
exp(ASP𝑐): Explaining ASP Programs with Choice
Atoms and Constraint Rules*

Ly Ly Trieu1, Tran Cao Son1 and Marcello Balduccini2

1New Mexico State University, New Mexico, USA
2Saint Joseph’s University, Pennsylvania, USA

Abstract
We present an enhancement of exp(ASP), a system that generates explanation graphs for a literal ℓ—
an atom 𝑎 or its default negation ∼ 𝑎—given an answer set 𝐴 of a normal logic program 𝑃 , which
explain why ℓ is true (or false) given 𝐴 and 𝑃 . The new system, exp(ASP𝑐), differs from exp(ASP)
in that it supports choice rules and utilizes constraint rules to provide explanation graphs that include
information about choices and constraints.

Keywords
explainable Artificial Intelligence, Answer Set Programming, Artificial Intelligence.

1. Introduction
Answer Set Programming (ASP) [1, 2] is a popular
paradigm for decision making and problem solving
in Knowledge Representation and Reasoning. It has
been successfully applied in a variety of applications
such as robotics, planning, diagnosis, etc. ASP is an
attractive programming paradigm as it is a declarative
language, where programmers focus on the represen-
tation of a specific problem as a set of rules in a logical
format, and then leave computational solutions of that
problem to an answer set solver. However, this mech-
anism typically gives little insight into why something Figure 1: Explanation of 𝑐𝑜𝑙𝑜𝑟𝑒𝑑(1, 𝑟𝑒𝑑)

is a solution and why some proposed set of literals is not a solution. This type of reasoning falls
within the scope of explainable Artificial Intelligence and is useful to enhance the understanding
of the resulting solutions as well as for debugging programs. There have been a number of
approaches proposed [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], but to the best of our knowledge, no
system deals directly with ASP programs with choice atoms.

In this paper, we present an improvement over our previous system, exp(ASP) [14], called
exp(ASP𝑐). Given an ASP program 𝑃 , an answer set 𝐴, and an atom 𝑎, exp(ASP𝑐) is aimed
at answering the question “why is 𝑎 true/false in 𝐴?” by producing explanation graphs for

Workshop on Causal Reasoning and Explanation in Logic Programming, September, 2021
" lytrieu@nmsu.edu (L. L. Trieu); stran@nmsu.edu (T. C. Son); mbalducc@sju.edu (M. Balduccini)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)
*This paper is an extended version of a short paper submitted to ICLP 2021.

1

mailto:lytrieu@nmsu.edu
mailto:stran@nmsu.edu
mailto:mbalducc@sju.edu
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Ly Ly Trieu et al. CEUR Workshop Proceedings 1–13

atom 𝑎. The current system, exp(ASP), does not consider programs with choice atoms and
other constructs that extend the modeling capabilities of ASP. For instance, Fig. 1 shows an
explanation graph for the atom 𝑐𝑜𝑙𝑜𝑟𝑒𝑑(1, 𝑟𝑒𝑑) given the typical encoding of the graph coloring
problem that does not use choice rules. This explanation graph does provide the reason for
the color assigned to node 1 by indicating that the node is red because it is not blue and not
green. It is not obvious that this information represents the requirement that each node is
colored with exactly one color. The improvement described here extends our approach with the
ability to handle ASP programs containing choice rules and include constraint information in
the explanation graphs.

The rest of the paper is organised as follows. Section 2 briefly introduces our previous system,
exp(ASP). Section 3 describes the components of an explanation graph. Section 4 describes
how our enhanced system, exp(ASP𝑐), computes explanation graphs for an atom 𝑎, with an
illustrative example. Finally, Section 5 concludes our paper.

2. Background: The exp(ASP) System

exp(ASP) deals with normal logic programs which are collection of rules of the formℎ𝑒𝑎𝑑(𝑟)←
𝑏𝑜𝑑𝑦(𝑟) where ℎ𝑒𝑎𝑑(𝑟) is an atom and 𝑏𝑜𝑑𝑦(𝑟) = 𝑟+, 𝑛𝑜𝑡 𝑟− with 𝑟+ and 𝑟− are collections
of atoms in a propositional language and 𝑛𝑜𝑡 𝑟− denotes the set { 𝑛𝑜𝑡 𝑥 | 𝑥 ∈ 𝑟−} and not is
the default negation.
exp(ASP) generates explanation graphs under the answer set semantics [15]. It implemented

the algorithms proposed in [12] to generate explanation graphs of a literal ℓ (𝑎 or ∼ 𝑎 for some
atom 𝑎 in the Herbrand base 𝐻 of 𝑃), given an answer set 𝐴 of a program 𝑃 . Specifically, the
system produces labeled directed graphs, called explanation graphs, for ℓ, whose nodes belong
to 𝐻 ∪ {∼ 𝑥 | 𝑥 ∈ 𝐻} ∪ {⊤,⊥, assume} and whose links are labeled with +, − or ∘ (in Fig. 1,
solid/dash/dot edges represent +/−/∘ edges). Intuitively, for each node 𝑥, 𝑥 ̸∈ {⊤,⊥, assume}
in an explanation graph (𝐸,𝐺), the set of neighbors of 𝑥 represents a support for 𝑥 being true
given 𝐴 (see below).

The main components of exp(ASP) are:
1. Preprocessing: This component produces an aspif representation [16] of 𝑃 that will

be used in the reconstruction of ground rules of 𝑃 . It also computes supported sets for
atoms (or its negations) in the Herbrand base of 𝑃 and stored in an associative array 𝐸.

2. Computing minimal assumption set: This calculates a minimal assumption set 𝑈
given the answer set 𝐴 and 𝑃 according to the definition in [12].

3. Computing explanation graphs: This component uses the supported sets in 𝐸 and
constructs e-graphs for atoms in 𝐻 (or their negations) under the assumption that each
element 𝑢 ∈ 𝑈 is assumed to be false.

We note that exp(ASP) does not deal with choice atoms [17]. The goal of this paper is to extend
exp(ASP) to deal with choice atoms and utilize constraint information.

3. Explanation Graphs in Programs with Choice Atoms

exp(ASP) employs the notion of a supported set of a literal in a program in its construction.

2

Ly Ly Trieu et al. CEUR Workshop Proceedings 1–13

Given a program 𝑃 , an answer set 𝐴 of 𝑃 , and an atom 𝑐, if 𝑐 ∈ 𝐴 and 𝑟 is a rule such that (i)
ℎ𝑒𝑎𝑑(𝑟) = 𝑐, (ii) 𝑟+ ⊆ 𝐴, and (iii) 𝑟−∩𝐴 = ∅, 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑐, 𝑟) = 𝑟+∪{∼𝑛 | 𝑛 ∈ 𝑟−}; and refer
to this set as a supported set of 𝑐 for rule 𝑟. If 𝑐 /∈ 𝐴, for every rule 𝑟 such that ℎ𝑒𝑎𝑑(𝑟) = 𝑐,
then 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(∼𝑐, 𝑟) ∈ {{𝑝} | 𝑝 ∈ 𝐴 ∩ 𝑟−} ∪ {{∼𝑛} | 𝑛 ∈ 𝑟+ ∖𝐴}.

To account for choice atoms1 in 𝑃 , the notion of supported set needs to be extended. For
simplicity of the presentation, we assume that any choice atom 𝑥 is of the form 𝑙 {𝑝1 : 𝑞1, . . . , 𝑝𝑛 :
𝑞𝑛} 𝑢 where2 𝑝𝑖’s and 𝑞𝑖’s are atoms. Let 𝑥𝑙 and 𝑥𝑢 denote 𝑙 and 𝑢, respectively. Furthermore,
we write 𝑐 ∈ 𝑥 to refer to an element in {𝑝1, . . . , 𝑝𝑛}. For 𝑐 ∈ 𝑥, 𝑞𝑖 ∼= 𝑐 indicates that 𝑐 : 𝑞𝑖
belongs to {𝑝1 : 𝑞1, . . . , 𝑝𝑛 : 𝑞𝑛}.

In the presence of choice atoms, an atom 𝑐 can be true because 𝑐 belongs to a choice atom
that is a head of a rule 𝑟 and 𝑏𝑜𝑑𝑦(𝑟) is true in 𝐴. In that case, we say that 𝑐 is chosen to be true
and extend 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑐, 𝑟) with a special atom +𝑐ℎ𝑜𝑖𝑐𝑒 to indicate that 𝑐 is chosen to be true.
Likewise, 𝑐 can be false even if it belongs to a choice atom that is a head of a rule 𝑟 and 𝑏𝑜𝑑𝑦(𝑟)
is true in 𝐴. In that case, we say that 𝑐 is chosen to be false and extend 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(∼ 𝑐, 𝑟) with
a special atom −𝑐ℎ𝑜𝑖𝑐𝑒 to indicate that 𝑐 is chosen to be false. Also, 𝑞 ∼= 𝑐 will belong to the
support set of 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑐, 𝑟) and 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(∼ 𝑐, 𝑟).

The above extension only considers the case 𝑐 belongs to the head of a rule. 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑐, 𝑟)
also needs to be extended with atoms corresponding to choice atoms in the body of 𝑟. Assume
that 𝑥 is a choice atom in 𝑟+. By definition, if 𝑏𝑜𝑑𝑦(𝑟) is true in 𝐴 then 𝑥𝑙 ≤ |𝑆| ≤ 𝑥𝑢
where 𝑆 = {(𝑐, 𝑞) | 𝑐 ∈ 𝑥, 𝑞 ∼= 𝑐, 𝐴 |= 𝑐 ∧ 𝑞}. For this reason, we extend 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑐, 𝑟)
with 𝑥. Because 𝑥 is not a standard atom, we indicate the support of 𝑥 given 𝐴 by defining
𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑥, 𝑟) = {𝑆}. Furthermore, for each 𝑠 ∈ 𝑆, 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑠, 𝑟) = {*𝑇𝑟𝑢𝑒}. When 𝑆 = ∅,
we write 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑥, 𝑟) = {*𝐸𝑚𝑝𝑡𝑦}. Similar elements will be added to 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑐, 𝑟) or
𝑠𝑢𝑝𝑝𝑜𝑟𝑡(∼ 𝑐, 𝑟) in other cases (e.g., the choice atom belongs to 𝑟−) or has different form (e.g.,
when 𝑙 = 0 or 𝑢 =∞). We omit the precise definitions of the elements that need to be added
to 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑐, 𝑟) for brevity.

The introduction of different elements in supported sets of literals in a program necessitates
the extension of the notion of explanation graph. Due to the space limitation, we introduce
its key components and provide the intuition behind each component. The precise definition
of an explanation graph is rather involved and is included in the appendix for review. First,
we introduce additional types of nodes. Besides +choice, −choice, *True, and *Empty, we
consider the following types of nodes:

∙ Tuples are of the form (𝑥1, . . . , 𝑥𝑚, 𝑛𝑜𝑡 𝑦1, . . . , 𝑛𝑜𝑡 𝑦𝑛) to represent elements belong-
ing to choice atoms (e.g., (𝑐𝑜𝑙𝑜𝑟𝑒𝑑(1, 𝑏𝑙𝑢𝑒), 𝑐𝑜𝑙𝑜𝑟(𝑏𝑙𝑢𝑒)) representing an element in
1{(𝑐𝑜𝑙𝑜𝑟𝑒𝑑(𝑁,𝐶) : 𝑐𝑜𝑙𝑜𝑟(𝐶)}1). 𝒯 denotes all tuple nodes in program 𝑃 .
∙ Choices are of the form 𝑙 ≤ 𝑇 ≤ 𝑢 or ∼ (𝑙 ≤ 𝑇 ≤ 𝑢) where 𝑇 ⊆ 𝒯 . Intuitively, when
𝑙 ≤ 𝑇 ≤ 𝑢 (resp. ∼ (𝑙 ≤ 𝑇 ≤ 𝑢)) occurs in an explanation graph, it indicates that
𝑙 ≤ 𝑇 ≤ 𝑢 is satisfied (resp. not satisfied) in the given answer set 𝐴. 𝒪 denotes all
choices.
∙ Constraints are of the form 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑥) or 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡
(∼ 𝑥). The former (resp. latter) indicates that 𝑥 is (resp. is not) true in 𝐴 and satisfies all

1We use choice atoms synonymous with weight constraints.
2As we employ the aspif representation, this is a reasonable assumption.

3

Ly Ly Trieu et al. CEUR Workshop Proceedings 1–13

the constraints 𝑟 such that 𝑥 ∈ 𝑟+ (resp. 𝑥 ∈ 𝑟−). The set of all constraints is denoted
with 𝒞.

Having defined the nodes of the graph, we next introduce the new types of links in explanation
graphs as follows:
− ∙ is used to connect literals 𝑐 and ∼ 𝑐 to +choice and −choice, respectively, where

𝑐 ∈ 𝑥 and 𝑥 is a choice atom in the head of a rule.
− ◇ is used to connect literals 𝑐 and ∼𝑐 to 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑐) and 𝑡𝑟𝑖𝑔𝑔𝑒𝑟

𝑒𝑑_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(∼𝑐), respectively.
− ⊕ is used to connect a tuple 𝑡 ∈ 𝒯 to *True.
− ⊘ is used to connect a choice 𝑛 ∈ 𝒪 to *Empty.
We present here an updated definition of explanation graph by adding the necessary nodes

and links, which is defined as follows:

Definition 1. [Explanation Graph] Let us consider a program 𝑃 , an answer set 𝐴, a set of as-
sumptions 𝑈 with respect to 𝐴, Herbrand base 𝐻 and a set of choice head atoms 𝐺 = {𝑔 | 𝑔 ∈
𝑐, 𝑐ℎ𝑜𝑖𝑐𝑒 ℎ𝑒𝑎𝑑 𝑐 𝑜𝑓 𝑟𝑢𝑙𝑒 𝑟, 𝑟 ∈ 𝑃}. Let 𝒯 = {(𝑥1, . . . , 𝑥𝑚, 𝑛𝑜𝑡 𝑦1, . . . , 𝑛𝑜𝑡 𝑦𝑛) | 𝑥𝑖, 𝑦𝑖 ∈ 𝐻},
𝒪 = {𝑙 ≤ {𝑡1, . . . , 𝑡𝑚} ≤ 𝑢 | 𝑡𝑖 ∈ 𝒯 , 𝑙 ∈ N, 𝑢 ∈ N ∪ ∅}, 𝒞 = {𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑥) |
𝑥 ∈ 𝐴} ∪ {𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(∼ 𝑥) | 𝑥 ̸∈ 𝐴}, 𝒩 = {𝑥 | 𝑥 ∈ 𝐴} ∪ {∼ 𝑥 | 𝑥 ̸∈ 𝐴},
𝑁 = 𝒩 ∪𝒪 ∪ {∼ (𝑜) | 𝑜 ∈ 𝒪} ∪ 𝒯 ∪ 𝒞 ∪ {⊤,⊥, assume,+choice,−choice,
*True, *Empty} where ⊤ and ⊥ represent true and false, respectively. An explanation graph of
an atom 𝑎 occurring in 𝑃 is a finite labeled and directed graph 𝐷𝐺𝑎 = (𝑁𝑎, 𝐸𝑎) with 𝑁𝑎 ⊆ 𝑁
and 𝐸𝑎 ⊆ 𝑁𝑎 × 𝑁𝑎 × {+,−, ∘, ∙, ◇,⊕,⊘}, where (𝑥, 𝑦, 𝑧) ∈ 𝐸𝑎 represents a link from 𝑥 to
𝑦 with the label 𝑧, and satisfies the first five conditions in Definition 2.1 [14] and the following
additional conditions:

• if (𝑥,+𝑐ℎ𝑜𝑖𝑐𝑒, ∙) ∈ 𝐸𝑎 then 𝑥 ∈ 𝐴 ∩𝐺;
• if (∼𝑥,−𝑐ℎ𝑜𝑖𝑐𝑒, ∙) ∈ 𝐸𝑎 then 𝑥 /∈ 𝐴 and 𝑥 ∈ 𝐺;
• if (𝑥, 𝑦, ◇) ∈ 𝐸𝑎 then 𝑦 ∈ 𝒞 and 𝑦 is of the form 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑥);
• if (𝑥, *𝑇𝑟𝑢𝑒,⊕) ∈ 𝐸𝑎 then 𝑥 ∈ 𝒯 ;
• if (𝑥, *𝐸𝑚𝑝𝑡𝑦,⊘) ∈ 𝐸𝑎 then 𝑥 ∈ 𝒪 ∪ {∼ (𝑜) | 𝑜 ∈ 𝒪};
• if (𝑥, 𝑦,+) ∈ 𝐸𝑎 such that 𝑥 ∈ 𝒪 and 𝑡 ∈ 𝒯 then 𝑡 ∈ {𝑡1, . . . , 𝑡𝑚};
• if (𝑥, 𝑦,−) ∈ 𝐸𝑎 such that 𝑥 ∈ {∼ (𝑜) | 𝑜 ∈ 𝒪} and 𝑡 ∈ 𝒯 then 𝑡 ∈ {𝑡1, . . . , 𝑡𝑚};
• if (𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑥), 𝑦,+) ∈ 𝐸𝑎 and (𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑥),∼𝑦,−
) ∈ 𝐸𝑎 then for all triggered constraints containing 𝑥 ∈ 𝑟+ in 𝑃 satisfied by 𝐴.

• if (𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(∼𝑥), 𝑦,+) ∈ 𝐸𝑎 and (𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(∼𝑥),∼𝑦,−)
∈ 𝐸𝑎 then for all triggered constraints containing 𝑥 ∈ 𝑟− in 𝑃 satisfied by 𝐴.

• there exists no 𝑥, 𝑦 such that (⊤, 𝑥, 𝑦) ∈ 𝐸𝑎, (⊥, 𝑥, 𝑦) ∈ 𝐸𝑎, (assume, 𝑥, 𝑦) ∈ 𝐸𝑎

(+choice, 𝑥, 𝑦) ∈ 𝐸𝑎, (−choice, 𝑥, 𝑦) ∈ 𝐸𝑎, (*True, 𝑥, 𝑦) or (*Empty, 𝑥,
𝑦) ∈ 𝐸𝑎.

• for every 𝑥 ∈ 𝑁𝑎 ∩𝐴 and 𝑥 is not a fact in 𝑃 , or 𝑥 ∈ 𝐺𝑛𝑎 = {∼ 𝑔 | 𝑔 /∈ 𝐴 ∧ 𝑔 ∈ 𝐺}
– there exists no 𝑦 ∈ 𝑁𝑎 ∩𝐴 such that (𝑥, 𝑦,−) or (𝑥, 𝑦, ∘) belong to 𝐸𝑎;
– there exists no ∼𝑦 ∈ 𝑁𝑎 ∩ {∼𝑢 | 𝑢 ̸∈ 𝐴} such that (𝑥,∼𝑦,+) or (𝑥,∼𝑦, ∘) belong

to 𝐸𝑎;

4

Ly Ly Trieu et al. CEUR Workshop Proceedings 1–13

– If we have
∗ 𝑋+ = {𝑎 | (𝑥, 𝑎,+) ∈ 𝐸𝑎, 𝑎 ∈ 𝐻} then 𝑋+ ⊆ 𝐴,
∗ 𝑋− = {𝑎 | (𝑥,∼𝑎,−) ∈ 𝐸𝑎, 𝑎 ∈ 𝐻} then 𝑋− ∩𝐴 = ∅,
∗ 𝐶1 = (𝑥, 𝑦,+) ∈ 𝐸𝑎 where 𝑦 = 𝑙 ≤ {𝑡1, . . . , 𝑡𝑚} ≤ 𝑢 ∈ 𝒪 and a set of atoms
𝑆1 ⊆ {𝑡1, . . . , 𝑡𝑚} such that ∀𝑡 = (𝑥𝑡1 , . . . , 𝑥𝑡𝑚 , 𝑛𝑜𝑡 𝑦𝑡1 , . . . , 𝑛𝑜𝑡 𝑦𝑡𝑛) ∈
𝑆1, 𝐴 |= 𝑥𝑡1 ∧ . . . ∧ 𝑥𝑡𝑚 ∧ 𝑛𝑜𝑡 𝑦𝑡1 ∧ . . . ∧ 𝑛𝑜𝑡 𝑦𝑡𝑛 and 𝑙 ≤ |𝑆1| ≤ 𝑢,

∗ 𝐶2 = (𝑥,∼ (𝑦),−) ∈ 𝐸𝑎 where 𝑦 = 𝑙 ≤ {𝑡1, . . . , 𝑡𝑚} ≤ 𝑢 ∈ 𝒪 and a set of
atoms 𝑆2 ⊆ {𝑡1, . . . , 𝑡𝑚} such that ∀𝑡 = (𝑥𝑡1 , . . . , 𝑥𝑡𝑚 , 𝑛𝑜𝑡 𝑦𝑡1 , . . . , 𝑛𝑜𝑡 𝑦𝑡𝑛) ∈
𝑆2, 𝐴 |= 𝑥𝑡1 ∧ . . . ∧ 𝑥𝑡𝑚 ∧ 𝑛𝑜𝑡 𝑦𝑡1 ∧ . . . ∧ 𝑛𝑜𝑡 𝑦𝑡𝑛 and |𝑆2| < 𝑙 or |𝑆2| > 𝑢,

∗ 𝐶3 = (𝑥, 𝑦,+) ∈ 𝐸𝑎 where 𝑦 = 𝑙 ≤ {𝑡1, . . . , 𝑡𝑚} ∈ 𝒪 and a set of atoms
𝑆3 ⊆ {𝑡1, . . . , 𝑡𝑚} such that ∀𝑡 = (𝑥𝑡1 , . . . , 𝑥𝑡𝑚 , 𝑛𝑜𝑡 𝑦𝑡1 , . . . , 𝑛𝑜𝑡 𝑦𝑡𝑛) ∈
𝑆3, 𝐴 |= 𝑥𝑡1 ∧ . . . ∧ 𝑥𝑡𝑚 ∧ 𝑛𝑜𝑡 𝑦𝑡1 ∧ . . . ∧ 𝑛𝑜𝑡 𝑦𝑡𝑛 and |𝑆3| ≥ 𝑙,

∗ 𝐶4 = (𝑥,∼ (𝑦),−) ∈ 𝐸𝑎 where 𝑦 = 𝑙 ≤ {𝑡1, . . . , 𝑡𝑚} ∈ 𝒪 and a set of atoms
𝑆4 ⊆ {𝑡1, . . . , 𝑡𝑚} such that ∀𝑡 = (𝑥𝑡1 , . . . , 𝑥𝑡𝑚 , 𝑛𝑜𝑡 𝑦𝑡1 , . . . , 𝑛𝑜𝑡 𝑦𝑡𝑛) ∈
𝑆4, 𝐴 |= 𝑥𝑡1 ∧ . . . ∧ 𝑥𝑡𝑚 ∧ 𝑛𝑜𝑡 𝑦𝑡1 ∧ . . . ∧ 𝑛𝑜𝑡 𝑦𝑡𝑛 and |𝑆4| < 𝑙,

∗ there is a rule 𝑟 ∈ 𝑃 whose head is 𝑥 or 𝑥 ∈ 𝑐 where 𝑐 = 𝑙 {𝑝1 : 𝑞1, . . . , 𝑝𝑛 :
𝑞𝑛} 𝑢 such that 𝑟+ = 𝑋+ ∖ {𝑐ℎ𝑜𝑖𝑐𝑒 𝑎𝑡𝑜𝑚 𝑐𝑖}, 𝑟− = 𝑋− ∖ {𝑐ℎ𝑜𝑖𝑐𝑒 𝑎𝑡𝑜𝑚 𝑐𝑖},
and whose body contains choice atoms
· 𝑐1 = 𝑙 {𝑝1 : 𝑞1, . . . , 𝑝𝑛 : 𝑞𝑛} 𝑢 ∈ 𝑟+ if we have 𝐶1;
· 𝑐2 = 𝑙 {𝑝1 : 𝑞1, . . . , 𝑝𝑛 : 𝑞𝑛} 𝑢 ∈ 𝑟− if we have 𝐶2;
· 𝑐3 = 𝑙 {𝑝1 : 𝑞1, . . . , 𝑝𝑛 : 𝑞𝑛} ∈ 𝑟+ or 𝑐′3 = {𝑝1 : 𝑞1, . . . , 𝑝𝑛 : 𝑞𝑛} 𝑙 − 1 ∈
𝑟− if we have 𝐶3. Note that in 𝑐′3, the upper bound 𝑐′3𝑢 = 𝑙 − 1;

· 𝑐4 = 𝑙 {𝑝1 : 𝑞1, . . . , 𝑝𝑛 : 𝑞𝑛} ∈ 𝑟− or 𝑐′4 = {𝑝1 : 𝑞1, . . . , 𝑝𝑛 : 𝑞𝑛} 𝑙−1 ∈ 𝑟+

if we have 𝐶4. Note that in 𝑐′4, the upper bound 𝑐′4𝑢 = 𝑙 − 1.
– 𝐷𝐺𝑎 contains no cycle containing 𝑥.

• for every ∼𝑥 ∈ 𝑁𝑎 ∩ {∼𝑢 | 𝑢 ̸∈ 𝐴} and 𝑥 ̸∈ 𝑈 ,

– there exists no 𝑦 ∈ 𝑁𝑎 ∩𝐴 such that (∼𝑥, 𝑦,+) or (∼𝑥, 𝑦, ∘) belong to 𝐸𝑎;
– there exists no ∼ 𝑦 ∈ 𝑁𝑎 ∩ {∼ 𝑢 | 𝑢 ̸∈ 𝐴} such that (∼ 𝑥,∼ 𝑦,−) or (∼ 𝑥,∼ 𝑦, ∘)

belong to 𝐸𝑎;
– if we have

∗ 𝑋+ = {𝑎 | (∼𝑥, 𝑎,−) ∈ 𝐸𝑎, 𝑎 ∈ 𝐻} then 𝑋+ ⊆ 𝐴

∗ 𝑋− = {𝑎 | (∼𝑥,∼𝑎,+) ∈ 𝐸𝑎, 𝑎 ∈ 𝐻} then 𝑋− ∩𝐴 = ∅
∗ 𝐶1 = (∼𝑥,∼ (𝑦),−) ∈ 𝐸𝑎 where 𝑦 = 𝑙 ≤ {𝑡1, . . . , 𝑡𝑚} ≤ 𝑢 ∈ 𝒪 and a set of

atoms 𝑆1 ⊆ {𝑡1, . . . , 𝑡𝑚} such that ∀𝑡 = (𝑥𝑡1 , . . . , 𝑥𝑡𝑚 , 𝑛𝑜𝑡 𝑦𝑡1 , . . . , 𝑛𝑜𝑡 𝑦𝑡𝑛) ∈
𝑆1, 𝐴 |= 𝑥𝑡1 ∧ . . . ∧ 𝑥𝑡𝑚 ∧ 𝑛𝑜𝑡 𝑦𝑡1 ∧ . . . ∧ 𝑛𝑜𝑡 𝑦𝑡𝑛 and |𝑆1| < 𝑙 or |𝑆1| > 𝑢,

∗ 𝐶2 = (∼ 𝑥, 𝑦,+) ∈ 𝐸𝑎 where 𝑦 = 𝑙 ≤ {𝑡1, . . . , 𝑡𝑚} ≤ 𝑢 ∈ 𝒪 and a set of
atoms 𝑆2 ⊆ {𝑡1, . . . , 𝑡𝑚} such that ∀𝑡 = (𝑥𝑡1 , . . . , 𝑥𝑡𝑚 , 𝑛𝑜𝑡 𝑦𝑡1 , . . . , 𝑛𝑜𝑡 𝑦𝑡𝑛) ∈
𝑆1, 𝐴 |= 𝑥𝑡1 ∧ . . . ∧ 𝑥𝑡𝑚 ∧ 𝑛𝑜𝑡 𝑦𝑡1 ∧ . . . ∧ 𝑛𝑜𝑡 𝑦𝑡𝑛 and 𝑙 ≤ |𝑆2| ≤ 𝑢,

∗ 𝐶3 = (∼ 𝑥,∼ (𝑦),+) ∈ 𝐸𝑎 where 𝑦 = 𝑙 ≤ {𝑡1, . . . , 𝑡𝑚} ∈ 𝒪 and a set of
atoms 𝑆3 ⊆ {𝑡1, . . . , 𝑡𝑚} such that ∀𝑡 = (𝑥𝑡1 , . . . , 𝑥𝑡𝑚 , 𝑛𝑜𝑡 𝑦𝑡1 , . . . , 𝑛𝑜𝑡 𝑦𝑡𝑛) ∈
𝑆3, 𝐴 |= 𝑥𝑡1 ∧ . . . ∧ 𝑥𝑡𝑚 ∧ 𝑛𝑜𝑡 𝑦𝑡1 ∧ . . . ∧ 𝑛𝑜𝑡 𝑦𝑡𝑛 and |𝑆| < 𝑙

5

Ly Ly Trieu et al. CEUR Workshop Proceedings 1–13

∗ 𝐶4 = (∼ 𝑥, 𝑦,−) ∈ 𝐸𝑎 where 𝑦 = 𝑙 ≤ {𝑡1, . . . , 𝑡𝑚} ∈ 𝒪 and a set of atoms
𝑆4 ⊆ {𝑡1, . . . , 𝑡𝑚} such that ∀𝑡 = (𝑥𝑡1 , . . . , 𝑥𝑡𝑚 , 𝑛𝑜𝑡 𝑦𝑡1 , . . . , 𝑛𝑜𝑡 𝑦𝑡𝑛) ∈
𝑆4, 𝐴 |= 𝑥𝑡1 ∧ . . . ∧ 𝑥𝑡𝑚 ∧ 𝑛𝑜𝑡 𝑦𝑡1 ∧ . . . ∧ 𝑛𝑜𝑡 𝑦𝑡𝑛 and |𝑆4| ≥ 𝑙, and

∗ for every rule 𝑟 ∈ 𝑃 whose head is 𝑥 we have that 𝑟+∩𝑋− ̸= ∅ or 𝑟−∩𝑋+ ̸= ∅
or 𝑏𝑜𝑑𝑦(𝑟) contains choice atoms
· 𝑐1 = 𝑙 {𝑝1 : 𝑞1, . . . , 𝑝𝑛 : 𝑞𝑛} 𝑢 ∈ 𝑟+ if we have 𝐶1;
· 𝑐2 = 𝑙 {𝑝1 : 𝑞1, . . . , 𝑝𝑛 : 𝑞𝑛} 𝑢 ∈ 𝑟− if we have 𝐶2;
· 𝑐3 = 𝑙 {𝑝1 : 𝑞1, . . . , 𝑝𝑛 : 𝑞𝑛} ∈ 𝑟+ or 𝑐′3 = {𝑝1 : 𝑞1, . . . , 𝑝𝑛 : 𝑞𝑛} 𝑙 − 1 ∈
𝑟− if we have 𝐶3. Note that in 𝑐′3, the upper bound 𝑐′3𝑢 = 𝑙 − 1;

· 𝑐4 = 𝑙 {𝑝1 : 𝑞1, . . . , 𝑝𝑛 : 𝑞𝑛} ∈ 𝑟− or 𝑐′4 = {𝑝1 : 𝑞1, . . . , 𝑝𝑛 : 𝑞𝑛} 𝑙−1 ∈ 𝑟+

if we have 𝐶4. Note that in 𝑐′4, the upper bound 𝑐′4𝑢 = 𝑙 − 1.
– any cycle containing ∼𝑥 in 𝐷𝐺𝑎 contains only nodes in 𝑁𝑎 ∩ {∼𝑢 | 𝑢 ̸∈ 𝐴}.

4. The exp(ASP𝑐)ystem

In this section, we will focus on describing how the three main tasks in Sec. 2 are implemented.
exp(ASP𝑐) uses a data structure, associative array, whose keys can be choices, tuples, con-
straints, or literals. For an associative array 𝐷, we use 𝐷.𝑘𝑒𝑦𝑠() to denote the set of keys in 𝐷
and 𝑘 ↦→ 𝐷[𝑘] to denote that 𝑘 is associated to 𝐷[𝑘]. To illustrate the different concepts, we
will use the program 𝑃1 that contains a choice atom and a constraint rule as follows:

(𝑟1) a :− 𝑛𝑜𝑡 b, 𝑛𝑜𝑡 c. (𝑟2) b :− c, a.
(𝑟3) c :− 𝑛𝑜𝑡 a. (𝑟4) :− b, m(1).
(𝑟5) 1 {m(X) : n(X)} 1 :− c. (𝑟6) n(1..2).

4.1. Preprocessing

Similar to exp(ASP), a program is preprocessed to maintain facts and as many ground rules
as possible by using the –text and –keep-facts options and replacing facts with the external
statements. The aspif representation [16] of the program is then obtained and processed,
together with the given answer set, for generating explanation graphs. The aspif statements of
𝑃1 is given in Listing 1. Let us briefly discuss the aspif representation before continuing with
the description of other components.

Listing 1: aspif Representation of 𝑃1

1 asp 1 0 0
2 5 1 2
3 5 2 2
4 1 0 1 3 0 1 -4
5 1 0 1 4 0 2 -5 -3
6 1 0 1 5 0 2 4 3
7 1 0 1 6 0 1 3
8 1 0 0 0 2 7 5
9 1 1 1 7 0 2 6 1

10 1 1 1 8 0 2 6 2

6

Ly Ly Trieu et al. CEUR Workshop Proceedings 1–13

11 1 0 1 9 0 2 1 7
12 1 0 1 10 0 2 2 8
13 1 0 1 11 1 1 2 9 1 10 1
14 1 0 1 12 1 2 2 9 1 10 1
15 1 0 1 13 0 2 11 -12
16 1 0 0 0 2 6 -13
17 4 4 n(1) 1 1
18 4 4 n(2) 1 2
19 4 1 b 1 5
20 4 1 c 1 3
21 4 1 a 1 4
22 4 4 m(1) 1 7
23 4 4 m(2) 1 8
24 0

Each line encodes a statement in aspif. Lines starting with 4, 5, and 1 are output, external,
and rule statements, respectively. Atoms are associated with integers and encoded in output
statements (e.g., Line 17: 1 is the identifier of 𝑛(1)). External statements help us to recognize the
facts in 𝑃 , e.g. atom 𝑛(1) (𝐼𝐷 = 1) is a fact (Line 2). A rule statement 𝑟 is of the form: 1 𝐻 𝐵,
where 𝐻 and 𝐵 are the encoding of the head and body of 𝑟, respectively. Because of page
limitation, we focus on describing the rule statement whose head is a choice atom or whose body
is a weight body. If the head is a choice, its encoding 𝐻 has the form: 1 𝑛 𝑖𝑐1 . . . 𝑖𝑐𝑛 , where 𝑛 is
the number of head atoms and 𝑖𝑐 is an integer identifying the atom 𝑐. E.g. 𝑚(1) (𝐼𝐷 = 7) and
𝑚(2) (𝐼𝐷 = 8) are the head choices in Lines 9 and 10, respectively, which represents rule 𝑟5.
If the body of a rule is a weight body, its encoding 𝐵 has the form: 1 𝑙 𝑛 𝑖𝑎1 𝑤𝑎1 . . . 𝑖𝑎𝑛 𝑤𝑎𝑛 ,
where 𝑙 > 0, 𝑙 ∈ N is the lower bound, 𝑛 > 0 is the number of literal 𝑎𝑖’s with 𝐼𝐷 = 𝑖𝑎𝑖
and weight 𝑤𝑎𝑖 . E.g. Lines 13-14 contain weight bodies. Given an ID 𝑖 that does not occur in
any output statement [16, 14], we use 𝑙(𝑖) to denote the corresponding literal. Constraint 𝑟4 is
shown in Line 8. It is interesting to observe that there is one additional constraint in Line 16. By
tracking integer identifiers, one can notice that Line 16 states that it can not be the case that 𝑐
is true (via Line 7) and 𝑙(13) can not be proven to be true. Lines 13-15 ensure that 𝑙(13) is true
if 1{𝑙(9); 𝑙(10)} is true and 2{𝑙(9); 𝑙(10)} cannot be proven to be true. Note that 𝑙(9) and 𝑙(10)
have the same weight, so we ignore their weight. Line 11 states that 𝑙(9) is true if 𝑚(1) and 𝑛(1)
are true. Line 12 states that 𝑙(10) is true if 𝑚(2) and 𝑛(2) are true. Thus, the new constraint is
generated from the semantics of choice rule 𝑟5, which is added to aspif representation. Note
that the grounding of rule 𝑟5 includes the new constraint.

Given the aspif representation 𝑃 ′ of a program 𝑃 , an associative array 𝐷𝑃 is created where
𝐷𝑃 = {(𝑡, ℎ) ↦→ 𝐵 | 𝑡 ∈ {0, 1}, ℎ ∈ 𝐻,𝐵 = {𝑏𝑜𝑑𝑦(𝑟) | 𝑟 ∈ 𝑃 ′, ℎ𝑒𝑎𝑑(𝑟) = ℎ}}. Here, for an
element (𝑡, ℎ) ↦→ 𝐵 in 𝐷𝑝, 𝑡 is the type of head ℎ, either disjunction (𝑡 = 0) or choice (𝑡 = 1).
Furthermore, for an answer set 𝐴 of 𝑃 , 𝐸𝑟(𝑃) = {𝑘 ↦→ 𝑉 | 𝑘 ∈ {𝑎 | 𝑎 ∈ 𝐴} ∪ {∼ 𝑎 | 𝑎 /∈
𝐴}, 𝑉 = {𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑘, 𝑟) | 𝑟 ∈ 𝑃}} [14].

Algorithm 1 shows how constraints are processed given the program 𝑃 and its answer set 𝐴.
The outcome of this algorithm is an associative array𝐸𝑐. First, 𝑉𝑐—the set of constraints (the bod-
ies of constraints)—is computed. Afterwards, for each body 𝐵 of a constraint 𝑟 in 𝑉𝑐, 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛
and 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 are computed. Each element in 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 requires some trigger constraint to falsify
the body 𝐵, which are those in 𝑠𝑢𝑝𝑝𝑜𝑟𝑡. Each 𝑐ℎ𝑜𝑖𝑐𝑒_𝑠𝑢𝑝𝑝𝑜𝑟𝑡 encodes a support for a choice

7

Ly Ly Trieu et al. CEUR Workshop Proceedings 1–13

Algorithm 1: 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡_𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔(𝐷,𝐴)

Input: 𝐷 - associative array of rules (this is 𝐷𝑃), 𝐴 - an answer set
1 𝑉𝑐 = {𝐵 | 𝐷[(0, ℎ)] = 𝐵 ∧ ℎ = ∅}
2 𝐸𝑐 ← {∅ ↦→ ∅} // Initialize an empty associative array 𝐸𝑐: 𝐸𝑐.𝑘𝑒𝑦() = ∅
3 for 𝐵 ∈ 𝑉𝑐 do
4 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛← {𝑎 | 𝑎 ∈ 𝑟+ ∧ 𝑎 ∈ 𝐴} ∪ {∼𝑎 | 𝑎 ∈ 𝑟− ∧ 𝑎 /∈ 𝐴}
5 𝑠𝑢𝑝𝑝𝑜𝑟𝑡← {∼𝑎 | 𝑎 ∈ 𝑟+ ∧ 𝑎 /∈ 𝐴} ∪ {𝑎 | 𝑎 ∈ 𝑟− ∧ 𝑎 ∈ 𝐴}
6 if choice atom 𝑥 in 𝐵 and 𝑆 = {(𝑐, 𝑞) | 𝑐 ∈ 𝑥, 𝑞 ∼= 𝑐, 𝐴 |= 𝑐 ∧ 𝑞} then
7 𝒳 = {(𝑐, 𝑞) | 𝑐 ∈ 𝑥, 𝑞 ∼= 𝑐}
8 if 𝑥 = 𝑙 {𝑝1 : 𝑞1, . . . , 𝑝𝑛 : 𝑞𝑛} 𝑢 ∈ 𝑟+ and |𝑆| < 𝑙 or |𝑆| > 𝑢 then
9 𝑐ℎ𝑜𝑖𝑐𝑒_𝑠𝑢𝑝𝑝𝑜𝑟𝑡← {“ ∼(𝑙 <= 𝒳 <= 𝑢)”}

10 if 𝑥 = 𝑙 {𝑝1 : 𝑞1, . . . , 𝑝𝑛 : 𝑞𝑛} 𝑢 ∈ 𝑟− and 𝑙 ≤ |𝑆| ≤ 𝑢 then
11 𝑐ℎ𝑜𝑖𝑐𝑒_𝑠𝑢𝑝𝑝𝑜𝑟𝑡← {“𝑙 <= 𝒳 <= 𝑢”}
12 if 𝑥 = 𝑙 {𝑝1 : 𝑞1, . . . , 𝑝𝑛 : 𝑞𝑛} ∈ 𝑟+ or 𝑥 = {𝑝1 : 𝑞1, . . . , 𝑝𝑛 : 𝑞𝑛} 𝑙 − 1 ∈ 𝑟−

and |𝑆| < 𝑙 then
13 𝑐ℎ𝑜𝑖𝑐𝑒_𝑠𝑢𝑝𝑝𝑜𝑟𝑡← {“ ∼(𝑙 <= 𝒳)”}
14 if 𝑥 = 𝑙 {𝑝1 : 𝑞1, . . . , 𝑝𝑛 : 𝑞𝑛} ∈ 𝑟− or 𝑥 = {𝑝1 : 𝑞1, . . . , 𝑝𝑛 : 𝑞𝑛} 𝑙 − 1 ∈ 𝑟+

and |𝑆| ≥ 𝑙 then
15 𝑐ℎ𝑜𝑖𝑐𝑒_𝑠𝑢𝑝𝑝𝑜𝑟𝑡← {“𝑙 <= 𝒳”}

16 𝑠𝑢𝑝𝑝𝑜𝑟𝑡← 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 ∪ 𝑐ℎ𝑜𝑖𝑐𝑒_𝑠𝑢𝑝𝑝𝑜𝑟𝑡
17 if 𝑆 ̸= ∅ then
18 𝐸𝑐[𝑐ℎ𝑜𝑖𝑐𝑒_𝑠𝑢𝑝𝑝𝑜𝑟𝑡]← [𝑆]
19 𝐸𝑐[𝑝𝑖]← [{“ * 𝑇𝑟𝑢𝑒”}] 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑝𝑖 ∈ 𝑆

20 else
21 𝐸𝑐[𝑐ℎ𝑜𝑖𝑐𝑒_𝑠𝑢𝑝𝑝𝑜𝑟𝑡]← [{“ * 𝐸𝑚𝑝𝑡𝑦”}]
22 for 𝑣 ∈ 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 do
23 Append {𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑣)} to a list 𝐸𝑐[𝑣]
24 𝐸𝑐[𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑣)]← [𝑐 ∪ {𝑠} | 𝑠 ∈ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡, 𝑐 ∈

𝐸𝑐[𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑣)]]

25 return 𝐸𝑐

atom. 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑣), where 𝑣 ∈ 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛, is assigned to support the explanation
of 𝑣 (Line 23), and 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 is used for the explanation of 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑣) to justify
the satisfaction of constraints containing 𝑣 (Line 24). For {𝑝1 : 𝑞1, . . . , 𝑝𝑛 : 𝑞𝑛} in a choice atom
𝑥, we write 𝒳 = {(𝑐, 𝑞) | 𝑐 ∈ 𝑥, 𝑞 ∼= 𝑐} (e.g., Line 7).

During the preprocessing, the set of all negation atoms in 𝑃 , 𝑁𝐴𝑁𝑇 (𝑃) = {𝑎 | 𝑎 ∈
𝑟− ∧ 𝑟 ∈ 𝑃} [12, 14], is computed. For 𝑃1 and the answer set 𝐴 = {𝑛(1), 𝑛(2), 𝑐,𝑚(1)}, we
have 𝑁𝐴𝑁𝑇 (𝑃1) = {𝑎, 𝑏, 𝑐}.

Example 1. For program 𝑃1 and its answer set 𝐴 = {𝑛(1), 𝑛(2), 𝑐,𝑚(1)}, the output of prepro-
cessing, 𝐸𝑟(𝑃1) (left) and 𝐸𝑐(𝑃1) (right), are as follows:

8

Ly Ly Trieu et al. CEUR Workshop Proceedings 1–13

𝐸𝑟(𝑃1) = {
c : [{∼a}],
∼a : [{c}],
∼b : [{∼a}],
m(1) :
[{c,+choice,n(1)}],
∼m(2) :
[{c,-choice,n(2)}],
n(1) : [{T}],
n(2) : [{T}]
}

𝐸𝑐(𝑃1) = {
m(1):[{triggered_constraint(m(1))}],
triggered_constraint(m(1)) : [{∼b}],
c:[{triggered_constraint(c)}],
triggered_constraint(c) :
[{1<={(m(1),n(1)),(n(2),m(2))}<=1}],
1<={(m(1),n(1)), (n(2),m(2))}<=1 :
[{(m(1),n(1))}],
(m(1),n(1)) : [{*True}]
}

𝐸𝑟(𝑃1) shows that the supported set of two choice heads 𝑚(1) and 𝑚(2) contains +𝑐ℎ𝑜𝑖𝑐𝑒 and
−𝑐ℎ𝑜𝑖𝑐𝑒, respectively, which depends on their truth values and the value of their bodies.
𝐸𝑐(𝑃1) shows that atom 𝑏 in 𝑟4 makes the constraint satisfied while 𝑚(1) does not support the

constraint. Thus, {∼𝑏} is the support set of 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡
(𝑚(1)), and {𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑚(1))} is the support set of 𝑚(1). For the additional con-
straint of𝑃1, 𝑙(9) is true (encoded in (𝑚(1), 𝑛(1))) w.r.t𝐴, resulting the constraint is satisfied. The
truth value of 𝑐 does not contribute to making the constraint satisfied. Thus, 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛
𝑡(𝑐) is added to the explanation of 𝑐.

4.2. Minimal assumption set

The pseudocode of computing minimal assumption sets is shown in Algorithm 2. A tentative
assumption set 𝑇𝐴 [12, 14] is computed (Line 1), which is a superset of minimal assumption
sets. The atoms in 𝑇𝐴 are false in 𝐴 and do not belong to the set of cautious consequences,
denoted by 𝐶(𝑃), of the program 𝑃 . The minimal assumption set 𝑈 is computed in Line 6,
which is the union of outputs from functions 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑜𝑛 and 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦. Note that several
minimal assumption sets w.r.t an answer set 𝐴 of 𝑃 may exist.

Function 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑜𝑛, 𝐸𝑟(𝑃) in Sec. 4.1 is utilized to compute all derivation paths𝑀 of 𝑎 ∈ 𝑇𝐴
(Line 12). Then, the derivation paths in 𝑀 are examined to see whether the cycle condition
in the definition of the explanation graph is satisfied (Lines 13-16). During this process, other
tentative assumption atoms, that are derived from 𝑎, are stored in a set 𝐷, which is appended to
𝐷𝐴[𝑎] (𝐷𝐴 is an associative array). If 𝑎 is derivable from other atoms in 𝑇𝐴, then the relation
of 𝑎 will be checked in function 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦 and 𝑎 is stored in a set 𝑇 ′. A set 𝑇 = 𝑇𝐴 ∖ 𝑇 ′

contains atoms that must be assumed to be false (Lines 17-19).
We calculate sets of minimal atoms that break all cycles among tentative assumption atoms

via 𝐷𝐴. This is done by the function 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦.

Example 2. Let us reconsider the program 𝑃1 and Example 1.

• For the program 𝑃1, we have: 𝑇𝐴 = {𝑎, 𝑏}
• From 𝐸𝑟(𝑃1) in Example 1, atom 𝑎 is not derivable from other atoms in 𝑇𝐴 while atom 𝑏 is

derivable from an atom in {𝑎}. Thus, we have 𝑇 ′ = {𝑏}, 𝑇 = {𝑎} and 𝐷𝐴 = 𝑏 : [{𝑎}].
Also, there is no cycle between 𝑎 and 𝑏, so𝑚𝑖𝑛(𝐵) = ∅. As a result, the minimal assumption
set is 𝑈 = {𝑎}.

9

Ly Ly Trieu et al. CEUR Workshop Proceedings 1–13

Algorithm 2: 𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛_𝑓𝑢𝑛𝑐(𝐶(𝑃), 𝑁𝐴𝑁𝑇 (𝑃), 𝐸𝑟)

Input: 𝐶(𝑃) - A cautious consequence of a program 𝑃 , 𝑁𝐴𝑁𝑇 (𝑃) - A set of negative
atoms in 𝑃 , 𝐸𝑟 - A associative array computed in Sec. 4.1

1 𝑇𝐴 = {𝑎 | 𝑎 ∈ 𝑁𝐴𝑁𝑇 (𝑃) ∧ 𝑎 /∈ 𝐴 ∧ 𝑎 /∈ 𝐶(𝑃)}
2 𝐷𝐴← {∅ ↦→ ∅}
3 (𝑇,𝐷𝐴) = 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑇𝐴,𝐸𝑟)
4 𝐷 = 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦(𝐷𝐴)
5 for 𝑀 ∈ 𝐷 do
6 𝑈 ←𝑀 ∪ 𝑇
7 𝑇𝑈 ← 𝑇𝑈 ∪ {𝑈}
8 return 𝑇𝑈
9

10 function 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑇𝐴,𝐸)
11 for 𝑎 ∈ 𝑇𝐴 do
12 Find all derivation paths 𝑀 of 𝑎 from 𝐸
13 for 𝑁 ∈𝑀 do
14 Find 𝐷 = {𝑏 | 𝑏 ∈ 𝑇𝐴 ∧ 𝑏 ̸= 𝑎} such that 𝑏 is derived from 𝑎
15 if there is no negative cycles in derivation path 𝑁 then
16 Append 𝐷 to a list 𝐷𝐴[𝑎]

17 if |𝐷𝐴[𝑎]| ≠ 0 then
18 𝑇 ′ ← 𝑇 ′ ∪ {𝑎}

19 𝑇 ← 𝑇𝐴 ∖ 𝑇 ′

20 return (𝑇,𝐷𝐴)
21

22 function 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦(𝐷𝐴)
23 𝐷 ← {𝐷𝐴𝑖 | 𝐷𝐴𝑖 = 𝑘 ↦→ 𝑉 | 𝑉 ∈ 𝐷𝐴[𝑘] ∧ ∀𝑘 ∈ 𝐷𝐴.𝑘𝑒𝑦𝑠(), 𝑘 ∈

𝐷𝐴𝑖.𝑘𝑒𝑦𝑠() ∧ (𝑘 ↦→ 𝑉1 ∈ 𝐷𝐴𝑖 ∧ 𝑘 ↦→ 𝑉2 ∈ 𝐷𝐴𝑖)⇒ 𝑉1 = 𝑉2}
24 𝐵 ← ∅
25 for 𝐷𝐴𝑖 ∈ 𝐷 do
26 Find all dependency cycles 𝐷𝐶 among tentative assumption atoms in 𝐷𝐴𝑖

27 𝐵 ← 𝐵 ∪ {{𝑗1, ..., 𝑗𝑛} | (𝑗1, ..., 𝑗𝑛) ∈ 𝐽1 × ..× 𝐽𝑛 ∧ 𝑛 =
⃒⃒
𝐷𝐶

⃒⃒
∧𝐽𝑖 ∈ 𝐷𝐶}

28 𝑚𝑖𝑛(𝐵)← {𝑀 | ∀𝐶 ∈ 𝐵,𝐶 ̸= 𝑀 =⇒
⃒⃒
𝑀

⃒⃒
≤
⃒⃒
𝐶
⃒⃒
}

29 return 𝑚𝑖𝑛(𝐵)

4.3. ASP-based explanation system

In this section, we describe how the explanation graph is generated by utilizing 𝐸𝑟 , 𝐸𝑐 from
Sec. 4.1 and the minimal assumption set 𝑈 from Sec. 4.2. In order to leverage the algorithm from
the previous work, 𝐸𝑟 and 𝐸𝑐 are combined into a dictionary 𝐸 as follows: 𝐸 = {𝑘 ↦→ 𝑉 | 𝑘 ∈
𝐸𝑟.𝑘𝑒𝑦𝑠() ∪ 𝐸𝑐.𝑘𝑒𝑦𝑠(), 𝑉 = [𝑟 ∪ 𝑐] 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑟 ∈ 𝐸𝑟[𝑘] 𝑎𝑛𝑑 𝑐 ∈ 𝐸𝑐[𝑘]}. Note that 𝑟 = ∅ if
∄𝑘 ∈ 𝐸𝑟.𝑘𝑒𝑦𝑠() and 𝑐 = ∅ if ∄𝑘 ∈ 𝐸𝑐.𝑘𝑒𝑦𝑠(). Given 𝐸, the algorithm from [14] will find the
explanation graph of literal in 𝑃 , taking into consideration the additional types of nodes and

10

Ly Ly Trieu et al. CEUR Workshop Proceedings 1–13

links.

Example 3. For program 𝑃1, the explanation graph of 𝑚(1) is shown in Fig. 2.
As can be seen from Fig. 2, a justification for 𝑚(1) depends positively on 𝑐 and 𝑛(1). A choice

head 𝑚(1) is chosen to be true. The constraint containing 𝑚(1) is satisfied by 𝐴 because of the
truth value of 𝑏. The constraint containing 𝑐 is satisfied by 𝐴 because the conjunction of 𝑛(1) and
𝑚(1) is true. The additional constraint comes from the semantics of choice rule 𝑟5 as we mentioned
in Sec. 4.1.

Figure 2: Explanation of 𝑚(1)

4.4. Illustration

We illustrate the application of our updated system, exp(ASP𝑐), to the graph coloring problem.
We use a solution of the problem where each node is assigned a unique color by the choice rule:
1{𝑐𝑜𝑙𝑜𝑟𝑒𝑑(𝑋,𝐶) : 𝑐𝑜𝑙𝑜𝑟(𝐶)}1← 𝑛𝑜𝑑𝑒(𝑋).

Fig. 3 shows the explanation graph of 𝑐𝑜𝑙𝑜𝑟𝑒𝑑(1, 𝑟𝑒𝑑). Unlike Fig. 1, Fig. 3 shows that a
choice head 𝑐𝑜𝑙𝑜𝑟𝑒𝑑(1, 𝑟𝑒𝑑) is chosen to be true while two choice heads, 𝑐𝑜𝑙𝑜𝑟𝑒𝑑(3, 𝑟𝑒𝑑) and
𝑐𝑜𝑙𝑜𝑟𝑒𝑑(2, 𝑟𝑒𝑑), are chosen to be false, which are represented via orange dotted links (link
∙). Fig. 3 displays the constraint that 𝑛𝑜𝑑𝑒(1) must assign a different color with 𝑛𝑜𝑑𝑒(3)
and 𝑛𝑜𝑑𝑒(2). This shows via the links from (𝑐𝑜𝑙𝑜𝑟𝑒𝑑(1, 𝑟𝑒𝑑) to ∼ (𝑐𝑜𝑙𝑜𝑟𝑒𝑑(2, 𝑟𝑒𝑑) and ∼
(𝑐𝑜𝑙𝑜𝑟𝑒𝑑(3, 𝑟𝑒𝑑) connected through 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑐𝑜𝑙𝑜𝑟𝑒𝑑(1, 𝑟𝑒𝑑)) (green dotted link
◇). Also, the triggered constraints of each 𝑛𝑜𝑑𝑒(1), 𝑛𝑜𝑑𝑒(2) and 𝑛𝑜𝑑𝑒(3) such that each node
is assigned exactly one color are shown via the aggregate functions in the node labels (blue
solid link ⊕).

11

Ly Ly Trieu et al. CEUR Workshop Proceedings 1–13

Figure 3: Explanation of 𝑐𝑜𝑙𝑜𝑟𝑒𝑑(1, 𝑟𝑒𝑑)

5. Conclusion

In this paper, we proposed an extension of our explanation generation system for ASP programs,
exp(ASP𝑐), which supports choice rules and includes constraint information. Our future goal
is to extend exp(ASP𝑐) so that it can deal with other clingo constructs like the aggregates
#𝑠𝑢𝑚, #𝑚𝑖𝑛, #𝑚𝑎𝑥, etc.

Acknowledgments

The second author would like to acknowledge the partial support of the NSF 1812628 grant.
Portions of this publication and research effort are made possible through the help and support
of NIST via cooperative agreement 70NANB19H102.

References

[1] V. Marek, M. Truszczyński, Stable models and an alternative logic programming paradigm,
in: The Logic Programming Paradigm: a 25-year Perspective, 1999, pp. 375–398.

12

Ly Ly Trieu et al. CEUR Workshop Proceedings 1–13

[2] I. Niemelä, Logic programming with stable model semantics as a constraint programming
paradigm, Annals of Mathematics and Artificial Intelligence 25 (1999) 241–273.

[3] C. Béatrix, C. Lefèvre, L. Garcia, I. Stéphan, Justifications and blocking sets in a rule-
based answer set computation, in: Technical Communications of the 32nd International
Conference on Logic Programming (ICLP 2016), Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2016.

[4] M. Brain, M. Gebser, J. Pührer, T. Schaub, H. Tompits, S. Woltran, Debugging asp programs
by means of asp, in: International Conference on Logic Programming and Nonmonotonic
Reasoning, Springer, 2007, pp. 31–43.

[5] P. Cabalar, J. Fandinno, Justifications for programs with disjunctive and causal-choice
rules, Theory and Practice of Logic Programming 16 (2016) 587–603.

[6] P. Cabalar, J. Fandinno, B. Muñiz, A system for explainable answer set programming,
Electronic Proceedings in Theoretical Computer Science 325 (2020) 124–136. URL: http:
//dx.doi.org/10.4204/EPTCS.325.19. doi:10.4204/eptcs.325.19.

[7] C. V. Damásio, A. Analyti, G. Antoniou, Justifications for logic programming, in: Interna-
tional Conference on Logic Programming and Nonmonotonic Reasoning, Springer, 2013,
pp. 530–542.

[8] M. Gebser, J. Pührer, T. Schaub, H. Tompits, A meta-programming technique for debugging
answer-set programs., in: AAAI, volume 8, 2008, pp. 448–453.

[9] J. Oetsch, J. Pührer, M. Seidl, H. Tompits, P. Zwickl, Videas: A development tool for
answer-set programs based on model-driven engineering technology, in: International
Conference on Logic Programming and Nonmonotonic Reasoning, Springer, 2011, pp.
382–387.

[10] J. Oetsch, J. Pührer, H. Tompits, Catching the ouroboros: On debugging non-ground
answer-set programs, Theory and Practice of Logic Programming 10 (2010) 513–529.

[11] J. Oetsch, J. Pührer, H. Tompits, Stepwise debugging of answer-set programs, Theory and
Practice of Logic Programming 18 (2018) 30–80.

[12] E. Pontelli, T. Son, O. El-Khatib, Justifications for logic programs under answer set
semantics, TPLP 9 (2009) 1–56.

[13] C. Schulz, F. Toni, Justifying answer sets using argumentation, Theory and Practice of
Logic Programming 16 (2016) 59–110.

[14] L. L. Trieu, T. C. Son, E. Pontelli, M. Balduccini, Generating explanations for an-
swer set programming applications, in: T. Pham, L. Solomon (Eds.), Artificial Intel-
ligence and Machine Learning for Multi-Domain Operations Applications III, volume
11746, International Society for Optics and Photonics, SPIE, 2021, pp. 390 – 403. URL:
https://doi.org/10.1117/12.2587517.

[15] M. Gelfond, V. Lifschitz, The stable model semantics for logic programming, in: R. Kowalski,
K. Bowen (Eds.), Logic Programming: Proceedings of the Fifth International Conf. and
Symp., 1988, pp. 1070–1080.

[16] R. Kaminski, T. Schaub, P. Wanko, A tutorial on hybrid answer set solving with clingo, in:
Reasoning Web International Summer School, Springer, 2017, pp. 167–203.

[17] P. Simons, I. Niemelä, T. Soininen, Extending and implementing the stable model semantics,
Artificial Intelligence 138 (2002) 181–234.

13

http://dx.doi.org/10.4204/EPTCS.325.19
http://dx.doi.org/10.4204/EPTCS.325.19
http://dx.doi.org/10.4204/eptcs.325.19
https://doi.org/10.1117/12.2587517

	1 Introduction
	2 Background: The exp(ASP) System
	3 Explanation Graphs in Programs with Choice Atoms
	4 The System
	4.1 Preprocessing
	4.2 Minimal assumption set
	4.3 ASP-based explanation system
	4.4 Illustration

	5 Conclusion

