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Abstract. The study of actual causation concerns reasoning about events
that have been instrumental in bringing about a particular outcome. Al-
though the subject has long been studied in a number of fields including
artificial intelligence, existing approaches have not yet reached the point
where their results can be directly applied to explain causation in certain
advanced scenarios, such as pin-pointing causes and responsibilities for
the behavior of a complex cyber-physical system. We believe that this
is due, at least in part, to a lack of distinction between the laws that
govern individual states of the world and events whose occurrence cause
state to evolve. In this paper, we present a novel approach to reasoning
about actual causation that leverages techniques from Reasoning about
Actions and Change to identify detailed causal explanations for how an
outcome of interest came to be. We also present an implementation of
the approach that leverages Answer Set Programming.

Keywords: Causal Reasoning · Reasoning about Actions and Change ·
Knowledge Representation and Reasoning.

1 Introduction

Actual causation concerns determining how a specified outcome came to be in a
given scenario and has long been studied in numerous fields including law, philos-
ophy, and, more recently, computer science and artificial intelligence (AI). Also
referred to as causation in fact, actual causation is a broad term that encom-
passes all possible antecedents that have played a meaningful role in producing a
consequence [8]. Sophisticated actual causal reasoning has long been prevalent in
human society and continues to have an undeniable impact on the advancement
of science, technology, medicine, and other important fields. From the develop-
ment of ancient tools to modern root cause analysis in business and industry,
reasoning about causal influence over time in a sequence of events enables us to
diagnose the cause of an outcome of interest and gives us insight into how to
bring about, or even prevent, similar outcomes in future scenarios.
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The ability to automate this kind of reasoning will likely become even more
important in the near future due to the ongoing advancement of deep learning.
Indeed, entrusting important decisions to black-box machine learning algorithms
brings with it significant societal risks. To counter these risks, there is a need
for Artificial Intelligence systems that are able to explain their behavior in an
intuitive way. This is recognized within the scientific community, as witnessed by
the emergence of the explainable AI domain, and also by the measures enacted
by policy makers. For instance, the General Data Protection Regulation (GDPR)
has recently come into force in the European Union, a requirement of which is
that companies must be able to provide their customers with explanations of
algorithmic decisions that affect them.

Explaining the conclusions reached by a single neural network may perhaps
not require sophisticated causal reasoning. However, if we consider the behavior
of an advanced cyber-physical system, such as a self-driving car, reasoning about
causation (e.g. blame or praise) becomes significantly more complex – the car
typically contains a large number of software and hardware modules (possibly
from different vendors), there may be other cars and pedestrians involved in
the scenario of interest, and there may have been wireless communication with
other vehicles or a central server, all of which may influence the actions taken
by the car’s control module over the course of its drive. To reach an intuitively
satisfactory explanation of why some outcome of interest came to be in such
a domain, the insights that have been produced by the decades-long study of
actual causation seem indispensable.

Modern work on actual causation originated in philosophy with the seminal
paper by Lewis [29]. His work, like that of other philosophers following him, was
of course mainly theoretical and not intended to be put to practical use. The
famous Halpern-Pearl (HP) paper [24] initiated interest in this concept within
the field of AI and it constitutes a first milestone on the way towards applications
of the concept of actual causation. However, neither the HP paper nor the many
that have followed it (see also Section 6) have yet reached the point where their
results could be directly applied, for example, in the context of a self-driving
car as sketched above. We believe that this is due, at least in part, to a lack
of distinction between the laws that govern individual states of the world and
events whose occurrence cause state to evolve.

The goal of this work is to research and investigate the suitability of tech-
niques from Reasoning about Actions and Change (RAC) for reasoning about
and explaining actual causation in domains for which the evolution of the state
of the world over time plays a critical role. We utilize the action language AL
[2] to define the constructs of our theoretical framework. While our framework is
not strongly tied to this choice of representation language, in this paper we adopt
AL because the language enables us to represent the direct and indirect effects
of events on the state of the world, as well as the evolution of state over time
in response to their occurrence. AL also lends itself quite naturally to an auto-
mated translation to Answer Set Programming [15,17], using which, reasoning
tasks of considerable complexity can be specified and automated.
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The organization of the paper is as follows. In the following section, we pro-
vide background for the formalization of knowledge and events. Next, we present
the technical details of the theoretical framework. Following that, we offer an ap-
proach to implementing the framework using Answer Set Programming. We then
present an empirical study of the implementation’s performance on a number of
problem instances. Next, we present a summary of related work, and finally we
draw conclusions and discuss directions for future research.

2 Preliminaries

For the representation of the domain and of its evolution over time we rely on
action language AL [2]. AL is centered around a discrete-state-based representa-
tion of the evolution of a domain in response to events. The language AL builds
upon an alphabet consisting of a set F of fluents and a set E of elementary
events4. Fluents are boolean properties of the domain, whose truth value may
change over time. A (fluent) literal is a fluent f or its negation ¬f . Additionally,
we define f = ¬f and ¬f = f . If f ∈ σ, we say that f holds in σ. A single
elementary event is denoted by its element e in E . A compound event is a set of
elementary events ε = {e1, . . . , en}. A statement of the form

e causes l0 if l1, . . . , ln (1)

is a called a dynamic (causal) law. Intuitively, a law of form (1) says that if
elementary event e5 occurs in a state where literals l1, . . . , ln hold, then literal
l0 will hold in the next state. A statement

l0 if l1, . . . , ln (2)

is called a state constraint and says that in any state in which literals l1, . . . , ln
hold, l0 also holds. We say that l0 is the consequence of the law. A statement
of form (2) allows for an elegant and concise representation of indirect effects of
events which enhances the expressive power of the language. Finally, a statement
of the form

e impossible if l1, . . . , ln (3)

is called an executability condition and states that an elementary event e
cannot occur when l1, . . . , ln hold. A set of statements of AL is called an action
description.

A set S of literals is closed under a state constraint (2) if {l1, . . . , ln} 6⊆ S
or l0 ∈ S. Set S is consistent if, for every f ∈ F , at most one of {f,¬f} is
in S. It is complete if at least one of {f,¬f} is in S. A state σ of an action

4 For convenience and compatibility with the terminology from RAC, in this paper we
use action and event as synonyms.

5 We focus on elementary actions for simplicity of presentation. It is straightforward
to expand the statements to allow non-elementary actions.
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description AD is a complete and consistent set of fluent literals closed under
the state constraints of AD.

Given an elementary event e and a state σ, the set of (direct) effects of e in σ,
denoted by E(e, σ), is the set that contains a literal l0 for every dynamic law (1)
such that {l1, . . . , ln} ⊆ σ. Given a compound event ε = {e1, . . . , en}, the set of
direct effects of ε in σ, therefore, is given by E(ε, σ) = E(e1, σ) ∪ . . . ∪E(en, σ).
Given a set S of literals and a set Z of state constraints, the set CnZ(S) of
consequences of S under Z is the smallest set of literals that contains S and is
closed under every state constraint in Z. Finally, an event e is non-executable in
a state σ if there exists an executability condition (3) such that {l1, . . . , ln} ⊆ σ.
Otherwise, the event is executable6 in σ.

The semantics of an action description AD is defined by its transition diagram
τ(AD), a directed graph 〈N,A〉 such that N is the collection of all states of AD;
A is the set of all triples 〈σ, ε, σ′〉 where σ, σ′ are states, ε is an event executable
in σ, and σ′ satisfies the successor state equation:

σ′ = CnZ(E(ε, σ) ∪ (σ ∩ σ′)) (4)

where Z is the set of all state constraints of AD.
The argument of CnZ in (4) is the union of the set of direct effects E(e, σ) for

all e ∈ ε with the set σ∩σ′ of the literals “preserved by inertia”. The application
of CnZ adds the “indirect effects” to this union. A triple 〈σ, ε, σ′〉 ∈ E is called
a transition of τ(AD) and σ′ is a successor state of σ (under ε). A sequence
〈σ1, ε1, σ2, . . . , εk, σk+1〉 is a path of τ(AD) of length k if every 〈σi, εi, σi+1〉 is a
transition in τ(AD). We denote the initial state of a path ρ by σ1.

3 Theoretical Framework

In this section we present the constructs of the causal reasoning framework and
use them to characterize causal explanations. We then apply the framework to
a variant of the well-known Yale Shooting Problem [25].

3.1 Definitions

A problem is a tuple ψ = 〈θ, ρ,AD〉 where θ is a consistent set of literals we
want to explain called an outcome and ρ is a path of τ(AD). We will leverage
the framework to identify causal explanations for a problem ψ. The first step
to explain how an outcome θ came to be in path ρ is to identify the transition
states of θ in ρ. A transition state indicates the “appearance” of θ in the ρ.

Definition 1. Given a problem ψ = 〈θ, ρ, AD〉, a state σj in ρ is a transition
state of θ if θ 6⊆ σj−1 and θ ⊆ σj.

6 Note that an event may occur without having an effect on the state of the world,
commonly referred to in the literature as a NOP action.
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We denote by T (ψ) = {σj1 , . . . , σjm} the set of transition states with respect
to the problem ψ. Intuitively, state σj is a transition state of θ if the outcome
is satisfied in σj but not in the immediately previous state σj−1. A causing
compound event εi of literal l for a transition state σj of θ is the most recent
compound event to σj to result in a transition state σi+1 in ρ.

Definition 2. Given a problem ψ = 〈θ, ρ, AD〉, a state σj in ρ, and a literal
l ∈ σj, εi is a causing compound event of l holding in σj if σi+1 is a transition
state of {l} in ρ, i < j, and j − (i+ 1) is minimal.

Both direct and indirect causes of a literal l holding in a given state σj are
members of the causing compound event εi of l holding in σj . A direct cause
e ∈ εi of l is an elementary event in εi whose occurrence causes l to hold in the
subsequent state.

Definition 3. Given a problem ψ = 〈θ, ρ, AD〉, a literal l ∈ σj of ρ, and a
causing compound event εi of l, the elementary event e′ ∈ εi is a direct cause of
l for σj if l is in the set E(e′, σi).

We denote by D(σj) the set containing a tuple 〈εi, e′, l〉 for every elementary
event e′ in each εi such that e′ is a direct cause of a literal l ∈ θ for σj . Note
that direct cause is defined so that multiple events in εi can be direct causes as
long as l is in the corresponding sets of direct effects. An indirect cause of literal
l is a subset7 of a causing compound event of l.

Definition 4. Given a problem ψ = 〈θ, ρ, AD〉, state σj in ρ, a literal l ∈ σj,
and a causing compound event εi of l, the compound event ε′ ⊆ εi is an indirect
cause of l for σj if it is a smallest subset of εi such that the following conditions
are satisfied:

1. l 6∈ E(ε′, σi)
2. There exists a transition t = 〈σi, ε′, σ′i+i〉 in τ(AD) such that σ′i+1 is a

transition state of {l} in t

We denote by I(σj) a set containing a tuple 〈εi, ε′, l〉 for every compound event
ε′ in every εi in ρ such that ε′ is a indirect cause of l for σj in ρ.

Condition 1 ensures that l is not a direct effect of ε′. Condition 2 states
that if ε′ were to hypothetically occur by itself in state σi, then it would have
caused l. In other words, we know that l does not hold in σi and that l is not
a direct effect of ε′. Therefore, if ε′ occurs by itself and l holds in the resulting
state σ′i+1, then it must be the case that l is an indirect effect of ε′. Finally,
we require that ε′ is a smallest subset of εi because we want to rule out any
subsets including extraneous elementary events. For example, if ε′ contains three
events and only two are needed to indirectly cause l, then there would indeed

7 In AL, it is possible that a set of literals must hold simultaneously in order to cause
a literal to hold. Consider AD = {a causes b; c causes d; e if b, d} of a causing
compound event εi of l.
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𝜖1= {loads(suzy, gun)}

isAlive(turkey) isAlive(turkey) ¬isAlive(turkey)
¬isLoaded(gun) isLoaded(gun) isLoaded(gun)

𝜎1 𝜎2 𝜎3
𝜖2= {shoots(suzy, turkey)}

Fig. 1. Path ρY is a representation of the Yale shooting scenario.

be transition t = 〈σi, ε′, σ′i+1〉 in τ(AD) as required by condition 2. However, we
want subsets containing only those events that have contributed to causing l.

By now we have defined direct and indirect causation of literals, however,
these definitions alone do not provide a comprehensive explanation for an ap-
pearance of θ in ρ. Therefore, we define a causal explanation, which is a tuple
containing the sets of direct and indirect causes of literals in θ in their respective
transition state, given by D(σj) and I(σj).

Definition 5. Given a problem ψ = 〈θ, ρ, AD〉, a path ρ ∈ τ(AD), and a tran-
sition state σj of θ in ρ, a causal explanation of θ being satisfied in σj in path ρ
is the tuple C(ψ, σj) = 〈D(σj), I(σj)〉.

Literals that were not caused by any event in ρ are omitted from the causal
explanation. This choice is motivated by the idea that no cause can be identified
for literals that were not caused.

3.2 Yale Shooting Problem

Here we use the framework defined above to solve a variant of the well-known
Yale shooting problem (YSP) from [25]. The scenario is as follows:

Shooting a turkey with a loaded gun will kill it. Suzy shoots the turkey.
What is the cause of the turkey’s death?

The YSP problem is formalized by ΨY = 〈θY , vY , ADY 〉. The outcome of
interest is θY = {¬isAlive(turkey)}. The sequence of events is given by vY =
{ε1, ε2} where ε1 = {loads(suzy, gun)} and ε2 = {shoots(suzy, turkey)}. The
action description ADY characterizes the events of the YSP domain:


shoots(X, turkey) causes ¬isAlive(turkey) if isAlive(turkey)

shoots(X, turkey) impossible if ¬isLoaded(gun)

loads(X, gun) causes isLoaded(gun) if ¬isLoaded(gun)

(5)

(6)

(7)

Laws (5) and (7) are straightforward dynamic laws describing the effects
of the events in the YSP domain. Law (6) states that the turkey cannot be
shot if the gun is not loaded. Consider the path ρY , represented in Figure 1.
In the initial state of ρY , the turkey is alive, and the turkey is dead in the
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final state of the path after the occurrence of ε1 = {loads(suzy, gun)} and
ε2 = {shoots(suzy, turkey)}.

It is straightforward to verify for the problem ψY = 〈θY , ρY , ADY 〉 that σ3
is the only transition state of θY and that ε2 is the causing compound event
of ¬isAlive(turkey). The elementary event shoots(suzy, turkey) in ε2 is a di-
rect cause of ¬isAlive(turkey) as per rule (5). The causal explanation for ΨY is
therefore C(ΨY , σ3) = 〈{〈ε2, shoots(suzy, turkey),¬isAlive(turkey)〉}, {}〉. We
have used the framework to identify only Suzy’s shooting of the turkey as a
direct cause of its death, which corresponds to the intuition about the prob-
lem. Moreover, we did not any identify indirect causes of the turkey’s death,
denoted in the explanation by the empty set for I(σ3). If we want to know why
the gun was loaded so that Suzy could kill the turkey, we use rule (6) to for-
mulate the subproblem ψ′Y = 〈{isLoaded(gun)}, ρY , ADY 〉 to determine that
loads(suzy, gun) directly caused the gun to be loaded. Appendix 2.1 of [28] of
this paper presents a novel adaptation of YSP to demonstrate explaining the
indirect causation of the turkey’s death. Note that it is straightforward to repre-
sent and reason about other examples from the causality literature, such as the
bottle-shattering example from [20].

4 ASP Implementation of the Framework

In this section, we present an approach to computing causal explanations via
Answer Set Programming (ASP) [16,18], a form of declarative programming that
is useful in knowledge-intensive applications. In the ASP methodology, problem-
solving tasks are reduced to computing answer sets of suitable logic programs.
As demonstrated by a substantial body of literature (see, e.g., [1]), AL lends
itself quite naturally to an automated translation to Answer Set Programming
[15,17], using which, reasoning tasks of considerable complexity can be specified
and executed (see, e.g., [9,11,12]). As such, ASP is well suited to the task of
computing causal explanations. We begin this section with a discussion of the
syntax and semantics of Answer Set Programming.

4.1 Answer Set Programming

Let Σ be a signature containing constant, function and predicate symbols. Terms
and atoms are formed as in first-order logic. A literal is an atom a or its strong
negation ¬a. Literals are combined to form rules that represent both domain
knowledge and events in our approach. A rule in ASP is a statement of the
form:

h← l1, . . . , lm, not lm+1, . . . , not ln

where hi’s (the head) and li’s (the body) are literals and not is the so-called
default negation. Intuitively, the meaning of default negation is the following: “if
you believe {l1, . . . , lm} and have no reason to believe {lm+1, . . . , ln}, then you
must believe h”. An ASP rule with an empty body is called a fact. In writing
facts, the ← connective is dropped. Rules of the form ⊥ ← l1, . . . ,not ln are
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abbreviated ← l1, . . . ,not ln, and called constraints, intuitively meaning that
{l1, . . . ,not ln} must not be satisfied. A rule with variables (denoted by an
uppercase initial) is interpreted as a shorthand for the set of rules obtained by
replacing the variables with all possible variable-free terms. A program Π is a
set of rules over Σ.

A consistent set S of domain literals is closed under a rule if h ∈ S whenever
{l1, . . . , lm} ⊆ S and {lm+1, . . . , ln} ∩S = ∅. Set S is an answer set of a not-free
program Π if S is the minimal set closed under its rules. The reduct, ΠS , of a
program Π w.r.t. S is obtained from Π by removing every rule containing an
expression “not l” s.t. l ∈ S and by removing every other occurrence of not l.
Finally, set S is an answer set of a program Π if S is the answer set of ΠS .

For a convenient representation of choices, in this paper we also use con-
straint literals, which are expressions of the form m{l1, l2, . . . , lk}n, where m,
n are arithmetic expressions and li’s are basic literals. A constraint literal is
satisfied w.r.t. S whenever m ≤ |{l1, . . . , lk} ∩ S| ≤ n. Constraint literals are es-
pecially useful to reason about available choices. For example, a rule 1{p, q, r}1.
intuitively states that exactly one of {p, q, r} should occur in every answer set.

4.2 Framework Implementation

We begin our approach to computing causal explanations by encoding the ele-
ments of a problem Ψ = 〈θ, ρ, AD〉.

Problem Translation. For an outcome θ, set α(θ) contains a fact outcome(l,
theta) as well as facts inOutcome(l, theta), olit(l), and inOutcome(l, olit(l)) for
every l ∈ θ. We use the olit(l) notation to denote the outcome coinciding with
the singleton {l}.

The elements of a path ρ are given by the sets α(ρ1), α(ρ2), and α(ρ3). The
set α(ρ1) contains a fact occurs(e, i) for every e ∈ εi and a fact holds(l, i) for
each literal l ∈ σi where 1 < i < k + 1. The set also contains facts event(e) and
fluent(f) for each e ∈ E and f ∈ F , respectively. Next, the set α(ρ2) contains
the facts subset(λ), where λ is a unique identifier for C, and inSubset(e, λ) for
every e ∈ C for every subset C of E . The subsets of E will be useful later to
identify indirect causation, and are included as elements of ρ because they are
specific to the path. The set α(ρ3) characterizes the transitions of ρ as sequence
of steps.

We refer to the steps of a path as concrete steps, or c-steps, to differentiate
them from hypothetical steps, which will be discussed later in connection with
indirect causes. For related reasons, we also represent the sequence of c-steps
cstep(1), cstep(2), . . . , cstep(k + 1), where k is the length of the path, by means
of the rule:

next(I1, I2)← cstep(I1), cstep(I2), I2 = I1 + 1. (8)

Finally, α(ρ3) includes the rule step(I)← cstep(I) which states that c-steps
are types of steps. The set α(ρ) = {α(ρ1)∪α(ρ2)∪α(ρ3)} represents the path ρ.



Explaining Actual Causation via Reasoning about Actions and Change 9

We translate laws of AL to ASP as follows. For dynamic laws, the transla-
tion α(e causes l0 if l1, . . . , ln) is the collection of atoms d law(d), head(d, l0),
event(d, e), prec(d, 1, l1), . . . , prec(d, n, ln), and prec(d, n+1, nil). For state con-
straints, α(l0 if l1, . . . , ln) is the collection of atoms s law(s), head(s, l0), prec(s, 1
, l1), . . . , prec(s, n, ln), and prec(s, n+1, nil). Finally, for executability conditions,
α(e impossible if l1, . . . , ln) is the collection of atoms i law(ι), event(ι, e),
prec(ι, 1, l1), . . . , prec(ι, n, ln), and prec(ι, n+ 1, nil).

The semantics of AL are captured by the rules of program Π, an approach
is adapted from [1]. The program describes the effects of dynamic laws and
state constraints and enforces executability conditions. It also defines when the
preconditions of a translated law are satisfied (i.e. prec(X,Y ) atoms from the
translation of AL laws to ASP), denoted by the predicate prech(R, I) where R
is the identifier of a translated AL law and I is a step in the ASP representation
of ρ8. Finally, Π contains rules describing inertia [26] (i.e. things usually stay as
they are) and consistency. See Appendix 1.2 of [28] for an expanded description
of Π and a full listing of its rules.

Transition and Causing Steps. The rules in set Πσj characterize a transition
state σj of θ in path ρ. We use the term transition step in accordance with our
representation of states in ρ as c-steps, a type of step.

Πσj



transitionStep(OC, J2)← step(J1), step(J2), next(J1, J2),

next(J1, J2), outcome(OC),

ocSat(OC, J2),¬ocSat(OC, J1).

¬ocSat(OC, J)← step(J), inOutcome(OC,L),

not holds(L, J).

ocSat(OC, J)← step(J),not ¬ocSat(OC, J).

(9)

(10)

(11)

Rule (9) states that J2 is a transition step of outcome OC if it is satisfied
in step J2 and not J1. (10) and (11) tell us when OC is or is not satisfied in
a given step J , respectively. Note that transition steps leverage as steps rather
than c-steps, allowing flexibility to reason about other types. The rules of Πεi

describe causing steps of a literal holding at step I.

8 We will use the predicate prech when computing both direct and indirect causes.
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Πεi



possCausingStep(I, L, J)← cstep(I), cstep(J), I < J,

transitionStep(olit(L), I + 1),

transitionStep(theta, J).

¬causingStep(I, L, J)← possCausingStep(I, L, J),

possCausingStep(I ′, L, J),

I < I ′, I ′ < J.

causingStep(I, L, J)← possCausingStep(I, L, J),

not ¬causingStep(I, L, J).

(12)

(13)

(14)

Rule (12) states that a c-step I is a possible causing step of L holding in J
if it occurs prior to c-step J , I + 1 is a transition step of outcome(olit(L)), and
J is a transition step for the main outcome theta. It is easy to see that rule (12)
corresponds to the conditions of Definition 2 for compound causing events. Rule
(13) corresponds to condition 3 of Definition 2 by stating that c-step I cannot
be a causing step of J if there is another possible causing step I ′ that closer
to J . Again we can use inequalities to determine relative position, this time for
two earlier c-steps. Finally, (14) is a straightforward rule stating that a possible
causing step I of L in c-step J is a causing step if we have no reason to believe
that it is not a causing step.

Direct and Indirect Causes. Here we present ASP translations of the defini-
tions of direct and indirect cause. The rules of ΠDθ describe when an event that
occurred at causing step I has directly caused L to hold in c-step I.

ΠDθ


directEff ect(L,E, I)← cstep(I), d law(D), event(D,E),

occurs(E, I), prec h(D, I), head(D,L).

directCause(E, I, L, J)← causingStep(I, L, J),

directEff ect(L,E, I).

(15)

(16)

Rule (15) states that L is a direct effect of event E occurring at I when all of
the preconditions of the dynamic law D are satisfied at I. Rule (16) states that
E occurring at I is a direct cause of L holding at c-step J if I is a causing step
of L in J and L is a direct effect of E as per rule (15).

Finally, the program ΠIθ contains rules used to identify indirect causation. In
the interest of space, we favor discussing the approach at a high level, presenting
only the most significant rules of the program to facilitate the presentation.
However, the full specification of ΠIθ is given in Appendix 1.3 of [28]. Given a
causing step I, we want to know if any subset of events that occurred at I caused
the literal under consideration to hold indirectly. Program ΠIθ states that an
event subset C (i.e. subset(C)) occurring at step I is a possible indirect cause of
L holding at step J if I is a causing step for L and we have no reason to believe
that the event(s) in C (i.e. all inSubset(E,C) atoms) caused L directly.
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Recall that condition 2 of Definition 4 states that if ε′ ∈ εi is an indirect
cause of l, then a transition t′ must exist in τ(AD) such that if ε′ occurring by
itself in σi results in a transition step of {l}. Given a possible indirect causing
subset C occurring at step I, we accomplish this reasoning in ASP by creating a
sequence of two hypothetical steps, given by hstep(µ(C, I)) and hstep(µ′(C, I)),
whose initial state is identical to I and testing to see if L holds after the oc-
currence of C’s events. Once C has passed the hypothetical reasoning step, we
are ready to determine indirect causation. With the use of a rule whose head
¬smallest(C,L, I) becomes true when it is proven that C is a smallest possibly
indirectly causing subset, the following rule describes when a subset C is an
actual cause:

indirectCause(C, I, L, J)← hypotheticalPass(C, I, L, J), (17)

not ¬smallest(C,L, I).

In short, C occurring at c-step I is an indirect cause of L holding at c-step
J if C passes the hypothetical step and there is no reason to believe that it
is not a smallest possible causing subset of L at I. Note that this implemen-
tation returns information about direct and indirect causes of literals of trans-
lated θ, but no comprehensive causal explanation. A causal explanation can be
easily extracted from an answer set through the literals formed by relations
directCause(E, I, L, J) and indirectCause(C, I, L, J). See appendices 2.2 and
2.3 [28] for ASP encodings of the direct and indirect Yale Shooting Problem
adaptations from Section 3.

5 Empirical Study of the Implementation

Although an exhaustive experimental evaluation is beyond the scope of this
paper, we present results from a preliminary evaluation aiming to assess the
feasibility of the approach. To the best of our knowledge, there is no established
set of benchmarks for the type of reasoning presented in this paper and so we
have generated a set of novel problem instances that allow us to evaluate the
framework’s performance with respect to a number of problem features.

Problem instances are defined as follows. Given a number of literals L to
explain and an allowed number of events per step EPS, the resulting problem
instance’s outcome contains L literals caused by E events distributed over S =
dLE e steps of the instance’s path. The transition step of the outcome is always
S + 1. When S = 1, we say that the causes are fully concurrent. When S = L,
on the other hand, we say that the causes occur in a strict sequence. We use the
abbreviations FCDC and FCIC to denote full concurrency for direct causation
and indirect causation, respectively. Similarly, we use SSDC and SSIC to denote
strict sequences for direct and indirect causation.

Explaining cases of full concurrency and strict sequences. We first com-
pared runtime needed to compute full concurrency and strict sequences for direct
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Fig. 2. Relating the explanation of literals and time (direct and indirect causation).

and indirect causes. In this experiment, we varied L from 1 to 10, allowed 10
events per step (EPS) for the fully concurrent cases, and allowed 1 event per
step for the strict sequence cases.

The computation times are shown in Figure 2. FCIC is the most challenging
type of problem, taking approximately 300 seconds to compute 10 simultaneous
indirect causes, overtaking computation of the other cases by a factor 9 of ap-
proximately 450. This can be explained by noticing that increasing the number
of events occurring in a single step requires the program to perform exhaus-
tive hypothetical reasoning for more and more subsets. Note that at 10 literals
to explain there is little discernible difference in the time needed to compute
explanations for SSDC, FCDC, and SSIC cases.

We also measured the framework’s performance on greater values of L (i.e.
larger outcomes). At 50 literals to explain, we found that SSIC overtakes both
FCDC and SSDC by a factor of 240, with SSIC taking approximately 190 sec-
onds and SSDC taking approximately 0.8 seconds (see Appendix 3 Figure 2 of
[28]). A possible explanation for this is that that the program must initially rule
out the possibility that a subset is a direct cause and then perform the hypo-
thetical step to confirm indirect causation.

Extending fully concurrent causes towards a strict sequence. Note that
in the previous experiment, we were unable to see a significant difference in
performance in direct cases for 50 literals. Here, we explore how L causes dis-
tributed over d L

EPS e steps affects the performance of the framework for a subset
of values for E between 1 and L for direct causes and indirect causes. In the
direct causation case, we varied L between 1 and 50 and allowed EPS to take on

9 The strict sequence indirect cause (SSIC) case takes the second to longest time to
explain 10 literals at 0.67 seconds.
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Fig. 3. Varying the number of events per step (EPS) for direct causes.

the values between 1 and 50. The times for this experiment are shown in Figure
3. SSDC, or EPS = 1, is the most challenging problem, overtaking EPS = 2
by a factor10 of approximately 6.25. This can be explained by the fact that the
program has to reason backward over the path to identify the causing event for
all 50 literals in the outcome. In the FCIC case, the program only reasons back
over one step for each literal. For the remaining values of EPS > 2, explaining
50 literals takes less than 0.25 seconds to compute.

In the case of indirect causation, we varied both L and EPS between 1 and
10. As we saw in Figure 2, FCIC for 10 indirect causes takes approximately
300 seconds to compute (see Appendix 3 Figure 3 of [28]). We observed that
FCIC overtakes the second longest computation by a factor of approximately
2.6. While the computation time is large for EPS = 8, 9, 10, Figure 3 shows lit-
tle difference in performance for smaller values of EPS. In order to gain insight
into the relationships among times to compute explanations for smaller values
of EPS, Figure 4 in Appendix 3 of [28] shows the performance for EPS ≤ 9,
showing that explaining 10 literals that were caused over d10/9e = 2 steps takes
approximately 100 seconds, overtaking EPS = 8 by a factor of 5. For smaller
values of EPS, the time is at most 5 seconds.

Overall Considerations. A comprehensive evaluation is needed before general
claims can be made, but we believe these experiments show that the approach is
promising. As we have already stated, the most challenging problem appears to
be fully concurrent indirect causes due to an increasing number of event subsets
to reason about for each literal that must be explained. However, when the value
of EPS is closer to 1 for the indirect case, the literals can be explained in under

10 The SSDC case takes the second longest time to explain 50 literals at approximately
0.4 seconds
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5 seconds. The best performance is seen for larger values of EPS nearing L
for direct causation, requiring on average less than half a second to explain 50
directly caused literals.

6 Overview of Related Work

Attempts to mathematically characterize actual causation have largely pursued
counterfactual analysis of structural equations [22,24,31,35], neuron diagrams
[21], and other logical formalisms [5,27]. Counterfactual accounts of actual cau-
sation are typically inspired by the human intuition that if X caused Y , then not
Y if not X [29]. It has been widely documented, however, that the counterfactual
criteria alone is problematic and fails to recognize causation in a number of com-
mon cases such as overdetermination, preemption, and joint causation [10,19,30].
In cases of overdetermination, for example, removing one of the multiple suffi-
cient causes from the scenario will not prevent the outcome from occurring.
Therefore, if X and Y are both sufficient to cause Z, the counterfactual defini-
tion of cause may not identify X or Y as an actual cause because removing one
or the other will not prevent Z. Similarly, it is straightforward to verify that the
counterfactual approach may fail to identify causation in cases of preemption
and joint causation.

More recent approaches such as [27,23,34] have addressed some of the short-
comings associated with the counterfacual criterion by modifying the existing
definitions of actual cause or by modeling change over time with some improved
results. However, there is still no widely agreed upon counterfactual definition
of actual cause in spite of a considerably large body of work aiming to find one.
This suggests that alternate approaches should be explored to explain why an
outcome of interest has come to be in a scenario.

In [4], the authors depart from the counterfactual approach, using a similar
insight to our own that actual causation can be determined by inspecting a
specific scenario rather than hypothesizing strictly about counterfactual worlds.
Although the conceptual approach is similar, the technical approaches differ
significantly. Leveraging the Situation Calculus (SC) to formalize knowledge,
the approach identifies a sequence of event(s) that caused an SC formula φ
to become true in a scenario. Our framework is capable of explaining a set of
causal explanations for an outcome identifying not only causing events (or a
sequence of events using multiple problems on the same path), but details about
how each event influenced the outcome. There are also ramifications due to the
choices for the formalization of the domain. Compared to AL formalizations, SC
formalizations incur limitations when it comes to the representations of indirect
effects of actions, which play an important role in our work, and the elaboration
tolerance of the formalization. Additionally, SC relies on First-Order Logic, while
AL features an independent and arguably simpler semantics.

A number of other interesting approaches exist linking causality and logic
programming (LP) with varying goals (e.g. encoding the HP approach for LP
[3,6], explaining answer sets of ASP programs [7,33], reasoning about causal



Explaining Actual Causation via Reasoning about Actions and Change 15

information [14,13,32]). Research relating these topics is steadily advancing,
prompting interdisciplinary discussion and exploration of the role and place-
ment of causal reasoning and LP in the landscape of modern computer theory
and the software industry.

7 Conclusions and Future Work

The aim of the work presented here is to lay the foundations of actual causal ex-
planation from a representation and reasoning standpoint, leveraging techniques
from Reasoning about Actions and Change to represent scenarios and identify
actual causal explanations for an outcome of interest. We believe that we have
demonstrated that our approach to representing and reasoning about actual cau-
sation is promising and practically feasible. In addition to further evaluating the
implementation, an important next step will be to conduct a comparative anal-
ysis with related approaches to reasoning about actual causation. Another open
problem is to investigate extensions of the framework to support the represen-
tation of time-delayed effects, probabilities, and triggered events.
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