
Submitted to:
ICLP 2021

© L.L. Trieu, T.C. Son & M. Balduccini
This work is licensed under the
Creative Commons Attribution License.

exp(ASPc): Explaining ASP Programs with Choice Atoms
and Constraint Rules*

Ly Ly Trieu Tran Cao Son
New Mexico State University

New Mexico, USA
lytrieu@nmsu.edu tson@cs.nmsu.edu

Marcello Balduccini
Saint Joseph’s University

Pennsylvania, USA
mbalducc@sju.edu

We present an enhancement of exp(ASP), a system that generates explanation graphs for a literal
`—an atom a or its default negation ∼ a—given an answer set A of a normal logic program P, which
explain why ` is true (or false) given A and P. The new system, exp(ASPc), differs from exp(ASP)

in that it supports choice rules and utilizes constraint rules to provide explanation graphs that include
information about choices and constraints.

1 Introduction

Answer Set Programming (ASP) [4, 5] is a popular paradigm for decision making and problem solving
in Knowledge Representation and Reasoning. It has been successfully applied in a variety of applica-
tions such as robotics, planning, diagnosis, etc. ASP is an attractive programming paradigm as it is a
declarative language, where programmers focus on the representation of a specific problem as a set of
rules in a logical format, and then leave computational solutions of that problem to an answer set solver.
However, this mechanism typically gives little insight into why something is a solution and why some
proposed set of literals is not a solution. This type of reasoning falls within the scope of explainable
Artificial Intelligence and is useful to enhance the understanding of the resulting solutions as well as for
debugging programs. So far, only a limited number of approaches have been proposed [1, 6, 7]. To the
best of our knowledge, no system deals directly with ASP programs with choice atoms.

In this paper, we present an improvement over our previous
system, exp(ASP) [9], called exp(ASPc). Given an ASP program
P, an answer set A, and an atom a, exp(ASPc) is aimed at answer-
ing the question “why is a true/false in A?” by producing expla-
nation graphs for atom a. The current system, exp(ASP), does
not consider programs with choice atoms and other constructs
that extend the modeling capabilities of ASP. For instance, Fig. 1
shows an explanation graph for the atom colored(1,red) given
the typical encoding of the graph coloring problem that does not
use choice rules. This explanation graph does provide the reason Figure 1: Explanation of colored(1,red)

for the color assigned to node 1 by indicating that the node is red because it is not blue and not green. It
is not obvious that this information represents the requirement that each node is colored with exactly one
color. The improvement described here extends our approach with the ability to handle ASP programs
containing choice rules and include constraint information in the explanation graphs.

*The second would like to acknowledge the partial support of the NSF 1812628 grant.

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 exp(ASPc): Explaining ASP Programs with Choice Atoms and Constraint Rules

2 Background: The exp(ASP) System

exp(ASP) deals with normal logic programs which are collection of rules of the form head(r)← body(r)
where head(r) is an atom and body(r) = r+, not r− with r+ and r− collections of atoms in a propositional
language and not r− denotes the set {not x | x ∈ r−} and not is the default negation.

exp(ASP) generates explanation graphs under the answer set semantics [2]. It implemented the
algorithms proposed in [6] to generate explanation graphs of a literal ` (a or ∼ a for some atom a in
the Herbrand base H of P), given an answer set A of a program P. Specifically, the system produces
labeled directed graphs, called explanation graphs, for `, whose nodes belong to H ∪{∼ x | x ∈ H}∪
{>,⊥,assume} and whose links are labeled with +, − or ◦ (in Fig. 1, solid/dash/dot edges represent
+/−/◦ edges). Intuitively, for each node x, x 6∈ {>,⊥,assume} in an explanation graph (E,G), the set
of neighbors of x represents a support for x being true given A (see below).

The main components of exp(ASP) are:

1. Preprocessing: This component produces an aspif representation [3] of P that will be used in the
reconstruction of ground rules of P. It also computes supported sets for atoms (or its negations) in
the Herbrand base of P and stored in an associative array E.

2. Computing minimal assumption set: This calculates a minimal assumption set U given the
answer set A and P according to the definition in [6].

3. Computing explanation graphs: This component uses the supported sets in E and constructs
e-graphs for atoms in H (or their negations) under the assumption that each element u ∈ U is
assumed to be false.

We note that exp(ASP) does not deal with choice atoms [8]. The goal of this paper is to extend
exp(ASP) to deal with choice atoms and utilize constraint information.

3 Explanation Graphs in Programs with Choice Atoms

exp(ASP) employs the notion of a supported set of a literal in a program in its construction. Given a
program P, an answer set A of P, and an atom c, if c ∈ A and r is a rule such that (i) head(r) = c, (ii)
r+ ⊆ A, and (iii) r− ∩A = /0, support(c,r) = r+ ∪{∼ n | n ∈ r−}; and refer to this set as a supported
set of c for rule r. If c /∈ A, for every rule r such that head(r) = c, then support(∼ c,r) ∈ {{p} | p ∈
A∩ r−}∪{{∼n} | n ∈ r+ \A}.

To account for choice atoms1 in P, the notion of supported set needs to be extended. For simplicity
of the presentation, we assume that any choice atom x is of the form l {p1 : q1, . . . , pn : qn} u where2 pi’s
and qi’s are atoms. Let xl and xu denote l and u, respectively. Furthermore, we write c ∈ x to refer to an
element in {p1, . . . , pn}. For c ∈ x, qi ∼= c indicates that c : qi belongs to {p1 : q1, . . . , pn : qn}.

In the presence of choice atoms, an atom c can be true because c belongs to a choice atom that is
a head of a rule r and body(r) is true in A. In that case, we say that c is chosen to be true and extend
support(c,r) with a special atom +choice to indicate that c is chosen to be true. Likewise, c can be false
even if it belongs to a choice atom that is a head of a rule r and body(r) is true in A. In that case, we say
that c is chosen to be false and extend support(∼ c,r) with a special atom −choice to indicate that c is
chosen to be false. Also, q∼= c will belong to the support set of support(c,r) and support(∼ c,r).

1We use choice atoms synonymous with weight constraints.
2As we employ the aspif representation, this is a reasonable assumption.

L.L. Trieu, T.C. Son & M. Balduccini 3

The above extension only considers the case c belongs to the head of a rule. support(c,r) also needs
to be extended with atoms corresponding to choice atoms in the body of r. Assume that x is a choice atom
in r+. By definition, if body(r) is true in A then xl ≤ |S| ≤ xu where S = {(c,q) | c ∈ x,q∼= c,A |= c∧q}.
For this reason, we extend support(c,r) with x. Because x is not a standard atom, we indicate the support
of x given A by defining support(x,r) = {S}. Furthermore, for each s ∈ S, support(s,r) = {∗True}.
When S = /0, we write support(x,r) = {∗Empty}. Similar elements will be added to support(c,r) or
support(∼ c,r) in other cases (e.g., the choice atom belongs to r−) or has different form (e.g., when
l = 0 or u = ∞). We omit the precise definitions of the elements that need to be added to support(c,r)
for brevity.

The introduction of different elements in supported sets of literals in a program necessitates the ex-
tension of the notion of explanation graph. Due to the space limitation, we introduce its key components
and provide the intuition behind each component. The precise definition of an explanation graph is
rather involved and is included in the appendix for review. First, we introduce additional types of nodes.
Besides +choice, −choice, ∗True, and ∗Empty, we consider the following types of nodes:

• Tuples are of the form (x1, . . . ,xm, not y1, . . . , not yn) to represent elements belonging to choice
atoms (e.g., (colored(1,blue),color(blue)) representing an element in 1{(colored(N,C) : color(
C)}1). T denotes all tuple nodes in program P.
• Choices are of the form l ≤ T ≤ u or ∼ (l ≤ T ≤ u) where T ⊆ T . Intuitively, when l ≤ T ≤ u

(resp. ∼ (l ≤ T ≤ u)) occurs in an explanation graph, it indicates that l ≤ T ≤ u is satisfied (resp.
not satisfied) in the given answer set A. O denotes all choices.
• Constraints are of the form triggered constraint(x) or triggered constraint(∼ x). The former

(resp. latter) indicates that x is (resp. is not) true in A and satisfies all the constraints r such that
x ∈ r+ (resp. x ∈ r−). The set of all constraints is denoted with C .

As defined the nodes of the graph, we introduce the new types of links in explanation graphs as follows:
− • is used to connect literals c and ∼c to +choice and −choice, respectively, where c ∈ x and x

is a choice atom in the head of a rule.
− � is used to connect literals c and ∼ c to triggered constraint(c) and triggered constraint(∼ c),

respectively.
− ⊕ is used to connect a tuple t ∈T to ∗True.
− � is used to connect a choice n ∈ O to ∗Empty.

4 The exp(ASPc)ystem

In this section, we will focus on describing how the three main tasks in Sec. 2 are implemented. exp(ASP
c) uses a data structure, associative array, whose keys can be choices, tuples, constraints, or literals. For
an associate array D, we use D.keys() to denote the set of keys in D and k 7→ D[k] to denote that k is
associated to D[k]. To illustrate the different concepts, we will use the program P1 that contains a choice
atom and a constraint rule as follows:

(r1) a :− not b, not c. (r3) c :− not a. (r5) 1 {m(X) : n(X)} 1 :− c.
(r2) b :− c,a. (r4) :− b,m(1). (r6) n(1..2).

4.1 Preprocessing

Similar to exp(ASP), a program is preprocessed to maintain facts and as many ground rules as possible
by using the --text and --keep-facts options and replacing facts with the external statements. The

4 exp(ASPc): Explaining ASP Programs with Choice Atoms and Constraint Rules

aspif representation of the program is then obtained and processed, together with the given answer set,
for generating explanation graphs. The aspif statements of P1 is given in Listing 1. Let us briefly discuss
the aspif representation before continuing with the description of other components.

Listing 1: aspif Representation of P1

1 asp 1 0 0

2 5 1 2

3 5 2 2

4 1 0 1 3 0 1 -4

5 1 0 1 4 0 2 -5 -3

6 1 0 1 5 0 2 4 3

7 1 0 1 6 0 1 3

8 1 0 0 0 2 7 5

9 1 1 1 7 0 2 6 1

10 1 1 1 8 0 2 6 2

11 1 0 1 9 0 2 1 7

12 1 0 1 10 0 2 2 8

13 1 0 1 11 1 1 2 9 1 10 1

14 1 0 1 12 1 2 2 9 1 10 1

15 1 0 1 13 0 2 11 -12

16 1 0 0 0 2 6 -13

17 4 4 n(1) 1 1

18 4 4 n(2) 1 2

19 4 1 b 1 5

20 4 1 c 1 3

21 4 1 a 1 4

22 4 4 m(1) 1 7

23 4 4 m(2) 1 8

24 0

Each line encodes a statement in aspif. Lines starting
with 4, 5, and 1 are output, external, and rule statements,
respectively. Atoms are associated with integers and en-
coded in output statements (e.g., Line 17: 1 is the identi-
fier of n(1)). External statements help us to recognize the
facts in P, e.g. atom n(1) (ID = 1) is a fact (Line 2). A
rule statement r is of the form: 1 H B, where H and B are
the encoding of the head and body of r, respectively. Be-
cause of page limitation, we focus on describing the rule
statement whose head is a choice atom or whose body is
a weight body. If the head is a choice, its encoding H
has the form: 1 n ic1 . . . icn , where n is the number of head
atoms and ic is an integer identifying the atom c. E.g. m(1)
(ID= 7) and m(2) (ID= 8) are the head choices in Lines 9
and 10, respectively, which represents rule r5. If the body
of a rule is a weight body, its encoding B has the form:
1 l n ia1 wa1 . . . ian wan , where l > 0, l ∈ N is the lower
bound, n > 0 is the number of literal ai’s with ID = iai and
weight wai . E.g. Lines 13-14 contain weight body. Given
an ID i that does not occur in any output statement [3, 9],
we use l(i) to denote the corresponding literal. Constraint
r4 is shown in Line 8. It is interesting to observe that there
is one additional constraint in Line 16. By tracking integer
identifiers, one can notice that Line 16 states that it cannot

be the case that c is true (via Line 7) and l(13) cannot be proven to be true. Lines 13-15 ensure that l(13)
is true if 1{l(9); l(10)} is true and 2{l(9); l(10)} cannot be proven to be true. Note that l(9) and l(10)
are the same weight, so we ignore their weight. Line 11 states that l(9) is true if m(1) and n(1) are true.
Line 12 states that l(10) is true if m(2) and n(2) are true. Thus, the new constraint is generated from the
semantics of choice rule r5, which is added to aspif representation.

Given the aspif representation P′ of a program P, an associate array DP is created where DP =
{(t,h) 7→ B | t ∈ {0,1},h ∈ H,B = {body(r) | r ∈ P′,head(r) = h}}. Here, for an element (t,h) 7→ B in
Dp, t is the type of head h, either disjunction (t = 0) or choice (t = 1). Furthermore, for an answer set A
of P, Er(P) = {k 7→V | k ∈ {a | a ∈ A}∪{∼a | a /∈ A},V = {support(k,r) | r ∈ P}} [9].

Algorithm 1 shows how constraints are processed given the program P and its answer set A. The
outcome of this algorithm is an associated array Ec. First, Vc—the set of constraints (the bodies of
constraints)—is computed. Afterwards, for each body B of a constraint r in Vc, violation and support
are computed. Each element in violation requires some trigger constraint to falsify the body B, which are
those in support. Each choice support encodes a support for a choice atom. triggered constraint(v),
where v ∈ violation, is assigned to support the explanation of v (Line 23), and support is used for the
explanation of triggered constraint(v) to justify the satisfaction of constraints containing v (Line 24).
For {p1 : q1, . . . , pn : qn} in a choice atom x, we write X = {(c,q) | c ∈ x,q∼= c} (e.g., Line 7).

During the preprocessing, the set of all negation atoms in P, NANT (P) = {a | a ∈ r−∧ r ∈ P} [6, 9],
is computed. For P1 and the answer set A = {n(1),n(2),c,m(1)}, we have NANT (P1) = {a,b,c}.

L.L. Trieu, T.C. Son & M. Balduccini 5

Algorithm 1: constraint preprocessing(D,A)
Input: D - associative array of rules (this is DP), A - an answer set

1 Vc = {B | D[(0,h)] = B∧h = /0}
2 Ec←{ /0 7→ /0} // Initialize an empty associative array Ec: Ec.key() = /0

3 for B ∈Vc do
4 violation←{a | a ∈ r+∧a ∈ A}∪{∼a | a ∈ r−∧a /∈ A}
5 support←{∼a | a ∈ r+∧a /∈ A}∪{a | a ∈ r−∧a ∈ A}
6 if choice atom x in B and S = {(c,q) | c ∈ x,q∼= c,A |= c∧q} then
7 X = {(c,q) | c ∈ x,q∼= c}
8 if x = l {p1 : q1, . . . , pn : qn} u ∈ r+ and |S|< l or |S|> u then
9 choice support←{“∼(l <= X <= u)”}

10 if x = l {p1 : q1, . . . , pn : qn} u ∈ r− and l ≤ |S| ≤ u then
11 choice support←{“l <= X <= u”}
12 if x = l {p1 : q1, . . . , pn : qn} ∈ r+ or x = {p1 : q1, . . . , pn : qn} l−1 ∈ r− and |S|< l then
13 choice support←{“∼(l <= X)”}
14 if x = l {p1 : q1, . . . , pn : qn} ∈ r− or x = {p1 : q1, . . . , pn : qn} l−1 ∈ r+ and |S| ≥ l then
15 choice support←{“l <= X ”}

16 support← support ∪ choice support
17 if S 6= /0 then
18 Ec[choice support]← [S]
19 Ec[pi]← [{“∗True”}] such that pi ∈ S

20 else
21 Ec[choice support]← [{“∗Empty”}]
22 for v ∈ violation do
23 Append {triggered constraint(v)} to a list Ec[v]
24 Ec[triggered constraint(v)]← [c∪{s} | s ∈ support,c ∈ Ec[triggered constraint(v)]]

25 return Ec

Example 1 Let us reconsider the program P1 and its answer set A = {n(1),n(2),c,m(1)}. The output of
the preprocessing, Er(P1) (left) and Ec(P1) (right), are as follows:

Er(P1) = {

c : [{∼a}],
∼a : [{c}],

∼b : [{∼a}],
m(1) :

[{c, +choice, n(1)}],

∼m(2):
[{c, -choice, n(2)}],

n(1) : [{T}],

n(2) : [{T}]

}

Ec(P1) = {

m(1) : [{ triggered_constraint(m(1))}],

triggered_constraint(m(1)) : [{∼b}],
c : [{ triggered_constraint(c)}],

triggered_constraint(c) :

[{1 <={(m(1), n(1)), (n(2), m(2))} <=1}],

1<={(m(1), n(1)), (n(2), m(2))} <=1 :

[{(m(1), n(1))}],

(m(1), n(1)) : [{* True}]

}

Er(P1) shows that the supported set of two choice heads m(1) and m(2) contains +choice and
−choice, respectively, which depends on their truth values and the value of their bodies.

Ec(P1) shows that atom b in r4 makes the constraint satisfied while m(1) does not support the con-

6 exp(ASPc): Explaining ASP Programs with Choice Atoms and Constraint Rules

straint. Thus, {∼b} is the support set of triggered constraint(m(1)), and {triggered constraint(m(1))}
is the support set of m(1). For the additional constraint of P1, l(9) is true (encoded in (m(1),n(1))) w.r.t.
A, resulting the constraint is satisfied. The truth value of c does not contribute to making the constraint
satisfied. Thus, triggered constraint(c) is added to the explanation of c.

4.2 Minimal assumption set

Figure 2: Explanation of m(1)

The idea of the algorithm for computing minimal assumption sets
is as follows.

• A tentative assumption set TA [6, 9] is computed, which is
the superset of minimal assumption sets.

• Er(P) in Sec. 4.1 is utilized to compute all derivation paths
M of a ∈ TA. Then, the derivation paths M are examined
whether they satisfy the cycle condition in the definition of
explanation graph. During the examination of a derivation
path N ∈ M, the other tentative assumption atoms derived
from a are stored in a set D, which is appended to DA[a]
(DA is an associative array) if N is satisfied. If a is derivable
from other atoms in TA, then the relation of a will be checked later in the next step and a is stored
in a set T ′. A set T = TA\T ′ contains atoms that must assume to be false.

• We calculate a set of minimal atoms, min(B), that breaks all cycles among tentative assumption
atoms via DA. Note that the number of set min(B) can be more than one.

• Finally, the minimal assumption set U = T ∪min(B).

Example 2 Let us reconsider the program P1 and Example 1.
• For the program P1, we have: TA = {a,b}
• From Er(P1) in Example 1, atom a is not derivable from other atoms in TA while atom b is derivable

from an atom in {a}. Thus, we have T ′ = {b}, T = {a} and DA = b : [{a}]. Also, there is no cycle
between a and b, so min(B) = /0. As a result, the minimal assumption set is U = {a}.

4.3 ASP-based explanation system

Figure 3: Explanation graph of colored(1,red)

In this section, we describe how the explanation graph is
generated by utilizing Er, Ec from Sec. 4.1 and the mini-
mal assumption set U from Sec. 4.2. Let E = {k 7→ V | k ∈
Er.keys()∪Ec.keys(),V = [r∪c] such that r ∈ Er[k] and c ∈
Ec[k]}. Note that r = /0 if @k ∈ Er.keys() and c = /0 if
@k ∈ Ec.keys(). Given E, the algorithm from [9] will find
the explanation graph of literal in P, taking into considera-
tion the additional types of nodes and links.
Example 3 For program P1, the explanation graph of m(1)
is shown in Fig. 2.

In Fig. 2, a justification for m(1) depends positively on
c and n(1). A choice head m(1) is chosen to be true. The
constraint containing m(1) is satisfied by A because of the
truth value of b. The constraint containing c is satisfied by A
because the conjunction of n(1) and m(1) is true.

L.L. Trieu, T.C. Son & M. Balduccini 7

4.4 Illustration

We illustrate the application of our updated system, exp(ASPc), to the graph coloring problem. We use a
solution of the problem where each node is assigned a unique color by the choice rule: 1{colored(X ,C) :
color(C)}1← node(X).

Fig. 3 shows the explanation graph of colored(1,red). Unlike Fig. 1, Fig. 3 shows that a choice head
colored(1,red) is chosen to be true while two choice heads, colored(3,red) and colored(2,red), are
chosen to be false, which are represented via orange dotted links (link •). Fig. 3 displays the constraint
that node(1) must assign a different color with node(3) and node(2). This shows via the links from
colored(1,red) to ∼(colored(2,red) and ∼(colored(3,red) connected through triggered constraint
(colored(1,red)) (green dotted link �). Also, the triggered constraints of each node(1), node(2) and
node(3), each node is assigned exactly one color, are shown via the aggregate functions in the node
labels (blue solid link ⊕).

5 Conclusion

In this paper, we proposed an extension of our explanation generation system for ASP programs, exp(A
SPc), which supports choice rules and includes constraint information. At this stage, we have focused
on developing an approach that would simplify the program debugging task and have left a systematic
investigation of its scalability for a later phase. Nonetheless, in preliminary evaluations, we successfully
tested our approach on programs of growing complexity, including one from a practical application that
contains 421 rules, 657 facts and has a tentative assumption set of size 44. An additional future goal is to
extend exp(ASPc) so that it can deal with other clingo constructs like the aggregates #sum, #min, etc.

References
[1] Pedro Cabalar, Jorge Fandinno & Brais Muñiz (2020): A System for Explainable Answer Set Programming.

Electronic Proceedings in Theoretical Computer Science 325, p. 124–136, doi:10.4204/eptcs.325.19.

[2] M. Gelfond & V. Lifschitz (1988): The stable model semantics for logic programming. In R. Kowalski &
K. Bowen, editors: Logic Programming: Proc. of the Fifth International Conf. and Symp., pp. 1070–1080.

[3] Roland Kaminski, Torsten Schaub & Philipp Wanko (2017): A tutorial on hybrid answer set solving with
clingo. In: Reasoning Web International Summer School, Springer, pp. 167–203.

[4] V. Marek & M. Truszczyński (1999): Stable models and an alternative logic programming paradigm. In: The
Logic Programming Paradigm: a 25-year Perspective, pp. 375–398, doi:10.1007/978-3-642-60085-2 17.

[5] I. Niemelä (1999): Logic programming with stable model semantics as a constraint programming paradigm.
Annals of Mathematics and Artificial Intelligence 25(3,4), pp. 241–273, doi:10.1023/A:1018930122475.

[6] E. Pontelli, T.C. Son & O. El-Khatib (2009): Justifications for logic programs under answer set semantics.
TPLP 9(1), pp. 1–56. Available at http://dx.doi.org/10.1017/S1471068408003633.

[7] Claudia Schulz & Francesca Toni (2016): Justifying answer sets using argumentation. Theory and Practice of
Logic Programming 16(1), pp. 59–110, doi:10.1017/S1471068414000702.

[8] Patrik Simons, Ilkka Niemelä & Timo Soininen (2002): Extending and implementing the stable model seman-
tics. Artificial Intelligence 138(1-2), pp. 181–234, doi:10.1016/S0004-3702(02)00187-X.

[9] Ly Ly Trieu, Tran Cao Son, Enrico Pontelli & Marcello Balduccini (2021): Generating explanations for
answer set programming applications. In: Artificial Intelligence and Machine Learning for Multi-Domain
Operations Applications III, International Society for Optics and Photonics, SPIE, pp. 390 – 403. Available at
https://doi.org/10.1117/12.2587517.

http://dx.doi.org/10.4204/eptcs.325.19
http://dx.doi.org/10.1007/978-3-642-60085-2_17
http://dx.doi.org/10.1023/A:1018930122475
http://dx.doi.org/10.1017/S1471068408003633
http://dx.doi.org/10.1017/S1471068414000702
http://dx.doi.org/10.1016/S0004-3702(02)00187-X
https://doi.org/10.1117/12.2587517

	Introduction
	Background: The exp(ASP) System
	Explanation Graphs in Programs with Choice Atoms
	The System
	Preprocessing
	Minimal assumption set
	ASP-based explanation system
	Illustration

	Conclusion

