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Abstract

Security experts have difficulties achieving quick vulnerability mitigation because cybersecurity is a com-
plex multi-disciplinary subject that yields itself with great difficulty to traditional methods of risk analy-
sis.  In particular, the effectiveness of mitigation strategies depends on an accurate understanding of the re-
lationships among the components of systems that need to be protected, their functional requirements, and 
of the trade-off between security protection and core functionality. Mitigation strategies may have undesired 
ripple-effects, such as unexpectedly modifying functions that other system components rely upon. If some 
of the side-effects of a mitigation strategy are not clearly understood by a security expert, the consequences 
may be costly. Thus, vulnerability mitigation requires a deep understanding of the subtle interdependencies 
that exist between domains that are different in nature.  This is especially difficult for new technology use 
models, such as Cloud-based computing and IoT, in which cyber and physical components are combined 
and interdependent. By their own design, ontologies and the associated inference mechanisms permit us to 
reason about connections between diverse domains and contexts that are pertinent for the general threat 
picture, and to highlight the effects and ramifications of the mitigation strategies considered. In this paper, 
we position ontologies as crucial tools for understanding the threat space for new technology space, for 
increasing security experts’ situational awareness, and, ultimately, as decision-support tools for rapid devel-
opment of mitigation strategies. We follow with the discussion of the new information and insights gleaned 
from the ontology-based study of the root of trust in cyber-physical systems.

1 Introduction
Modern processes and technologies are cross-domain, merging together approaches created for 
different contexts. Complexity is intrinsic. Even activities resulting in identical or similar out-
comes – e.g., sending electronic mail, processing identical datasets or payments, using e-com-
merce applications, or assessing the data quality collected from sensors – could be executed in 
very different environments, resulting in different risks. Thus, it is sometimes necessary to as-
sume different risk postures in response to similar events or in the course of the same process. 
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Moreover, computing or physical environments are not the only contexts that influence the na-
ture of vulnerabilities. Economic conditions or regulatory requirements can alter the impact of 
the cybersecurity risks and therefore lead to changes in mitigation strategies.

This paper uses cyber-physical systems (CPS) as an example environment. Complexity and 
composition considerations are especially meaningful when analyzing CPS that have comput-
ing capabilities, communication (cyber) capabilities, and physical interfaces [. In most use cases, 
CPS and other systems don’t operate in isolation, but rather work in the end to end continuum, 
extending from edge devices to the Cloud, where data generated by sensors and enriched by 
processing can be stored. CPS almost always display significant environmental complexity as do 
multi-device environments in general, complicated by the physical interfaces and use cases that 
CPS generally enable. Moreover, diversity among CPS is extensive, with seemingly little in com-
mon in different CPS contexts. If we compare connected kitchen appliances with transportation 
systems, or energy systems, they appear to have very little in common, but they draw from similar 
foundational technologies and deployment processes. 

Fig. 1: Security protection and “anonymity readiness” in today’s computing envi-
ronments.

Because of the complexity of processes associated with the use of CPS, one process typically 
contains multiple operational conditions and levels of security capabilities as illustrated in Fig. 1.

Although the complex processes have a unifying operational goal, the security capabilities are 
different at different stages of the process. The diversity in security extends to privacy protection. 

The diversity and complexity makes it impossible to assess composite risks with traditional tech-
niques [GGIK2015] and to develop mitigations that are broadly applicable rather than context 
dependent. Ontology-based reasoning can permit us to obtain a multi-dimensional view of the 
subject, incorporate consistent constraints, understand dependencies, and make informed con-
clusions about remediation. It could also help the developers to design a nuanced risk posture 
in new technologies that is better suited to the majority of today’s dynamic use cases. Finally, we 
believe ontologies could be useful in assessing new and emerging technology spaces, for both 
research and technology deployment, in multi-disciplinary subjects like cybersecurity. 
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2 Ontology and Complex Multidisciplinary Subjects

2.1 About cybersecurity 

Cybersecurity has begun to crystallize into a firmer subject a relatively short time ago. Although 
definitions of cybersecurity vary, they are not highly divergent and frequently comprise a narrow 
definition and a broader one. The example of a narrow definition is provided by the National 
Initiative on Cybersecurity in the US:

The activity or process, ability or capability, or state whereby information and com-
munications systems and the information contained therein are protected from and/
or defended against damage, unauthorized use or modification, or exploitation.

In other cases, a broad definition, including related and non-technical subjects, from economics 
and psychology to political science and diplomacy is used, for example:

Strategy, policy, and standards regarding the security of and operations in cyberspace, 
and encompassing the full range of  threat  reduction,  vulnerability  reduction, pre-
vention, international engagement, incident response, resiliency, and recovery poli-
cies and activities, including computer network operations ,information assurance, 
law enforcement, diplomacy, military, and intelligence missions as they relate to the 
security and stability of the global information and communications infrastructure.

Further complicating the issue, cybersecurity characteristics for IT systems, the best studied cy-
bersecurity area, are different from the emerging characteristics of cybersecurity when applied 
to different environments, such as cyber-physical systems (CPS). While the researchers have de-
fined cross-cutting considerations that apply to most cybersecurity environments, the science 
of cybersecurity is not sufficiently advanced to create a unifying theory of cybersecurity foun-
dations. As a result, every new context (such as CPS) tends to develop its own cybersecurity 
approach that shares similar technologies and governance models with adjacent contexts, but 
creates its own body of knowledge. Cybersecurity approaches for energy sector (e.g., smart me-
ters) differ superficially from the approaches adopted in transportation (e.g., smart cars), leading 
to the fragmentation of cybersecurity and slower adoption of productive techniques. In new ar-
eas, the technology community tends to focus on niche context driven issues because they are 
easier to analyze and to avoid studying broadly applicable phenomena. Consequently, literature 
describing cybersecurity R&D in energy space draws very little content and engages in little col-
laboration with the researchers focusing on transportation, although technologies used in both 
contexts are very similar.

An ontology-based approach could permit researchers and practitioners to link together dispa-
rate content that draws from similar premises [IBN+15], allowing technologists to reuse, share, 
and propagate knowledge, in order to create a field of cybersecurity that is broader in scope and 
more theoretically sound.

2.2 About ontology 

One of the main goals of the field of Knowledge Representation (KR) is the study of methodol-
ogies and tools that enable capturing knowledge accurately, compactly and so that information 
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can be easily added and updated. Acknowledging the importance of the design principle of sep-
aration of concerns, KR researchers typically separate knowledge specification from the associat-
ed computations. This yields a declarative specification (as opposed to the traditional imperative 
one), in which knowledge is specified by statements that say what is true (or false) in the domain 
of interest, without stating how, algorithmically, statements should be combined and their truth 
propagated. Rather, the semantics of the representation language defines the meaning of those 
statements in precise and unambiguous (usually, logical) terms. For automated computation, 
general-purpose algorithms, often called inference engines, are separately defined, which embody 
the semantics of the language. Thanks to this separation, the meaning of a knowledge base can be 
determined independently of the particular algorithms used, and alternative algorithms can be 
adopted to fit specific practical needs (e.g., performance on given kinds of knowledge).

An ontology is a hierarchical specification of a set of objects from a domain of interest, of their 
properties and of their relationships. As such, ontologies enable a principled organization of 
knowledge. For example, a simple ontology may specify that laptops and desktops are kinds of 
computers, that computers and smartphones are kinds of computing devices, that all computing 
devices are equipped with a CPU, and that computers and smartphones are disjoint classes of 
objects (i.e., something cannot be a computer and a smartphone at the same time). Additionally, 
the ontology may specify that “John’s workstation” is a laptop. Specifically designed ontological 
languages enable the encoding of such knowledge in an accurate way.

The true power of ontologies, however, comes from the fact that ontological languages are as-
sociated, through their semantics, with inference mechanisms that make it possible to perform 
automated, provably correct reasoning about the elements of an ontology. Inference mechanisms 
are related, for example, to expanding the class-subclass relationships into ancestor/descendant 
and – importantly – to determining how properties and relationships are propagated through 
the hierarchy specified by the ontology, i.e., how classes inherit their ancestors’ characteristics. In 
the computer ontology described earlier, inference mechanisms can conclude, for example, that 
laptops are computing devices and that, as such, they inherit the properties of the latter. Hence, 
it is possible to infer that all laptops are equipped with a CPU and that “John’s workstation” is 
equipped with a CPU. Fincally, because computers and smartphones are disjoint classes, it is pos-
sible to conclude that “John’s workstation” cannot be classified as a smartphone.

By applying inference mechanisms, one can often derive information that was not immediately 
evident from the original specification of the ontology, and the reasons for such derivation can be 
clearly pinpointed and explained automatically.

Notable similarities exist between ontologies and (relational) databases, which in fact can be 
viewed as their precursors. Like ontologies, databases are declarative specifications of objects and 
of their properties and relations. From a conceptual perspective, however, ontologies are charac-
terized by a more uniform and thorough encoding of knowledge. For example, information about 
computing devices can indeed be encoded using a relational database, but the meaning (i.e., the 
semantics) of the relations themselves remains implicit and external to the database. Thus, while 
the database may well contain a relation (represented by a table) called “kind-of ” that holds 
between laptop and computer, the meaning of such relation – e.g., its transitivity and the inher-
itance of properties from classes to their sub-classes – is not part of the specification and must be 
provided separately to draw inferences. 
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2.3 Reasoning about multidisciplinary connections using 
ontologies 

The general-purpose, hierarchical nature of ontologies, their broad applicability, and the fact that 
all relevant information is encoded in an explicit, machine-accessible way, make ontologies prime 
candidates for formalizing multidisciplinary knowledge and for reasoning about the underlying 
connections.

An interesting example of a multidisciplinary ontology is that of [PFCS14], in which a multidis-
ciplinary ontology of epidemiology is developed in order to enable a uniform annotation of epi-
demiology resources and the integration and sharing of data about global epidemiological events.

A further example is that of [BaLR14], where the authors discuss how an ontology could be used 
for the development of a discovery network linking databases of materials scientific data. Such 
a “Layered Material Ontology” would enable connecting multidisciplinary knowledge ranging 
from matter and materials to performance and design (see Fig. 2), and asking queries spanning 
across domain boundaries, such as asking for metal alloys that are suitable for a given kind of 
design.

Fig. 2: Structure of the Layered Material Ontology proposed (courtesy of 
[BaLR14]).

From an organizational perspective, when tackling multidisciplinary knowledge, it is useful to 
divide the formalization in upper ontology and (multiple) domain ontologies. An upper ontology 
is an encoding of the concepts that are common across all disciplines of interest. In the context of 
securing cyber-physical systems, for instance, an upper ontology might define the high-level con-
cept of system component, with its refinements of computational device and physical device, and 
the concept of vulnerability. Additionally, a relation “vulnerable-to” might be used to associate a 
system component with its known vulnerabilities.

A domain ontology formalizes a specific knowledge domain. The concepts captured by a domain 
ontology are typically specified as specializations of concepts from the upper ontology. In refer-
ence to the previous example, a domain ontology of smart grids might describe SCADA systems 
as kinds of computational devices, power generators as types of physical device, and list a number 
of vulnerabilities specific to the smart grid. Relation “vulnerable-to” could then be used to indi-
cate the specific vulnerabilities of smart grid components. Similarly, a domain ontology of auto-
motive systems might describe the ECU as a computational device, a brake actuator as a physical 
device, and use relation “vulnerable-to” to specify the vulnerabilities of the various components 
of an automotive system. Inference can then be applied to propagate relevant properties and re-
lations throughout the ontology. For example, suppose a new vulnerability is discovered, which 
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affects certain system components. Obviously, one can check which components are directly vul-
nerable. However, one may also want to define the notion of a component being “affected by” the 
vulnerability either because it is directly vulnerable to it or because it is connected to some other 
component that is affected by it. Inference can now be used to identify, across the ontology, any 
component that is affected, even remotely, by a vulnerability (more details on this topic will be 
provided in the next section).

This representation and reasoning framework becomes especially useful in situations in which 
knowledge from multiple fields must be taken into account at the same time. Consider the task 
of assessing the vulnerabilities of an electric car. The example ontology discussed in the previous 
paragraph would allow one to study vulnerabilities that may come from coordinated exploits 
affecting both the power system and the braking system (e.g., one could automate the search for 
scenarios in which a central control component becomes overloaded when elements in the power 
and braking subsystems are caused to misbehave). Such a model can be incrementally extended 
by adding domain ontologies for other car subsystems. By replacing the braking system ontology 
with an ontology modeling a navigation system or a weapons system, one could study the vulner-
abilities of combat ships. What is essential to note is that, in all of these cases, multidisciplinary 
knowledge can be incrementally and seamlessly integrated and sophisticated questions about the 
systems being modeled can be answered by means of general-purpose inference mechanisms, 
without the need to develop dedicated algorithms.

3 Case Study: Root of Trust in CPS

3.1 General information about the project 

The Cyber Security Research Alliance, Inc. (CSRA) is an industry-led, non-profit consortium 
focused on research and development strategy to address evolving cyber security environment 
through partnerships among government, industry, and academia. This effort was established in 
response to the growing need for increased public-private collaboration to address R&D issues 
in cyber security.

CSRA has identified several priority areas crucial for improving security in cyber-physical sys-
tems through the input at the CSRA/NIST Workshop on Cybersecurity for Cyber Physical Sys-
tems, held April 4-5, 2013. Almost all of the study sessions acknowledged the need for the com-
mon vocabulary and reasoning mechanism to unify currently available research and technology 
to reduce fragmentation of CPS space. The lack of common terminology and combined assess-
ment of work in adjacent fields was considered one of the main inhibitors of research due to the 
diversity of CPS contexts and the multidisciplinary nature of the field. As a result, best practices 
and research advances are not always shared and applied across relevant CPS contexts.

Following the workshop, CSRA set up a pilot project to build a subset of an ontology focusing on 
cybersecurity for CPS. The project covered the subject of the root of trust in CPS. Teams from 
two universities – George Mason University and Drexel University – participated in the pilot and 
built the foundations of the ontology.

The participants in the pilot project surveyed the field, prioritized technologies, identified gaps, 
and defined ontology approaches that could be adjusted for CPS contexts. Seed ontologies were 
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built by both groups of the participants. They included terminology, information on research 
already done, R&D groups active in this area, and other relevant information. The reasoning pro-
cess identified and prioritized gaps that need to be addressed. The project addressed the discovery 
of cyber security technologies protecting CPS at different stages of development. The results of 
the project have been used as a tool for subsequent phases of research in COS security address-
ing research gaps, evaluating research results, directions of technology adoption and commer-
cialization, e.g., as a reference point in the work of the NIST Public Working Group (PWG) on 
cyber-physical systems. The outcome of the project helped multidisciplinary teams investigate 
solutions in perspective of real-world trade-offs for protection, detection and response to cy-
ber-attacks on CPS.

We provide information on one of the project deliverables below.

3.2 Building the ontology 

The RoT ontology is divided into an upper component, which provides concepts relevant to all 
cyber-physical systems, and domain ontologies for the specific domains, including smart grids, 
transportation, and healthcare. Key elements of the upper component are the notions of cy-
ber-physical system concepts, cyber attacks, and countermeasures. The latter two classes are divided 
in further domain-independent concepts, such as malicious and non-malicious threats and cy-
ber defense methods (e.g., preparation and detection). Although there is an obvious relationship 
among the three top components of the upper ontology, to ensure breadth of the ontology we have 
included in it elements as exhaustively as possible, independently of whether they are currently 
related to other elements from the ontology. For example, instances of cyber attacks have been 
included independently of whether it is currently known how to use them against cyber-physical 
system. Domain ontologies provide further specializations of the three top components. Next, we 
focus on the smart-grid domain ontology, SG.

The development of the SG ontology was guided by the principles outlined in [LNB+15]. Infor-
mation was obtained from subject matter experts and from various published sources, including 
[WaLu13], [NIST10], and [CMGS12]. Fig. 3 gives an overview of the upper component and of 
the SG domain ontology.

Fig. 3: RoT ontology – upper component and SG domain ontology



8 Making Sense of Future Cybersecurity Technologies: 

At the root of the SG ontology is the concept of energyCPSInfrastructureComponents, which acts 
as a superclass of any concept related to the energy CPS infrastructure and enables expanding the 
ontology to other energy cyber-physical systems beyond smart grids. Directly under it is class 
smartGridInfrastructureComponents, which constitutes the root concept for smart-grid compo-
nents. The organization of its subclasses follows an organizational paradigm that is intended to 
be applicable, with relatively small changes, to multiple knowledge domains. According to this 
paradigm, concepts are classified in one of:

• devices
• interfaces
• protocols

For example, in the case of our smart grid domain, the class of devices comprises sensors and 
pumps. Other notable subclasses include:

• scada
• historian
• masterTerminalUnitMTU
• remoteTerminalUnitRTU

All of these classes represent key devices of the smart grid infrastructure; the SCADA system, for 
example, acts as a central governor of the infrastructure, communicating with, and controlling, 
all remote equipment. There are also classes for key subsystems, such as telemetrySystem and 
transmissionSystem.

Fig. 4: Class humanMachineInterfaceHMI and relations trusts and vulnerable_to

The most fundamental relation defined by the ontology is the trust relationship, informally de-
noting the fact that one component trusts another. Intuitively, if a trusted component is affected 
by a cyber threat, the trusting component will also likely be affected, either directly (e.g., by being 
compromised) or indirectly (e.g., because it takes as credible false information that is fed to it 
from the affected component). The fact that a component is vulnerable to a certain threat is en-
coded by relation vulnerable_to. Fig. 4 shows a sample class and the corresponding definitions of 
the relations. More specifically, we see that human-machine interface (HMI) “trusts” the master 
terminal unit and that the HMI is vulnerable to buffer flooding.

3.3 Insights obtained from the ontology

The RoT ontology makes it possible to answer a number of important and nuanced questions 
related to the assessment of the weaknesses of the infrastructure, including:

• What elements does a given component (e.g., SCADA) trust? 
• In turn, what do these elements trust? 
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• What vulnerabilities does this component have? 
• What is impacted by a given vulnerability? 

Although conceptually simple, these questions involve a rather substantial amount of reasoning. 
Consider for instance the last question, useful in a scenario in which a vulnerability is discovered 
and one wants to determine all components that are put in danger by this vulnerability. Generally 
speaking, the components that are directly affected by the vulnerability are to be identified (us-
ing relation vulnerable_to), and then the information must be propagated recursively (through 
relation trusts) to all components trusting the vulnerable ones either directly or indirectly. If the 
infrastructure includes only a small number of components, then the answer may be straightfor-
ward. However, in larger infrastructures answering the question may be more challenging due to 
more complex trust chains. 

With traditional approaches, answering these questions would likely involve implementing a dif-
ferent algorithm for each of them, algorithms (and corresponding data structures) that are made 
non-trivial by the variability of the concepts that need to be represented. The adoption of an on-
tology-based formalization makes it is possible to accomplish all of this by stating the questions 
in a declarative fashion (i.e., by specifying what one is looking for, rather than how to find it) 
and without the need for implementing ad-hoc algorithms. This is achieved thanks to the gener-
al-purpose inference mechanisms associated with the ontology and to powerful query languages. 
For instance, the components that may be affected by an attack targeting integrity can be found 
by means of the query shown in Fig. 5.

Fig. 5: Sample query

Intuitively, the query asks the inference mechanism to find all triples of the form such that is a 
“trust element” of , and it is vulnerable to , where is, in this example, a type of attack targeting 
integrity. Similar queries allow one to identify all trust elements of a given component and to 
determine the starting points of the corresponding trust chains, which can be viewed as the roots 
of trust. 

Fig. 6 shows the output of a query requesting the trust elements of SCADA.
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Fig. 6: Trust elements of SCADA

4 Conclusions and Future Work
The review of research literature focusing on cybersecurity in different CPS contexts shows com-
monalities in approaches among different types of systems, although collaborations among sci-
entists focusing on different contexts remains minimal Similarly, interactions between different 
domains in cybersecurity, e.g., safety, reliability, and security proper, are limited, although they 
are reflected in recent literature, e.g., [SMSG15]. Various approaches have been tried to facilitate 
greater flow of ideas among different contexts and enhance multidisciplinary collaboration, but 
the nature of synergies remains difficult to assess, and the results difficult to evaluate.

We believe ontological reasoning could be instrumental in fostering a consistent emerging tech-
nology space, helping realize broadly applicable ideas in a field of research, and maximize the 
ability to bring these ideas to practice. 

The pilot project for CPS root of trust helped the research teams to identify approaches to cre-
ating knowledge representations for a specific, but complex field. The tools created as a result 
assisted the research community and practitioners to form a multi-dimensional view of emerging 
subjects, identifying gaps, priorties, and affinities with adjacent fields1.

The project paved the way for continued research in ontologies for emerging fields. Further work 
will include broader analysis with a larger number of contexts as well as the creation of focused 
analysis tools specialized for R&D, research funding, or deployment in new areas of technology.

1  See http://www.cybersecurityresearch.org/news_and_events/press_releases/pr_20150106.html for more information.
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