
Künstliche Intelligenz manuscript No.
(will be inserted by the editor)

Answer Set Planning in Single- and Multi-Agent Environments

Tran Cao Son ∙ Marcello Balduccini

Received: date / Accepted: date

Abstract We present the main ideas of answer set
planning in both single- and multi-agent environments.
Specifically, we describe a systematic translation of a
dynamic domain—given as set of statements in an ac-
tion language such as B—into a logic program which
can be used for planning and other reasoning tasks (e.g.,
diagnosis) given the dynamic domain. We illustrate the
issues of answer set planning in different settings and
their solutions using a well-known problem domain, the
Kiva robot system.

Keywords Answer set planning ∙ Multi-agent
planning ∙ Action languages

1 Introduction

Answer set planning [12] is one of the earliest and most
discussed applications of Answer Set Programming (ASP)
[13,15]. To solve a planning problem P using ASP, we
translate it to a logic program π(P , n) where n is an
integer representing the maximum length of solutions

Tran Cao Son
New Mexico State University, Las Cruces, NM 88003, USA
Tel.: +1-575-646-1930
Fax: +1-575-646-1002
E-mail: tson@cs.nmsu.edu

Marcello Balduccini
Saint Joseph’s University, Philadelphia, PA 19131, USA
Tel.: +1-610-660-3457
Fax: +1-610-660-1192
E-mail: marcello.balduccini@gmail.com

to P that we are interested in.1 In essence, π(P , n) has
two parts. The first part encodes the transition system
described by the domain specified by P and the second
part encodes the initial and goal state and is responsi-
ble for the generation of possible plans and validation
of solutions.

Planning domains can be specified by planning do-
main description language (PDDL) [8] or action lan-
guages [7]. In this paper, we will use the language B
defined by [7]. In this language, a domain is character-
ized by a set F of fluents and a setA of actions. For sim-
plicity, in this paper we only consider discrete domains,
Boolean fluents (i.e. fluents whose value is either true
or false) and instantaneous actions (i.e., actions that
have no duration and whose effects occur immediately
after the execution of the action). More specifically, a
domain P over (F ,A) is a collection of statements of
the form

impossible if (a, ψ) (1)

causes(a, l, ψ) (2)

if(l, ψ) (3)

where a ∈ A, l is either a fluent f ∈ F or its negation
¬f (hereafter called literal), and ψ is a set of literals.
Statements of the form (1) describe when actions can-
not be executed. A statement of the form (2) states that
if a is executed when ψ is true, then l becomes true. A
statement of the form (3) represents a state constraint

1This is a special case of the more general problem of
finding a plan of any length. In this paper, we focus on the
simpler variant to keep the presentation simple.



2 Tran Cao Son, Marcello Balduccini

and says that if ψ is true then l must be true; l can
be ⊥ in (3), which indicates a state constraint of the
domain, i.e., the conjunction of the literals in ψ must
not hold.

Formally, a dynamic domain, i.e. a domain whose
state may change over time as the result of occurrences
of actions, can be represented as a directed graph, whose
nodes correspond to states of the domain and whose
edges represent state transitions. Edges are labeled by
sets of actions, which describe the actions whose con-
current occurrence causes that transition. This graph
can be described by ΦP , the transition function. The
precise formalization of ΦP can be found in [7].

The rest of the paper is organized as follows. Sec-
tion 2 describes the Kiva robot environment that will be
used as the running example of the paper. Section 3 de-
scribes the translation of a domain into a logic program.
Section 4 focuses on answer set planning in multi-agent
environments. Conclusions are found in Section 5.

2 A Motivating Example: Kiva Robots

As a motivating example, throughout this paper we
refer to the Kiva robot scenario, consisting of an au-
tonomous warehouse system [20] (illustrated by Fig-
ure 1) where robots (in orange) navigate around a ware-
house to pick up inventory pods from their storage
locations (in green) and drop them off at designated
inventory stations (in purple) in the warehouse. Rele-

Fig. 1 Layout of an Autonomous Warehouse System [Wur-
man et al., 2008]

vant properties of the domain are the robot’s location,
described by a fluent at(l), where l is a location, and
whether or not it is carrying a pod p, described by a flu-
ent carrying(p). The location of pods can be described
by fluents of the form pod at(p, l). The actions avail-
able to the robot are move(l), which moves the robot

to location l, pick up(p, l), which picks up the pod p sit-
uated at the location l (as long as the robot is there as
well), and drop off , which drops off the pod currently
carried by the robot.

As we mentioned earlier, the domain is formalized
by means of statements of the form (1)-(3). For in-
stance, the effect of action pick up(p, l) is described by:

causes(pick up(p, l), carrying(p), {}). (4)

Because a Kiva robot can only carry one pod at a time,
pick up(p, l) cannot be executed if carrying(p′) holds.
This is formalized by a set of statements of the form:

impossible if (pick up(p, l), {carrying(p′)}). (5)

Furthermore, given a pair l, l′ of connected locations,
the effect of action move(l′) is formalized by:

causes(move(l′), at(l′), {at(l)}). (6)

The statement says that, if the robot is at location l

when action move(l′) occurs, then the outcome of the
action is that the robot is at l′. Note that, intuitively,
the robot can only be at a single location at a time.
This is formalized, for l 6= l′, by an instance of (3):

if(¬at(l′), {at(l)}). (7)

We will also have similar statements for pot at(p, l).

3 ASP Planning and ASP-Based Reasoning

When encoding a planning domain in ASP, fluents and
actions are represented by ASP terms. An ASP atom of
the form holds(f, i) states that fluent f is true at step
i in the evolution of the domain. If f is false, then we
write ¬holds(f, i). An atom occurs(a, i) indicates the
occurrence of action a at step i.

The domain is described by ASP rules. For instance,
the ASP counterpart of (4) is

holds(carrying(P ), I + 1)←
occurs(pick up(P,L), I).

(8)

where I is an ASP variable representing a time step in
the evolution of the domain. An executability condition
such as (5) is mapped to an ASP constraint:

← occurs(pick up(P,L), I), holds(carrying(P ′), I).

Statement (7) is translated as:

¬holds(at(L′), I)← holds(at(L), I), L 6= L′.

To enable a compact representation, in the following
we assume the existence of a relation connected(l1, l2),



Answer Set Planning in Single- and Multi-Agent Environments 3

% pick up(p, l) requires pod p present at location l
← occurs(pick up(P, L), I),¬holds(pod at(P, L), I).
← occurs(pick up(P, L), I),¬holds(at(L), I).
% While it is carried, the pod follows the robot
holds(pod at(P, L), I)← holds(at(L), I), holds(carrying(P ), I).

% Formalization of action drop off
¬holds(carrying(P ), I + 1)← occurs(drop off , I).
holds(pod at(P, L), I + 1)← occurs(drop off , I),

holds(at(L), I), holds(carrying(P ), I).
← occurs(drop off , I),¬holds(carrying(P ), I).

Fig. 2 Additional laws for the Kiva robot domain

stating that l1 and l2 are connected, i.e. that the robot
can move between them. For example, the fact that the
domain consists of two locations, ld, lr connected to
each other, would be represented by

{connected(lr, ld). connected(ld, lr).}

Thus, the effect of action move can be formalized by
the rule:

holds(at(L′), I + 1)← connected(L,L′),
holds(at(L), I),
occurs(move(L′), I).

(9)

The remaining rules for the Kiva domain are shown
in Figure 2. The ASP encoding of a dynamic domain
is completed by rules encoding the principle of inertia,
due to [9], according to which “things tend to stay as
they are.” In the flavor of representation we use in this
paper, this principle is captured by the two rules:

holds(F, I + 1)← holds(F, I), not ¬holds(F, I + 1).
¬holds(F, I + 1)← ¬holds(F, I), not holds(F, I + 1).

where variable F ranges over all fluents. The rules intu-
itively say that a fluent F is to be assumed to maintain
its truth value unless there is evidence that it does not.

The above set Πk of the rules describes a plan-
ning domain for the Kiva robot scenario. Next, we turn
our attention to the planning task. Generally speak-
ing, given a set of literals that specify a goal, the plan-
ning task consists in finding a plan, i.e. a sequence of
actions that, if executed, is expected to bring the do-
main to a state satisfying the goal. A goal is encoded in
ASP by a set Υg of expressions of the form holds(f, n)
and ¬holds(f, n) (recall that n is the maximum plan
length). The requirement for the goal to be satisfied is

formalized by the rules:

goal ← Υg.
← not goal.

The first rule detects the satisfaction of the goal, while
the second requires that the goal be reached by every
solution. For a Kiva robot, assuming that only one pod
exists, the goal might be for the pod p to be at a location
ld and for the robot to be at a location lr. This can be
represented by the set of rules, Πg:

goal ← holds(at(lr), n), holds(pod at(p, ld), n).
← not goal.

Additionally to specifying a goal, a planning task typ-
ically requires the indication of the initial state of the
domain. This is encoded in ASP by a set Πi of facts of
the form holds(f, 0) and ¬holds(f, 0), where the second
argument refers to step 0. In our example, Πi might be
{

holds(at(ld), 0). holds(pod at(p, lr), 0).
¬holds(carrying(P ), 0)← pod(P ).

}

In ASP planning, the task of finding a plan is reduced
to finding an answer set of the program Πk∪Πg∪Πi∪Πp

where Πp is the planning module :

occurs(A, I) ∨ ¬occurs(A, I)← step(I). (10)

Intuitively, Πp states that any action is allowed to oc-
cur at any time step (variable A ranges over all actions).
Given an answer set S, the plan described by it can be
extracted from the atoms of the form occurs(a, i) of S.
In our example, it is not difficult to see that an answer
set exists that contains the atoms

occurs(move(lr), 0), occurs(pick up(p, lr), 1),
occurs(move(ld), 2),
occurs(drop off , 3), occurs(move(lr), 4)

corresponding to the plan in which the robot reaches
the pod, picks it up, takes it to location ld, drops it off,
and returns to lr.

It is instructive to reiterate that the ASP program
encoding a planning problem above, Πk∪Πg∪Πi∪Πp,
includes a parameter n which represents the maximum
plan length. As such, if the program Πk ∪Πg ∪Πi∪Πp

does not have an answer set, it only means that it does
not have a plan of length n. Using this fact, one can
compute shortest solutions of the planning problem by
iteratively computing the answer sets of Πk∪Πg∪Πi∪
Πp for n = 0, 1, . . .. In this sense, ASP-planning is sim-
ilar to SAT-based planning [10]. In order to use ASP-
planning to determine whether a planning problem is



4 Tran Cao Son, Marcello Balduccini

solvable, one might need to (i) determine the maxi-
mal bound of the shortest solution of the problem? and
(ii) run the above program with this bound. This is an
interesting topic but it is outside of the scope of this
paper.

ASP-based reasoning is not difficult to extend be-
yond planning. Next, we discuss how diagnostic rea-
soning can be accomplished. The presentation is based
on previous work [1] aimed at the development of an
architecture for a software agent that operates a phys-
ical device and is capable of making observations and
of testing and repairing the device’s components. Due
to space considerations, we will limit our attention to
the simplest kind of diagnostic task, in which the agent
must find explanations for unexpected observations.

We assume that the agent and the domain satisfy
the following simplifying conditions: (1) the agent is
capable of making correct observations, performing ac-
tions, and remembering the domain history; (2) nor-
mally the agent is capable of observing all relevant ex-
ogenous actions occurring in its environment. By exoge-
nous action we mean an action that may spontaneously
occur in the domain. These are distinct from the agent
actions considered so far, through which the agent ac-
tively manipulates the domain.

To begin, let us expand our example domain by a
fluent charged, expressing whether the robot’s battery
is sufficiently charged to allow the robot to move be-
tween locations and operate pods. We also introduce a
fluent stuck, indicating whether the robot’s lift mecha-
nism is stuck, preventing it from picking up and drop-
ping off pods. The rules of Πk are extended in a straight-
forward way. For example, rules (8) and (9) become,
respectively:

holds(at(L′), I + 1)← connected(L,L′),
holds(at(L), I),
occurs(move(L′), I),
holds(charged, I).

holds(carrying(P ), I + 1)← occurs(pick up(P,L), I),
holds(charged, I),
¬holds(stuck, I).

We introduce two exogenous actions, break, which causes
the lift mechanism to become stuck, and run low, which
causes the battery’s charge to run low. Their effects are
modeled by the rules:

holds(stuck, I + 1) ← occurs(break, I).
¬holds(charged, I + 1) ← occurs(run low, I).

To enable diagnostic reasoning, the agent’s knowledge
base is expanded to include a recorded history, which
contains observations made by the agent together with
a record of its own actions. The recorded history defines
a collection of paths in the transition diagram, which,
from the standpoint of the agent, can be interpreted as
the domain’s possible pasts. If the agent’s knowledge
is complete (i.e., it has complete information about the
initial state and the occurrences of actions) and the sys-
tem’s actions are deterministic, then there is only one
such path. In the more general case, however, there may
be multiple paths. The goal of the diagnostic reasoning
task is to allow the agent to explain discrepancies be-
tween its expectations and the domain’s observed be-
havior. An explanation consists of exogenous actions,
whose unobserved occurrence is a possible explanation
of the observed behavior.

More precisely, a recorded history Γn up to a current
moment n is a collection of observations, i.e. statements
of the form: obs(f, true, i), meaning that fluent f was
observed to be true at step i; obs(f, false, i), indicating
that f was observed to be false2; and hpd(a, t), meaning
that action a was observed to happen at step t. i is an
integer from the interval [0, n] and t is from [0, n).

The first step of the diagnostic task consists in deter-
mining whether the current recorded history contains
unexpected observations. This is achieved by the fol-
lowing program Πr:

holds(F, 0) ← obs(F, true, 0).
¬holds(F, 0) ← obs(F, false, 0).
occurs(A, I) ← hpd(F, I).

← holds(F, I), obs(F, false, I).
← ¬holds(F, I), obs(F, true, I).

The first three rules of Πr establish the relationship
between observations and basic relations of Πk. The
last two rules, called the reality check axioms, require
that observations do not contradict the agent’s expecta-
tions. Note that these rules establish a strict one-to-one
correspondence between observations and expectations
on fluents, while the correspondence between observed
occurrences of actions and expected occurrences is one-
directional. This is a reflection of the assumption that
exogenous actions may occur undetected. It is not diffi-
cult to see that Πr, together with the domain encoding,
can be used to detect discrepancies between recorded

2One may also use obs(f, i) and ¬obs(f, i), but the repre-
sentation we adopt simplifies the writing of some rules.



Answer Set Planning in Single- and Multi-Agent Environments 5

history and expectations. That is, discrepancies exist
if-and-only-if the program Πk ∪Γn∪Πr is inconsistent.

Going back to our example, the description of the
initial state from Πi can be rewritten in the form of
observations as






obs(at(ld), true, 0).
obs(pod at(p, lr), true, 0).
obs(carrying(p), false, 0).






To accommodate the new fluents, the set of obser-
vations is expanded by

{obs(charged, true, 0). obs(stuck, false, 0).},

indicating that the battery is initially charged and the
lift mechanism is in working order. Let Γ1 consist of the
above observations, together with

{hpd(move(lr), 0), obs(at(lr), true, 1)}.

That is, Γ1 specifies that the robot moved to lr and that
it observed its final location to be lr. Clearly, program
Πk ∪ Γ1 ∪Πr is consistent, which indicates that there
are no discrepancies between expectations and obser-
vations. In fact, action move(lr) achieved its intended
effect of moving the robot to lr. Consider now recorded
history

Γ2 = Γ1 ∪

{
hpd(pick up(p, lr), 1).
obs(carrying(p), false, 2).

}

.

Now, program Πk ∪ Γ2 ∪ Πr is inconsistent. In fact,
pick up(p, lr) is expected to result in the robot carrying
the pod, and thus there is a discrepancy between the
agent’s expectations and the observation
obs(carrying(p), false, 2).

If discrepancies are detected, the second step of the
diagnostic task consists in finding explanations for them.
This is accomplished by a program Πd that defines the
explanation space of the problem – a collection of se-
quences of exogenous actions that may have occurred,
unobserved, in the past, and provides a justification of
the unexpected observations. We call such a program
diagnostic module. While many variants are possible,
the simplest diagnostic module is defined by the choice
rule:

{occurs(E, I) : exogenous(E)} ← 0 ≤ I < n.

The rule intuitively states that any exogenous action E
may have occurred at any past step. Relation exogenous
is assumed to be defined over all possible exogenous ac-
tions. In our example, the relation is defined by the
facts {exogenous(break). exogenous(run low).}. Diag-

noses are found by computing the answer sets of the
program Πk ∪ Γn ∪Πr ∪Πd.

Going back to our example, Πk∪Γ2∪Πr∪Πd has two
answer sets, one containing the atom occurs(break, 0)
and the other one containing the atom occurs(run low,
0), corresponding to the two possible explanations that,
while the agent was moving to lr, either the lift mecha-
nism broke or the battery ran low. More advanced diag-
nostic techniques can be implemented in a similar fash-
ion. For instance, cardinality-minimal diagnoses can be
found by extending the diagnostic module by a weak
constraint [5]:

:∼ occurs(A,S).

which intuitively states that atoms of the form occurs(A,S)
should be avoided as much as possible in the solution.

4 ASP Planning in Multi-Agent Environments

The formalization in the previous section can be easily
extended to deal with various problems in multi-agent
environments (MAE). In these problems, the planning
(or reasoning) activity can be carried out either by one
system (a.k.a. centralized planning) or multiple systems
(a.k.a. distributed planning). Next, we will discuss the
use of ASP in these settings. For simplicity of presen-
tation, we will use a simplified version of the Kiva ap-
plication from Section 2 as shown in Figure 3. In this
example, we have two robots r1 and r2, and five pods
p1, . . . , p5, where each pi is located in li. Initially, r1 is
at l2, r2 is at l4, and neither robot carries anything.

P3

P2 P4P1

P5

r1 r2

Fig. 3 A Multi-Agent Environment



6 Tran Cao Son, Marcello Balduccini

4.1 Centralized Multi-Agent Planning

Centralized planning for multiple agents has been inten-
sively studied from the beginning of multi-agent plan-
ning (see, e.g., [6]). In this subsection, we discuss the use
of ASP in centralized planning for multiple agents. Sim-
ilar to planning in a single-agent environment, we will
assume that a language—in the spirit of B — exists for
representing multi-agent domains. Different languages
have been proposed (e.g., [4,17,19]) for this purpose.
These languages extend the signature of B with a set of
agents, and associate actions and fluents with agents.
This association can be explicit, i.e., each action (or
fluent) is associated with an agent; or implicit, i.e., the
agent can be omitted from an action (or a fluent). In
addition, it is also necessary to describe when parallel
execution of actions is not feasible. This is achieved by
introducing a new type of constraints of the form

impossible if (sa, ψ). (11)

where sa is a set of actions and ψ is a set of literals.

With the above changes, a multi-agent domain ap-
pears similar to the single-agent domain and can be
encoded using statements of the form (1)-(3) and (11).
As an example, an explicit representation of the domain
in Figure 3 can be obtained from the representation de-
tailed in the previous section by

– adding the facts agent(r1) and agent(r2) for repre-
senting r1 and r2;

– replacing the fluent carrying with carrying(r, p)
where r and p denote a robot and a pod, respec-
tively;

– replacing the fluent at(l) with at(o, l) where o de-
notes an object (robot or pod) and l denotes a lo-
cation, respectively;

– replacing the action pick up with pick up(r, p, l) where
r, p, and l denote a robot, a pod, and a location, re-
spectively;

– replacing the action move(l) with move(r, l) where
r and l denote a robot and a location, respectively.

The effect of action pick up(r, p, l) is described by:

causes(pick up(r, p, l), carrying(r, p), {}). (12)

Its executability conditions are captured by

impossible if (pick up(r, p, l), {¬at(r, l)}). (13)
impossible if (pick up(r, p, l), {¬at(p, l)}).
impossible if (pick up(r, p, l), {carrying(r, p′)}).

Similarly, given a pair l, l′ of connected locations, the
effect of action move(l′) is formalized by:

causes(move(r, l′), at(r, l′), {at(l)}). (14)

The static law that formalizes the fact that a robot can
only be at a single location at a time is as follows.

if(¬at(r, l′), {at(r, l)}). (15)

for every l 6= l′.
Besides the above statements, additional constraints

are also possible. For example, the state constraint, for
r 6= r′,

if(⊥, {at(r, l), at(r′, l)}).

indicates that no two robots can be at the same location
at the same time. The constraint

impossible if ({move(r, l),move(r′, l′)},
{at(r, l′), at(r′, l)}).

(16)

for r 6= r′ and every pair of connected locations l, l′,
is an example of constraint of the form (11) preventing
two robots from swapping positions in a single move.

A multi-agent planning problem Pm can be encoded
with a multi-agent domain Dm, the initial state of the
world, and the set of goals for the agents in Pm. The
methodology described in Section 3 can be adapted to
solve multi-agent planning problems as follows.

– Statements of the forms (1)-(3) are translated into
their ASP encodings as described in Section 3; for
example, a statement of the form (2) such as (14) is
translated into the rule

holds(at(R,L′), I + 1) ← connected(L,L′),

holds(at(R,L), I),

occurs(move(R,L′), I).

– Each statement of the form (11) is mapped to an
ASP constraint. For instance, (16) is mapped into

← occurs(move(R,L), I), occurs(move(R′, L′), I),
holds(at(R,L′), I), holds(at(R′, L), I).

Let us denote the ASP encoding of a multi-agent do-
main Dm by ΠDm . Centralized planning for agents in
Pm can be achieved by combining Πk (the set of ground
rules of ΠDm whose time step is at most k), the rules
Πp (the planning module), Πi (the initial state of the
world), and Πg (goal satisfaction checking). Each an-
swer set of Πk ∪Πi ∪Πg ∪Πp represents a solution for
Pm.

One can see that, if robot r2 needs to carry pod
p3 to l1 and r1 needs to carry p2 to l5, the program



Answer Set Planning in Single- and Multi-Agent Environments 7

Π6∪Πi∪Πg∪Πp can be used to generate the following
plans for the two robots

occurs(pick up(r1, p2, l2), 0), (17)
occurs(move(r1, l1), 1), occurs(move(r2, l2), 1),
occurs(move(r1, l2), 2), occurs(move(r2, l3), 2),
occurs(move(r1, l4), 3), occurs(pick up(r2, p3, l3), 3),
occurs(move(r1, l5), 4), occurs(move(r2, l2), 4),
occurs(drop off (r1, p2, l5), 5), occurs(move(r2, l1), 5),
occurs(drop off (r2, p3, l1), 6)

4.2 Distributed Planning

A main drawback of centralized planning is that it can-
not exploit the structural organization of agents (e.g.,
hierarchical organization of agents) in the planning pro-
cess. Distributed planning has been proposed as an al-
ternative to centralized planning that aims at exploit-
ing the independence between agents and/or groups of
agents. We discuss distributed planning in two settings:
fully collaborative agents and non-/partially-cooperative
agents.

4.2.1 Fully Collaborative Agents

When agents are fully collaborative, a possible way to
exploit structural relationships between agents is to al-
low each group of agents to plan for itself (e.g., us-
ing the planning system described in Section 3) and
then employ a centralized post-planning process (a.k.a.
the controller/scheduler ) to create the joint plan for
all agents. The controller takes the output of these
planners—individual plans—and merges them into an
overall plan. One of the main tasks of the controller is
to resolve conflicts between individual plans. This issue
arises because individual groups plan without knowl-
edge of other groups (e.g., robot r1 does not know the
location of robot r2). When the controller is unable to
resolve all possible conflicts, the controller will identify
plans that need to be changed and request different in-
dividual plans from specific individual groups.

Any implementation of distributed planning requires
some communication capabilities between the controller
and the individual planning systems. For this reason, a
client-server architecture is often employed in the im-
plementation of distributed planning. A client plans for
an individual group of agents and the server is respon-
sible for merging the individual plans from all groups.
Although specialized parallel ASP solvers exist (e.g.,

[11,16]), there has been no attempt to use parallel ASP
solvers in distributed planning. Rather, distributed plan-
ning using ASP has been implemented using a combi-
nation of Prolog and ASP, where communication be-
tween server and clients is achieved through Prolog-
based message passing, and planning is done using ASP
(e.g., [19]).

Observe that the task of resolving conflicts is not
a straightforward one and can require multiple itera-
tions with individual planner(s) before the controller
can create a joint plan. Consider again the two robots
in Figure 3. If they are to generate their own plans,
then the first set of individual solutions can be:

occurs(pick up(r1, p2, l2), 0),
occurs(move(r1, l4), 1), occurs(move(r1, l5), 2),
occurs(drop off (r1, p2, l5), 3)

(18)

and

occurs(move(r2, l2), 0), occurs(move(r2, l3), 1),
occurs(pick up(r2, p3, l3), 2),
occurs(move(r2, l2), 3), occurs(move(r2, l1), 4),
occurs(drop off (r2, p3, l1), 5)

(19)

Obviously, a parallel execution of these two plans will
result in a violation of the constraint stating that two
robots cannot be at the same location at the same time.
One can see that the controller needs to insert a few
actions into both plans (e.g., r1 must move to either l1
or l3 before moving to l4).

Let P1, . . . , Pn be the set of plans received by the
controller. The feasibility of merging these plans into
a single plan for all agents can be checked using ASP.
Let πk be the program that consists of Πk ∪ Πi ∪ Πg

(described in sub-section 4.1), the set of facts of the
form occurs(a, t) in P1, . . . , Pk, and the following rules:

– a planning module, modified to

occ(A, I) ∨ ¬occ(A, I)← step(I).

– for 1 ≤ p ≤ n, a mapping of indices from 0 to k to
indices used in P1, . . . , Pn,

1{map(p, I, J) : step(J)}1← step(I), I ≤ maxp .
← map(p, I, J),map(p,R, S), I < R, J > S.

where maxp is the maximal index in Pp. Intuitively,
map(p, i, j) indicates that the ith action in Pp should
occur in the jth position in the joint plan. This
mapping must conform to the order of action oc-
currences in Pp. The solid arrows in Figure 4 show
a valid mapping of the five step plan Pp into the joint
plan which are represented by the atoms map(p, 1, 2),



8 Tran Cao Son, Marcello Balduccini

1 Pp

Joint plan

2 3 4 5

1 2 3 4 5 6 7 8

Fig. 4 Mapping of indices of Pp to indices of the joint plan

map(p, 2, 3), map(p, 3, 4), map(p, 4, 5), and map(p, 5, 8).
On the other, if we replace the solid arrow from 2
to 3 with the dotted arrow from 2 to 1, the map-
ping consists of the atoms map(p, 1, 2), map(p, 2, 1),
map(p, 3, 4), map(p, 4, 5), and map(p, 5, 8) and is in-
valid.

– a rule ensuring that an atom occurs(a, t) ∈ Pi must
occur at the specified position:

← occurs(a, t),map(i, t, j), not occ(a, j).

It can be checked that π6 would generate an answer set
corresponding to (17) if the inputs P1 and P2 are given
by (18) and (19), respectively.

It is worth mentioning that merging two individual
plans, which are computed separately, might be unsuc-
cessful. For example, in the example represented by Fig-
ure 3, if robot r1 needs to take pod p3 to l2 and robot
r2 needs to take pod p5 to p3 then two possible plans
for these robots could be:

occurs(move(r1, l3), 0),
occurs(pick up(r1, p3, l3), 1),
occurs(move(r1, l2), 2),
occurs(drop off (r1, p3, l2), 3)

(20)

and

occurs(move(r2, l5), 0),
occurs(pick up(r2, p5, l5), 1),
occurs(move(r2, l4), 2),
occurs(move(r2, l2), 3),
occurs(move(r2, l3), 4),
occurs(drop off (r2, p5, l3), 5)

(21)

It is easy to check that there is no way to merge the two
plans detailed in (20) and (21) into a single plan for the
two robots to accomplish their goals. The main reason
for this impossibility is that r1 only moves between l2
and l3, which prevents r2 to get to its destination.

4.2.2 Non/Partially-Collaborative Agents

Centralized planning or distributed planning with an
overall controller is most suitable in applications with
collaborative (or non-competitive) agents such as the

robots in the Kiva application. In many applications,
this assumption does not hold, e.g., agents may need to
withhold certain private information and thus do not
want to share their information freely; or agents may
be competitive and have conflicting goals. In these situ-
ations, distributed planning as described in the previous
sub-section is not applicable and planning will have to
rely on a message passing architecture, e.g., via peer-to-
peer communications. Furthermore, an online planning
approach might be more appropriate. Next, we describe
an ASP approach that is implemented centrally in [17]
but could also be implemented distributedly.

In this approach, the planning process is interleaved
with a negotiation process among agents. As an exam-
ple, consider the robots in Figure 3 and assume that
the robots can communicate with each other, but they
cannot reveal their location. The following negotiation
between r2 and r1 could take place:

– r2 (to r1): “can you (r1) move out of l2, l3, and l4?”
(because r2 needs to make sure that it can move to
location l2 and l3). This can be translated to the
formula ϕ1 = ¬at(r1, l2) ∧ ¬at(r1, l3) ∧ ¬at(r1, l4)
sent from r2 to r1.

– r1 (to r2): “I can do so after two steps but I would
also like for you (r2) to move out of l2, l4, and l5
after I move out of those places.” This means that r1

agrees to satisfy the formula sent by r2 but also has
some conditions of its own. This can be represented
by the formula ϕ1 ⊃ ϕ2 = ¬at(r2, l2) ∧¬at(r2, l4) ∧
¬at(r2, l5).

– r2 (to r1): “that is good; however, do not move
through l4 to get out of the area.”

– etc.

The negotiation will continue until either the agent ac-
cepts (or refutes) the latest proposal from the other
agent. A formal ASP based negotiation framework (e.g.,
[18]) could be used for this purpose.

Observe that during a negotiation, none of the robots
changes its location or executes any action. After a suc-
cessful negotiation, each robot has some additional in-
formation to take into consideration in its planning. In
this example, if the two robots agree after the second
proposal by r2, robot r1 agrees to move out of l2, l3,
and l4 but should do so without passing by l4; robot
r2 knows that he can have l2, l3, and l4 for itself after
sometime and also knows that it can stand at l4 until
r1 is out of the requested area; etc. Note, however, that
this is not yet sufficient for the two robots to achieve



Answer Set Planning in Single- and Multi-Agent Environments 9

their goals. To do so, they also need to agree on the
timing of their moves. For example, r1 can tell r2 that
l2, l3, and l4 will be free after two steps; r2 responds
that, if it is the case, then l2, l4, and l5 will be free after
2 steps; etc. This information will help the robots come
up with plans for their own goals.

To the best of our knowledge, only a prototype im-
plementation of the approach to interleaving negotia-
tion and planning has been presented in [17]. It is also
not implemented distributedly. We will next briefly de-
scribe the architecture of a possible implementation of
this approach. For simplicity of the presentation, we as-
sume that there are only two agents, named 1 and 2.
Agent 1 (resp. 2) needs to solve the planning problem
P1 (resp. P2) for itself. The two agents communicate
through a negotiation server that facilitates the com-
munication between them via a protocol.

Let us assume that the ASP encoding of the plan-
ning problem Pi (i = 1, 2) is the program Πi that con-
sists of the modules Πi

k ∪ Πi
g ∪ Πi

i ∪ Πi
p as described

in Section 4.1. In order for the agents to facilitate the
negotiation between the two agents, we introduce a new
type of atoms of the form

hyp(`, t) (22)

which represents the assumption that literal ` (a fluent
F or its negation ¬F ) holds at the time step t. For ` = F

or ` = ¬F , we write ` to denote ¬F or F respectively.
Let Πi

h be the ASP program consisting of the follow
rules:

{hyp(F, I), hyp(¬F, I)}1. (23)

← hyp(F, I), holds(F, I − 1). (24)

← hyp(¬F, I),¬holds(F, I − 1). (25)

holds(F, I) ← hyp(F, I). (26)

¬holds(F, I) ← hyp(¬F, I). (27)

The rule (23) states that the agent can assume that F

is true or false at the time step I. Intuitively, when an
agent assumes the value v of a fluent F at a time step
I, it means that the agent might need to negotiate with
the other agent so that F has the value v at time step
I.

Although the agent can assume that a fluent F can
be true or false at anytime, it is reasonable to assume
that the agent should only make the assumption when
F has a different value at the time step I−1 (rules (24)-
(25)). Observe that this conditions can be strengthened
by allowing the agent to make an assumption about

a fluent F only if the agent cannot change the value
of F . For example, if the battery of the robot r1 is
insufficient for it to move out of the current location,
it might need help (e.g., waiting for a service robot to
bring a battery); the robot can make a plan to achieve
its goal assuming that the battery is fully changed at
time step 3.

The last two rules of Πi
h indicate that if the agent

assumes that F is true (resp. false) then the fluent is
true (resp. false).

Intuitively, Πi
h encodes the fact that agent i can

make assumptions about fluent values that can be changed
by the other agent. For instance, if the robot 1 in Fig-
ure 3 assumes that robot 2 is not at l4 at step 1, then
this fact is represented by the atom hyp(¬at(r2, l4), 1).

Let Πi
n = Πi ∪Πi

h and S be an answer set of Πi
n.

It is easy to see that, because of the rule (23), S can
contain zero, one, or many atoms of the form hyp(`, t),
referred to as assumptions hereafter. Rules (24)—(27)
indicate that the values of fluents mentioned in these
assumptions change from time step I − 1 to I but it is
possible that the changes might have not been caused
by the execution of an actions by the agent i. As such,
agent i might need to negotiate with other agents so
that the values of the fluents mentioned in the assump-
tions are exactly as they have been assumed. Under this
assumption, it can be shown that every answer set of
Πi

n contains a plan for agent i to achieve its goal.

5 Conclusions

In this paper, we have discussed the main ideas of an-
swer set planning in single- and multi-agent environ-
ments. We presented a systematic translation of dy-
namic domains into logic programs, which can be used
for planning or diagnosis. We showed how the encoding
of dynamic domains in single-agent environments can
be adapted for planning in multi-agent environments.
We illustrated the issues of answer set planning in these
settings and their solutions using a well-known problem
domain, the Kiva robot system. Finally, we would like
to note that the proposed planning, diagnosis, and rea-
soning technologies for single-agent system have been
implemented in a real-world application [2,3]; on the
other hand, the proposed technologies for multi-agent
planning have not been implemented in a real-world
application. A preliminary implementation in a Kiva-
simulated environment can be found in [14].



10 Tran Cao Son, Marcello Balduccini

Tran Cao Son is a Professor at the
Computer Science Department of New
Mexico State University, Las Cruces. He
is interested in answer set programming,
commonsense reasoning, automated plan-

ning, reasoning about actions and change, multi-agent
systems, and the use of logical representation in prac-
tical applications. With his students, he has developed
the planning system called CpA(H) that was the best
conformant planner in the International Planning Com-
petition in 2008.

Marcello Balduccini is an Assistant
Professor at the Department of Deci-
sion & System Sciences of Saint Joseph’s
University. His research includes auto-
mated reasoning in environments with
non-linear dynamics; planning, schedul-

ing, and optimization; information retrieval; and cyber-
analytics, threat modeling and mitigation. He was a
2016 Data Fellow of the National Consortium for Data
Science and is currently a Pedro Arrupe Center Re-
search Fellow.

References

1. Balduccini, M., Gelfond, M.: Diagnostic reasoning with
A-Prolog. Journal of Theory and Practice of Logic Pro-
gramming (TPLP) 3(4–5), 425–461 (2003)

2. Balduccini, M., Gelfond, M.: Logic Programs with
Consistency-Restoring Rules. In: International Sympo-
sium on Logical Formalization of Commonsense Reason-
ing, AAAI Spring Symposium Series, pp. 9–18 (2003)

3. Balduccini, M., Gelfond, M., Watson, R., Nogueira, M.:
The USA-Advisor: A Case Study in Answer Set Planning.
In: Lectures Notes in Artificial Intelligence (Proceedings
of the Sixth International Conference on Logic Program-
ming and Nonmonotonic Reasoning, LPNMR’01), vol.
2173, pp. 439–442. Springer-Verlag (2001)

4. Baral, C., Son, T.C., Pontelli, E.: Reasoning about Multi-
agent Domains Using Action Language C: A Preliminary
Study. In: J. Dix, M. Fisher, P. Novák (eds.) Computa-
tional Logic in Multi-Agent Systems - 10th International
Workshop, CLIMA X, Hamburg, Germany, September
9-10, 2009, Revised Selected and Invited Papers, Lec-
ture Notes in Computer Science, vol. 6214, pp. 46–63.
Springer (2010)

5. Buccafurri, F., Leone, N., Rullo, P.: Adding Weak Con-
straints to Disjunctive Datalog. In: Proceedings of
the 1997 Joint Conference on Declarative Programming
APPIA-GULP-PRODE’97 (1997)

6. Durfee, E.: Distributed Problem Solving and Planning.
In: Muliagent Systems (A Modern Approach to Dis-
tributed Artificial Intelligence), pp. 121–164. MIT Press
(1999)

7. Gelfond, M., Lifschitz, V.: Action Languages. Electronic
Transactions on Artificial Intelligence 3(6) (1998)

8. Ghallab, M., Howe, A., Knoblock, C., McDermott, D.,
Ram, A., Veloso, M., Weld, D., Wilkins, D.: PDDL —
the Planning Domain Definition Language. Version 1.2.
Tech. Rep. CVC TR98003/DCS TR1165, Yale Center for
Comp, Vis and Ctrl (1998)

9. Hayes, P.J., McCarthy, J.: Some Philosophical Prob-
lems from the Standpoint of Artificial Intelligence. In:
B. Meltzer, D. Michie (eds.) Machine Intelligence 4, pp.
463–502. Edinburgh University Press (1969)

10. Kautz, H., Selman, B.: Planning as satisfiability. In: Pro-
ceedings of ECAI-92, pp. 359–363 (1992)

11. Le, H.V., Pontelli, E.: An Investigation of Sharing Strate-
gies for Answer Set Solvers and SAT Solvers. In: J.C.
Cunha, P.D. Medeiros (eds.) Euro-Par 2005, Parallel Pro-
cessing, 11th International Euro-Par Conference, Lisbon,
Portugal, August 30 - September 2, 2005, Proceedings,
Lecture Notes in Computer Science, vol. 3648, pp. 750–
760. Springer (2005)

12. Lifschitz, V.: Answer Set Programming and Plan Gener-
ation. Artificial Intelligence 138(1–2), 39–54 (2002)

13. Marek, V., Truszczyński, M.: Stable Models and an Al-
ternative Logic Programming Paradigm. In: The Logic
Programming Paradigm: a 25-year Perspective, pp. 375–
398 (1999)

14. Nguyen, V.D., Obermeier, P., Son, T.C., Schaub, T.,
Yeoh, W.: Generalized Target Assignment and Path
Finding Using Answer Set Programming. In: IJCAI, pp.
1216–1223 (2017)

15. Niemelä, I.: Logic Programming with Stable Model Se-
mantics as a Constraint Programming Paradigm. Annals
of Mathematics and Artificial Intelligence 25(3,4), 241–
273 (1999)

16. Schneidenbach, L., Schnor, B., Gebser, M., Kaminski, R.,
Kaufmann, B., Schaub, T.: Experiences Running a Par-
allel Answer Set Solver on Blue Gene. In: M. Ropo,
J. Westerholm, J. Dongarra (eds.) Recent Advances in
Parallel Virtual Machine and Message Passing Interface,
16th European PVM/MPI Users’ Group Meeting, Es-
poo, Finland, September 7-10, 2009. Proceedings, Lec-
ture Notes in Computer Science, vol. 5759, pp. 64–72.
Springer (2009)

17. Son, T., Pontelli, E., Sakama, C.: Logic Programming for
Multiagent Planning with Negotiation. In: P.M. Hill, D.S.
Warren (eds.) Logic Programming, 25th International
Conference, ICLP 2009, Pasadena, CA, USA, July 14-17,
2009. Proceedings, Lecture Notes in Computer Science,
vol. 5649, pp. 99–114. Springer (2009)

18. Son, T.C., Pontelli, E., Nguyen, N., Sakama, C.: For-
malizing Negotiations Using Logic Programming. ACM
Trans. Comput. Log. 15(2), 12 (2014)

19. Son, T.C., Pontelli, E., Nguyen, N.H.: Planning for Multi-
agent Using ASP-Prolog. In: J. Dix, M. Fisher, P. Novák
(eds.) Computational Logic in Multi-Agent Systems -
10th International Workshop, CLIMA X, Hamburg, Ger-
many, September 9-10, 2009, Revised Selected and In-
vited Papers, Lecture Notes in Computer Science, vol.
6214, pp. 1–21. Springer (2010)

20. Wurman, P., D’Andrea, R., Mountz, M.: Coordinating
Hundreds of Cooperative, Autonomous Vehicles in Ware-
houses. AI Magazine 29(1), 9–20 (2008)


