application 
of philosophical ontology, with a taxonomy. An ontology compartmentalizes the variables needed 
for some set of computations and establishes the relationships between them.” 
3 According to Wikipedia, Knowledge engineering (KE) refers to all technical, scientific and 

social aspects involved in building, maintaining and using knowledge-based systems. See 
https://en.wikipedia.org/wiki/Knowledge_engineering 
4 See, e.g., http://www.eugdpr.org/ 
5 See Article 29 Working Party Opinion adopted on 10 April 2014 at 

https://cnpd.public.lu/fr/publications/groupe-art29/wp216_en.pdf 
6 The Artcile 29 Working Party Opinion 5/2014 on Anonymization Techniques adopted April 

10 2014, p. 6 (https://cnpd.public.lu/fr/publications/groupe-art29/wp216_en.pdf) describes 

the reasonableness test as follows: It should be recalled here that anonymisation is also 

defined in international standards such as the ISO 29100 one – being the “Process by which 

personally identifiable information (PII) is irreversibly altered in such a way that a PII 

principal can no longer be identified directly or indirectly, either by the PII controller alone or 

in collaboration with any other party” (ISO 29100:2011). Irreversibility of the alteration 

undergone by personal data to enable direct or indirect identification is the key also for ISO. 

From this standpoint, there is considerable convergence with the principles and concepts 

underlying the 95/46 Directive. This also applies to the definitions to be found in some 

national laws (for instance, in Italy, Germany and Slovenia), where the focus is on non-

identifiability and reference is made to the “disproportionate effort” to re-identify (D, SI). 

However, the French Data Protection Law provides that data remains personal data even if it 

is extremely hard and unlikely to re-identify the data subject – that is to say, there is no 

provision referring to the “reasonableness” test. 
7 See: 

https://media.scmagazine.com/documents/217/isf_threat_horizon_2018_execut_54175.pdf 
8 See http://www.cs.utsa.edu/~shxu/socs/ 
9 Neumann, P. G. 2004. “Principled Assuredly Trustworthy Composable Architectures,” a 

contract final report presented to DARPA: http://www.csl.sri.com/users/neumann/chats4.pdf, 

p.151. 

                                                      

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Information_science
https://en.wikipedia.org/wiki/Entities
https://en.wikipedia.org/wiki/Domain_of_discourse
https://en.wikipedia.org/wiki/Ontology
https://en.wikipedia.org/wiki/Taxonomy_(general)
https://en.wikipedia.org/wiki/Knowledge-based_systems
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