
adfa, p. 1, 2015.

© Springer-Verlag Berlin Heidelberg 2015

An Approach and Tool for Reasoning about

Situated Cyber-Physical Systems

Alexandru Nedelcu

ialexandru.nedelcu@gmail.com

Drexel University

Marcello Balduccini

mb3368@drexel.edu

Drexel University

Abstract. By “situated” cyber-physical systems (CPS) we mean CPS that are

located in some physical environment. The term is aimed at highlighting the two-

way interaction between CPS and environment, and the subtle, serendipitous, and

sometimes unexpected correlations that emerge because of the coexistence in and

with a physical environment. For example, a CPS that has an elevated surface

temperature will tend to heat the air around it, which in turn may influence the

readings of temperature sensors on nearby CPS, but this conclusion can be drawn

only by considering the corresponding physical laws. Unfortunately, these inter-

actions are normally not captured by the modeling methodologies of CPS, but

doing so can lead to improved anomaly detection and robustness of designs. In

this paper, we present a method for modeling the interactions of situated CPS,

define corresponding reasoning algorithms, and introduce a tool that integrates

in a state-of-the-art CPS design tool and automates the reasoning processes.

1 Introduction

In this paper, we describe work on modeling and reasoning about cyber-physical

systems (CPS), which is motivated by an increased need for the security of safety crit-

ical systems (SCSs). SCSs are an important class of CPS whose failure could lead to

life loss and major material or environmental damages. Well-known examples are air-

crafts, spacecraft, medical devices and nuclear plants. Engineering advancements have

allowed these systems to grow in complexity to the extent that they create opportunities

for cyber-attacks. Attacks on SCSs often involve changing their operation in malicious

ways, and interfering with the sensor readings, so that no anomaly is suspected. Besides

the cyber threat SCSs are exposed to, anomalies can also result from poor design or

implementation, and can be just as dangerous as cyber-attacks. The design of individual

CPS and of systems of CPS is rather well-understood, and languages for specifying

such designs have been created. However, in spite of the fact that CPS are defined as

systems capable of computations and interactions with the environment, what is less

understood are, in fact, the subtle, serendipitous, and sometimes unexpected correla-

tions that emerge because of the coexistence of a set of CPS in, and with, the physical

environment in which they are located.

For example, a CPS that has an elevated surface temperature will tend to heat the air

mailto:ialexandru.nedelcu@gmail.com

around it, which in turn may influence the readings of temperature sensors on nearby

CPS, but the link between the two CPS can be established only if one considers the

corresponding physical laws of heat propagation. These interactions are normally not

captured by the modeling methodologies of CPS.

To highlight this notion, in this paper we talk about “situated” CPS, to stress the fact

that the CPS are located in a physical environment, with which they have a full-fledged

two-way interaction.

There is interest in the CPS community for being able to model and reason about

such interactions because it can lead to increased robustness of designs and to improved

runtime anomaly detection. The challenge, however, is that state-of-the-art CPS mod-

eling techniques are not equipped for representing the evolution of a domain of interest

over time, and for reasoning about it.

In this paper, we propose a method for overcoming these limitations. The method is

based on mapping of CPS designs in the Architecture Analysis and Design Language

(AADL), a mainstream specification language, to descriptions of dynamic domains.

The descriptions are represented using techniques from reasoning about actions and

change (RAC) and Answer Set Programming (ASP). The physical environment is, too,

modeled as a dynamic domain. Reasoning about interactions of CPS in, and with, the

environment are thus reduced to reasoning about the evolution of dynamic domains.

To the best of our knowledge, ours is the first attempt to reason about emerging

interactions among CPS and physical environment and using mainstream CPS model-

ing languages. In (Shiraishi, 2010), a cruise control system is designed in AADL, by

considering its subcomponents, interactions with the other vehicle systems such as En-

gine System or Brake Control System, and sensors to measure various metrics such as

vehicle speed. Their approach is limited to the interaction that are explicitly modeled

by the system’s designer and does not consider the same breadth of questions-answer-

ing tasks that we consider here.

(Chen, Nugent, Mulvenna, Finlay, & Hong, 2008) describes an approach for reason-

ing about smart homes, based on the events occurring in the environment. This is ac-

complished by using Event Calculus, which captures events and their effects. Their

approach is mostly focused on planning (finding sequences of actions needed to achieve

a goal) and human behavioral modeling, rather than query-answering related to the de-

tection of discrepancies and bridging the gap between CPS modeling techniques and

reasoning about actions and change. They also use a different representation language

for reasoning about actions and change (Event Calculus vs ASP).

Next, we provide further motivation of our work by presenting two real-world ex-

amples of failures of SCSs. In both cases, prevention requires explicitly reasoning about

the physical environment and about how it links multiple CPS – at design time in the

first case and at run time in the second.

Fukushima Nuclear Disaster1. On Friday, 11 March 2011, Japan underwent a dam-

aging 9.0 magnitude earthquake. The Fukushima nuclear plant reactors, located 11km

away from the coast of the Pacific Ocean, behaved well throughout the earthquake.

1 http://www.world-nuclear.org/info/Safety-and-Security/Safety-of-Plants/Fukushima-Acci-

dent/

After the earthquake, a devastating tsunami occurred, which led to many more dam-

ages. The 15 meter waves affected power grid, and consequently, the capacity of the

grid was only able to supply eight out of eleven reactor cooling systems in the region.

The cooling systems automatically switched their energy source from the power grid to

the back-up generators, as it was expected. However, the tsunami reached the nuclear

plant causing the generators to fail, leaving the reactor with no energy supply to run its

cooling system.

This example highlights a design flaw related to the failure to take into account the

ramifications of environmental events. The designer of the plant did not take into ac-

count that a sufficiently strong earthquake could cause a tsunami with waves high

enough to reach the generators.

Air France Flight 447 Crash2. On June 1st, 2009, the Air France 447 flight from

Rio de Janeiro to Paris was flying through harsh weather during night time and was

experiencing turbulences. The pilots decided to reach a higher altitude to ensure a more

stable flight. As the aircraft was climbing, the speed sensors indicated normal speeds,

which led the pilots to believe the ascent was proceeding successfully. In reality, the

aircraft slowed down to the point that it stalled and eventually crashed. After the black

box was recovered, investigators found out that the speed sensor formed ice around it,

and was malfunctioning; thus providing the pilots with incorrect readings.

The main problem was the pilots’ lack of awareness. They relied on information

provided by the aircraft, but the information was incorrect. The pilots could have been

warned, and the situation likely avoided, if the aircraft’s computers had been able to

notice the discrepancy between the readings of the speed sensors and the information

that other CPS were using for their own specific tasks – for example, the GPS coordi-

nates retrieved by the plane’s transponder. To accomplish this, the observing system

would have had to have a more holistic view of the plane’s components, together with

an understanding the physical correlation between GPS coordinates and speed.

Unfortunately, in actual systems, there are often too many possible correlations for

the designers to explicitly enumerate them all, or even to be aware of them. What is

needed is a way of detecting such discrepancies directly from the designs of the CPS

and from a general-purpose model of the surrounding physical environment.

2 Background Information

2.1 Architecture Analysis and Design Language

AADL (SAE, 2012) was inspired from the DARPA funded language MetaH, which

was designed to describe embedded systems. MetaH was able to describe both software

and hardware. Among the software components were threads, subprograms and data,

whereas the hardware components include processor, memory, bus, and devices. Me-

taH had also a predefined list of properties that could be used to describe any of these

components. AADL inherits these features from MetaH.

2 http://www.airfrance447.com/

AADL is designed to support architectural description of complex SCSs, such as

aircrafts, automotive electronics, and robotics. These systems highly rely on the non-

functional requirements like safety, fault toleration, security, throughput and security.

AADL can be used to create an architectural model of these complex systems and test

for non-functional requirements even before the development begins.

AADL describes component properties and how they interact with each other. The

final purpose is to be able to run multiple analyses on these models to prove that the

non-functional requirements will be met, so that changes could be made early in the

engineering development process. Multiple analysis tools were developed to test for

timing, fault and error behaviors and safety. The language can be extended by adding

new property types and user-defined “annexes”.

The Open Source AADL Tool Environment (OSATE23) that extends the Eclipse

Integrated Development Environment and contains various analyses that are intended

for end users to test their AADL models. Furthermore, it is a framework for developers

who can implement new analyses based on AADL or its annexes syntax.

2.2 Answer Set Programming and Dynamic Domains

We begin by defining the syntax and semantics of ASP (Gelfond & Lifschitz, 1991);

(Niemela & Simons, 2000). Let Σ be a signature containing constant, function and pred-

icate symbols. Terms and atoms are formed as usual in first-order logic. A literal is an

atom or its strong negation ¬a. A rule is a statement of the form: l0 ←l1, . . . , lm, not
lm+1, . . . , not ln where li’s are literals and not is the so-called default negation. The

intuitive meaning of the rule is that a reasoner who believes {l1, . . . , lm} and has no

reason to believe {lm+1, . . . , ln}, must believe l0. Rules of the form h ← not h, l1, . . .
, not ln are abbreviated into ← l1, . . . , not ln, and called constraints. The intuitive

meaning of a constraint is that {l1, . . . , ln} must not be satisfied. A program is a set of

rules over Σ. A consistent set S of literals is closed under a rule if l0 ∈ S whenever {l1,
. . . , lm} ⊆ S and {lm+1, . . . , ln} ∩ S = ∅. Set S is an answer set of a not-free program

Π if S is the minimal set closed under its rules. The reduct, ΠS, of an arbitrary program

Π w.r.t. S is obtained from Π by removing every rule containing an expression not l
s.t. l ∈ S and by removing every other occurrence of not l. Set S is an answer set of Π

if it is the answer set of ΠS.

For the formalization of CPS and of the physical environment, we use techniques

from reasoning about actions and change. Fluents are terms denoting the properties of

interest of the domain (whose truth value typically depends on time). For example, in-
State(aircraft1, flight) may represent the fact that the aircraft is in flight. A fluent

literal is either a fluent f or its negation ¬f. Elementary actions are also first-order terms.

For example, takeOff(aircraft) means that the aircraft takes off, and changes its state

from ground to flight. A compound action is a set of elementary actions, denoting their

concurrent execution. A set S of fluent literals is consistent if ∀ f, {f, ¬f} ⊈ S and

complete if ∀f, {f, ¬f} ∩ S ≠ ∅. The set of the possible evolutions of a domain is rep-

resented by a transition diagram, i.e., a directed graph whose nodes – each labeled by a

3 https://wiki.sei.cmu.edu/aadl/index.php/Osate_2

complete and consistent set of fluent literals – represent the states of the domain, and

whose arcs – labeled by sets of actions – describe state transitions. A state transition is

identified by a triple, <σ0, a, σ1>, where σi’s are states and a is a compound action.

Transition diagrams can be compactly represented using an indirect encoding based

on the research on action languages (Gelfond & Lifschitz, 1998). We adopt the variant

of writing such encoding in ASP – see, e.g., (Balduccini, Gelfond, & Nogueira, 2000).

The encoding relies on the notion of a trajectory <σ0, a0, σ1, a1, . . .>, The states in a

trajectory are identified by integers (0 is the initial state). The fact that a fluent f holds

at a step i is represented by atom holds(f, i). If ¬f is true, we write ¬holds(f, i). Oc-

currences of elementary actions are represented by an expression occurs(a, i). ASP

rules (also called laws in this context) describe the effects of actions. An action descrip-

tion is a collection of such rules, together with rules (called inertia axioms) formalizing

the inertial behavior of fluents.

3 Approach

As we mentioned above, our approach aims to make it possible to cross-validate the

behavior of a set of CPS by leveraging the implicit links established by the physical

environment in which they coexist. Our approach relies on the following:

1. An architecture of the CPS in AADL format provides an unambiguous architec-

tural knowledge base of the main CPS and its containing sub-systems, their hard-

ware and software components and the interactions among them. For the purpose

of reasoning, the CPS is viewed as a dynamic domain and its AADL specification

is translated to collections of causal laws encoded in ASP.

2. A description of the physical world defines elements of the physical world, such

as medium (e.g. air, water), space positioning (e.g. CPS X is 4 meters away from

CPS Y), environmental properties (e.g. density, humidity), physical laws (e.g.

gravitation law, wave propagation), and constraints (e.g. an object has only one

position a time). In order to correlate the behavior of the environment to the CPS,

we link CPS’s sensors and actuators to the corresponding properties of the envi-

ronment (e.g. the pressure is a property of the environment and a CPS may sense it

by means of a barometric sensor). The physical world is represented, too, as a dy-

namic domain and its evolution described by means of causal laws.

3. A query is a question about the system, such as “is it possible for CPS X to produce

output O given that CPS Y is in state S?” We reduce answering a query to checking

for the existence of a trajectory satisfying the given requirements. A query is en-

coded in ASP in the form of observations about fluents and occurrences of actions.

The AADL system description(s) and the physical world model form a knowledge

base that captures the composite behavior of the complete system.

The first step of the process is to translate the AADL description to ASP. At the

current stage, we have defined a translation for a small, but representative fragment of

AADL. The translation process is described in more detail later.

The second step is to provide a model of the physical world that includes all elements

that may impact the behavior of the CPS. Ideally, one should be able to achieve this by

providing a general theory of the physical environment. At this early stage of the work,

however, our goal is still to viability the utility of this modeling approach, and thus we

allow for the physical model to be developed ad-hoc for a given scenario, and for the

choice of the model elements to be influenced by the desired type of cross-validations.

 The third step is to provide a query encoded as a set of ASP rules, with the expec-

tation that the observations about fluents and actions provided in the query will be

checked against the expected evolution of the complete system, and any anomalies de-

tected. For example, a query (in English) could be: “Is it possible for the altimeter on

the dashboard (where the dashboard and associated sensory and computational devices

constitute a CPS) to report that an aircraft is flying at 2,000ft and for the pressurization

system to be actively pressurizing the cabin?” Note that such a query can be answered

only by taking into account the link, present in the physical world, between altitude and

atmospheric pressure.

 Lastly, the AADL model is combined into a single ASP program together with phys-

ical world model and query, and with general axioms capturing the reasoning processes.

Finding answers to the query is reduced to finding answer sets of this program. In the

case of the sample query above, answering it can be reduced to checking for the exist-

ence of a state in which the corresponding fluents hold. It is not difficult to see that, if

the equipment is in working order, no state exists in which the altimeter reports 2,000ft

and the pressurization system is actively working. A possible line of reasoning is that a

dashboard CPS providing a reading of 2,000ft implies an actual aircraft altitude of

2,000ft. Using a model of the physical environment, one can derive that the atmospheric

pressure at that altitude is 14psi – which is close to the standard atmospheric pressure

measured at the sea level. With such high atmospheric pressure, a model of a typical

pressurization system will predict that the system remains inactive. Hence, if everything

is in normal working conditions, it is impossible for both observations to hold.

During the design phase, engineers can pose queries to check whether undesirable

conditions may occur, either because of the interaction of individual CPS through the

physical world (such as a CPS’ vibrations affecting another CPS’ measurements be-

cause of poor insulation) or because of ramifications of events in the physical world

(e.g., earthquakes causing tsunamis in certain geographical areas). At runtime, queries

can be used to check for anomalies, which may be due to malfunctioning equipment

(such as a faulty altimeter or pressurization system in the previous example) or to vol-

untary tampering. The latter case is of particular interest in cyber security, as it allows

for information from multiple CPS to be used for cross-validation, under the hope that

an attacker will lack complete knowledge of all of the CPS and of how they are arranged

in the physical world and of the layout and properties of their physical locations (e.g.,

thickness, material, and location of any surrounding walls).

4 Case Study

To demonstrate our approach, let us consider a simple

example: suppose that in a room, there is a personal com-

puter (PC) with fan that rotates when the computer is on,

and a microphone, located 3 meters away from the com-

puter and independent from it (i.e. it is used for an en-

tirely different reason, such as part of the landline tele-

phone4). Both the computer and the fan are part of the

same physical environment depicted in Figure 1. Our goal

is to use knowledge about the CPS and about the

properties of the environment to reason about possi-

ble links between noises picked up by the microphone and the on/off state of the com-

puter. For example, assuming that the room is otherwise empty, is it possible that the

computer is off and yet the microphone detects a noise? To answer questions of this

kind in a systematic manner, one needs to have a suitable, uniform representation of

CPS and environment, and a way to reason about the evolution of the domain and about

how it relates to the query.

Next, we describe how we model the computer and the fan in AADL, discuss the

translation process to ASP, the encoding of the physical world in ASP, and end by

demonstrating how non-trivial queries about the scenario can be answered.

AADL Model of PC and Microphone

In the following, we describe features and behaviors that we are interested in cap-

turing, give their formal AADL representation and then show the translation to ASP.

Modeling a (cyber-physical) system: A computer, from a high level perspective, is

a (cyber-physical) system that has inputs (or “features” in AADL terminology), differ-

ent states of operation (or “modes” in AADL terminology), and properties. A system is

defined by the AADL construct:

 system computer

 features, modes, and properties are specified here

 end computer;

Our translation procedure maps this to an ASP fact:

system(computer).

which intuitively states that “computer” is a system.

Modeling the inputs: Next, we capture the effect of switching the power button on

and off. In AADL this can be encoded by means of event signals carried by event ports.

A turnOnEvent signal is assumed to mean that the power button has been switched

4 An actual example is a smart night lamp that integrates various sensors, including a microphone:

http://www.pocketables.com/2015/04/leeo-smart-alert-nightlight-review.html.

Figure 1. A room containing a com-

puter and a microphone

Room

to on. Similarly, when the power button is switched to off, a turnOffEvent signal

is generated5. Thus, we list two corresponding event ports in the description of features.

 features

 turnOnEvent: in event port;

 turnOffEvent: in event port;

Our translator procedure maps this information to the ASP facts:

feature(computer, turnonevent).

eventPortFeature(turnonevent).

featureDirection(turnonevent, in).

% similarly we translate the turnOffEvent feature

The first two lines indicate that the turnOnEvent is an event port, whereas the

third line describes its direction.

Modeling modes: The on/off state of the computer is captured by specifying two

corresponding modes and the initial state of the system (set to off):

 modes

 off: initial mode;

 on: mode;

Our translator procedure maps this information to ASP facts:

mode(computer, off).

mode(computer, on).

holds(currentMode(computer, off), 0).

The first two lines define the modes; the last line defines the initial mode. This in-

formation is encoded by introducing a fluent currentMode, which specifies the

current mode of a system, and by saying that the current mode at step 0 is off.

Modeling mode-transitions: a system’s behavior over time is represented in AADL

by mode transitions. In our case, we are interested in capturing the following mode

transitions: if a turnOnEvent signal is received while the PC is off, then the PC’s

current mode becomes on. Similarly, when turnOffEvent received while the com-

puter is on, the PC’s current mode changes to off.

 modes

 off: initial mode;

 on: mode;

 off -[turnOnEvent]-> on;

 on -[turnOffEvent]-> off;

Mode transitions can be naturally rendered by means of dynamic laws, e.g.:

holds(currentMode(computer, on), S+1) :-

 holds(currentMode(computer, off), S),

 occurs(eventPortSignal(turnonevent), S),

 step(S).

The first line specifies that the mode at step S+1 is off if a turnOnEvent occurs, at step S,

while the computer is in the on mode. The encoding of the semantics of modes is com-

pleted by a state constraint stating that a device can only be in one mode at any time:

5 There are multiple ways to represent the functionality of a switch. The one chosen here allows

us to show important AADL concepts.

-holds(currentMode(SYSTEM, MODE1), S) :-

 holds(currentMode(SYSTEM, MODE2), S),

 MODE1 != MODE2,

 mode(SYSTEM, MODE1), mode(SYSTEM, MODE2),

 system(SYSTEM), step(S).

Modeling mode-specific properties: AADL allows for the value of a property to

depend on the current mode. In our example, such mode properties are:

─ The fan rotational speed is 0RPM when the computer is off, or 150RPM

when the computer is on.

─ The fan sound is 42dB when the computer is on and 0dB when it is off6.

─ The input voltage is 12V and intensity 0.08A when the computer is on, and

0 when it is off.

properties

 fan_rpm => 150.0 RPM in modes (on);

 fan_rpm => 0.0 RPM in modes (off);

 fan_sound => 42.0 dB in modes (on);

 fan_sound => 0.0 dB in modes (off);

 fan_input_voltage => 12.0 V in modes (on);

 fan_input_intensity => 0.08 A in modes (on);

 fan_input_voltage => 0.0 V in modes (off);

 fan_input_intensity => 0.0 A in modes (off);

The dependencies between modes and properties can be naturally encoded as state

constraints. For example, property fan_rpm can be formalized by the rules:

holds(property(computer, fan_rpm, 150), S) :-

holds(currentMode(computer, on), S), step(S).

holds(property(computer, fan_rpm, 0), S) :-

holds(currentMode(computer, off), S), step(S).

The representation uses another general fluent, property(o,p,v), which states that

object o’s property p has value v. Specifically, the first statement says that the fan ro-

tates at 150 rpm when the computer is on, whereas the second statement states that

there is no fan rotation when the computer is off.

Modeling computed properties: A computed property is a property whose value is

calculated at run-time based on some arithmetic expression, typically based on the in-

puts and properties of the system. For demonstration purposes, we model the power

consumption of the fan as a property whose value depends on intensity and voltage:

properties
 fan_power => compute(power_expression);

 power_expression => "%fan_input_voltage% *

%fan_input_intensity%";

The definition of AADL does not include a specification of the syntax of the expres-

sion that occurs in a compute statement. Hence, we introduce a custom notation in

which the argument of the compute statement is the name of an arithmetic expression,

and the expression itself uses literals surrounded by “%” to denote names of properties.

6 It is indeed possible to calculate the fan sound from the rotation speed and other physical prop-

erties, but we adopt this simpler representation to simplify the presentation.

Once again, a computed property can naturally be represented using a state constraint.

In the ASP encoding, we use an auxiliary relation computed_value for the calculation

of the value of the expression:

holds(property(computer, fan_power, X), S) :-

computed_value(power_expression, X, S),

step(S).

computed_value(power_expression, X0 * X1, S) :-

holds(property(computer,fan_input_voltage, X0),S),

holds(property(computer,fan_input_intensity,X1),S),

step(S).

The value of the property is computed as the product of the voltage and intensity at

a given step S. While this formalization approach works well for simple models, it is

likely that efficient computation in the presence of more complex models will require

the adoption of more advanced techniques for numerical computations, such as Con-

straint Answer Set Programming (Balduccini M. , July 2009).

The microphone is modeled using the same methodology. The microphone takes as

an input the sound in the environment, represented as a data signal sound_in and pro-

duces a boolean output indicating whether there is noise in the room. Assuming that the

sound levels the microphone can perceive are between 0 and 155dB, the connection

between input and output can be modeled by the expression 𝑜𝑢𝑡𝑝𝑢𝑡 =
𝑖𝑛𝑝𝑢𝑡+145

150
, where

the line indicates integer division. The expression will yield 0 if the sound is less than

5dB, and 1 if the sound is above 5dB. The corresponding AADL model uses a computed

property.

 device microphone

 features

 sound_in: in data;

 properties

 mic_sound_out => compute(expression);

 expression => "(%features::sound_in% + 145)/150";

end microphone;

The ASP encoding is similar to the one shown above.

Representation of the Physical World

In our approach, the physical world is modeled directly as a dynamic domain using

techniques from reasoning about actions and change. For this case study, we focus on

modeling the propagation of sound in the room.

It is important to recall that our ultimate goal is to be able to identify correlations in

a collection of CPS even when they were not explicitly considered by the designers of

the CPS. Our conjecture is that this can be accomplished by providing a sufficiently

general model of the physical environment, and establishing proper links between the

properties of the CPS and physical properties.

To keep the environmental model general, we rely on a set of input relations that

specify general classes of objects and properties, of which the elements of the CPS are

specific instances. Input relations used in our case study specify that computer is a

sound source, and that the property of the model of the computer that specifies the

sound (level) it emittes is fan_sound:

soundSource(computer).

soundPropertyOf(computer, fan_sound).

Next is the formalization of the phenomenon of sound propagation. The encoding

uses a relation of the form distance_between(OBJ1, OBJ2, DISTANCE_UNITS) to

specify the distance between two objects. For example, if the distance between the com-

puter and the microphone is 3 units, we write:
distance_between(computer, microphone, 3).

distance_between(X,Y,DIST) :- distance_between(Y,X,DIST).

Next, we formalize the sound propagation in the environment by using the Inverse

Square Law to describe that sound power drops in intensity with the square of the prop-

agated distance:

𝑃(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) =
𝑃𝑖𝑛𝑖𝑡

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒2

We use this law to determine how the sound from each individual source propagates

over distance. This is represented by fluent sound_level(SOURCE, DISTANCE,

SOUND_POWER) where the distance is relative to the sound source. The corresponding

sound level is determined by the state constraint:

holds(sound_level(SOURCE, DISTANCE, SOUND_LEVEL / (DISTANCE *

DISTANCE)), S) :-

 holds(property(SOURCE, SOUND_PROP, SOUND_LEVEL), S),

 soundSource(SOURCE),

 soundPropertyOf(SOURCE, SOUND_PROP),

 distance(DISTANCE),

 step(S).

Note how the state constraint is parametrized to the properties used in the model of

the sound source. Next, we calculate the total sound present at a location in the envi-

ronment as the sum of the contributions of the individual sound sources. This notion is

captured by fluent sound_level_at(DESTINATION, SUM) and defined by another state

constraint.

holds(sound_level_at(DESTINATION, SUM), S) :-

 distance_between(DESTINATION, SOURCE2, D2),

 soundSource(SOURCE),

 D2>0,

 holds(sound_level(SOURCE2, D2, V2), S),

 step(S),

 SUM = #sum{

 VALUE: holds(sound_level(SOURCE, DISTANCE, VALUE),S),

 distance_between(DESTINATION, SOURCE, DISTANCE),

 soundSource(SOURCE)

 }.

Lastly, we encode the persistency of currentMode over time, by defining it as a flu-

ent (lines 1-3) and by including the inertia axioms, which capture the inertial behavior

of fluents (only the one for holds(F, S+1) is shown to save space):

fluent(currentMode(SYSTEM, MODE) :-

 system(SYSTEM), mode(MODE, SYSTEM).

holds(F, S+1) :-

 fluent(F), step(S),

 holds(F, S), not -holds(F, S+1).

Representing and Answering Queries

Recall that our goal is to enable the cross-validation of the behavior of a set of CPS

by leveraging the implicit links established by the physical environment in which they

coexist. In this context, queries are sets of observations about the history of the domain,

of which one wants to determine the plausibility. The query-answering mechanism fol-

lows the lines of the diagnostic reasoning approach from (Gelfond M. B., Jul. 2003),

and relies on the idea of checking whether the transition diagram defined by the model

of the domain (CPS and physical world) contains a trajectory that is compatible with

the given observations. The reasoning task is encoded by the general-purpose axioms:

holds(F,0) :- obs(F,t,0).

-holds(F,0) :- obs(F,f,0).

occurs(A,S) :- hpd(A,S).

 % Reality Check Axioms

:- obs(F,f,S), not -holds(F,S).

:- obs(F,t,S), not holds(F,S).

An atom of the form obs(F,t,S) states that fluent F was observed to be true at step

S (false in the case of obs(F,f,S)) and hpd(A,S) says that action A was observed to

occur at S. Above, the first 2 rules say that any fluent observed to be true at step 0

must be taken to be true in the initial state of any trajectory considered (similarly for

observations about fluents that are false). The third rule states that any action observed

to occur must be accounted for in the trajectory. Finally, the Reality Check Axioms state

that any prediction made about the evolution of the system must match the observations

provided. We refer the reader to (Gelfond M. B., Jul. 2003) for more details on the

rationale of these axioms.

The final step is to provide the queries. For our case study, we consider four queries,

which are simple but require non-trivial reasoning about the connections among CPS

and environment.

1) Can the computer be off at step 0 and the microphone hear a sound at step 1?

obs(property(microphone, mic_sound_out, 1), t, 1).

Note that there is no need to provide an observation about the computer being on at

step 0, since that is the initial state of the CPS. It is not difficult to see that the program

consisting of the observation together with all of the rules shown above is inconsistent,

which indicates that it is not plausible for the computer to be off and for the microphone

to hear a sound. Intuitively, the inconsistency of the program results from the fact that,

if the computer is off, the computer’s model predicts that the fan will generate no sound.

In turn, the physical model predicts that the sound level at the location of the micro-

phone will be 0. Finally, the model of the microphone predicts that the boolean output

of the microphone is 0, which, by virtue of the Reality Check Axioms, contradicts the

observation provided.

2) Can the computer be turned on at step 1 and the microphone hear a sound at

step 2?
hpd(eventPortSignal(turnonevent), 0).

obs(property(microphone, mic_sound_out, 1), t, 2).

In this case the ASP program is consistent: since the computer is turned on at step 1,

the computer’s model predicts its current mode to be on at step 2. With reasoning sim-

ilar to the one carried out for the first query, it is not difficult to predict that the boolean

output of the microphone at step 2 will be 1, which matches the observation provided.

3) Is it possible that the system is switched on at step 1, the microphone hears a

noise at step 2 and the microphone is 6 units away from the computer?

This query can be encoded by replacing the fact about the distance between the two

CPS by with the fact distance_between(computer, microphone, 6). Additionally,

we provide the observations:

hpd(eventPortSignal(turnonevent), 1).

obs(property(microphone, mic_sound_out, 1), t, 2).

In this case, the program is inconsistent, indicating the implausibility of the obser-

vations. This is due to the fact that the microphone is too far from the computer.

4) Can the computer be switched on at step 1, off at step 2 and the microphone

hear a sound at step 3?

hpd(eventPortSignal(turnonevent), 0).

hpd(eventPortSignal(turnoffevent), 1).

obs(property(microphone, mic_sound_out, 1), t, 2).

This query can be answered by carrying out reasoning similar to the one of the first

query. The program is inconsistent, which indicates the implausibility of the observa-

tions. The challenge here is that the formalization must be capable of dealing with the

effects of multiple changes of mode of the computer due to the two subsequent actions.

The key to making this possible is the use of a principled formalization based on action

languages.

5 Tool

To test our approach and to make it accessible to engineers, we have implemented a

tool that automates the above processes by (1) automatically translating AADL models

to ASP, (2) allowing the user to provide a physical model, and (3) checking the plausi-

bility of the queries provided. The tool has been developed as a plugin for the AADL

tool environment, OSATE. OSATE, which is itself a component of the Eclipse Inte-

grated Development Environment, provides engineers with access to AADL model

analysis tools, such as fault impact analysis, fault tree analysis, and functional hazard

assessment. The tool relies on OSATE’s ability to parse AADL models and to extract

information from them.

The interaction with the tool follows the workflow shown in Figure 2. First, the user

needs to save the AADL models in AAXL format (an XML encoding of AADL). The tool

parses the AAXL files using the functions provided by OSATE, and translates it to ASP

as shown in the previous sections. At this point, the tool presents a window (Figure 4),

allowing the user to view or change the ASP representation of the model. The applica-

tion also allows the user to provide the model of the environment and the query by

filling in the designated text areas.

When the user request the execution

of the query, the system uses the

clingo-4.4 solver to check whether

the corresponding ASP program is

consistent and displays the output

of the computation in a new win-

dow (Figure 3). The window shows

one answer set if the program is

consistent, and otherwise states that

the program is inconsistent.

Figure 2. A step-by-step interaction with the tool,

from a user’s standpoint

Figure 4. Pop-up showing the automatic translation of the
AADL models

Figure 3. Showing the answer set to the query

6 Conclusions

This paper presented a method for modeling, and reasoning about, the interactions

of situated CPS that relies on creating a uniform model of the CPS involved and of the

physical environment they are in. To the best of our knowledge, this is not possible

with the state-of-the-art techniques used by the CPS community. Our approach enables

the cross-validation of the behavior of a set of CPS by leveraging the implicit links

established by the physical environment in which they coexist. As we discussed, this

ability is fundamental to ensure robustness, resiliency, and security of SCSs.

The approach relies on modeling the corresponding systems by means of action lan-

guages and ASP. Answering queries about the interactions is reduced to checking for

the consistency of a suitable ASP program. A graphical tool was also developed, which

integrates in a state-of-the-art CPS design tool and automates the use of our technique.

Acknowledgments. We would like to thank Matthew Barry for introducing us to the

Architecture Analysis and Design Language and for useful discussions on possible

links with Answer Set Programming.

References

Balduccini, M. (July 2009). Representing Constraint Satisfaction Problems in Answer

Set Programming. ICLP09 Workshop on Answer Set Programming and Other

Computing Paradigms (ASPOCP09), 15.
Balduccini, M., Gelfond, M., & Nogueira, M. (2000). A-Prolog as a tool for declarative

programming. Proceedings of the 12th International Conference on Software

Engineering and Knowledge Engineering (SEKE'2000).

Chen, L., Nugent, C., Mulvenna, M., Finlay, D., & Hong, X. (2008). Using Event

Calculus for Behaviour Reasoning and Assistance in a Smart Home. 6th

International Conference On Smart Homes and Health Telematics.

Gelfond, M. B. (Jul. 2003). Diagnostic reasoning with A-Prolog. Journal of Theory and

Practice of Logic Programming (TPLP), 42.

Gelfond, M., & Lifschitz. (1998). Action Languages.

Gelfond, M., & Lifschitz, V. (1991). Classical Negation in Logic Programs and

Disjunctive Databases.

Niemela, I., & Simons, P. (2000). Logic-Based Artificial Intelligence. Kluwer

Academic Publisher.

SAE, I. (2012). Standard AS5506B: Architecture Analysis & Design Language

(AADL). Retrieved from http://standards.sae.org/as5506b/

Shiraishi, S. (2010). An AADL-Based Approach to Variability Modeling of

Automotive Control Systems. Conference: Model Driven Engineering

Languages and Systems - 13th International Conference, 4.

Tan, Y., Vuran, M., Goddard, S., Yue, Y., Song, M., & Ren, S. (Apr. 2010). A Concept

Lattice-based Event Model for Cyber-Physical Systems. 1st International

Conference on Cyber-Physical Systems, 7-10.

