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Abstract. This paper is part of a project aimed at leveraging neuro-
symbolic architectures to achieve a sophisticated interaction between hu-
manoid robots and individuals with cognitive impairments. In our archi-
tecture, a symbolic reasoning module based on Answer Set Programming
creates a sequence of appropriate activities and monitors their execution
in real-time. Large Language Models (LLMs) are used to enhance the
user experience in various ways. Among those, in this paper we inves-
tigate methods for using LLMs to rewording text produced by the rea-
soning component, while keeping length and vocabulary level consistent
with the original text. The study explores the effectiveness of metrics
such as length and frequency of use, in comparing the vocabulary level
of the input with that of the output. We present a comparative analy-
sis of free or moderately priced LLMs, such as GPT-3.5, Google Gemini
Pro, and Claude 3 Opus. A continuous validation process is also intro-
duced, utilizing a critic that evaluates the appropriateness of the gen-
erated output at run-time. The findings indicate that while LLMs can
often produce outputs with a vocabulary level comparable to the inputs,
although there are areas needing improvement, particularly in handling
specific domain knowledge or less common phrases. This research con-
tributes to the exploration of novel neuro-symbolic architectures and to
the practical application of LLMs in contexts where controlled language
use is essential for effective communication.

Keywords: Large Language Models · Neuro-Symbolic Robot Archi-
tectures · Knowledge Representation.

1 Introduction

Humanoid robots employed in healthcare represent a diverse and rapidly evolv-
ing research field that encompasses various areas of investigation, for example to
support people with communication disabilities as described in [5]. For instance,
studies have explored the use of AI-enabled devices in providing companion-
ship and social interaction for seniors, as highlighted in [2], underscoring the
potential of humanoid robots to address social isolation and promote well-being
among elderly populations. Moreover, recent research [3, 6] highlighted how AI
can subtly guide individuals towards specific choices with more effective nudging
capabilities than humans, suggesting that an automated assistant might be a
useful tool for guiding patients towards healthier behaviors.
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This paper is part of a project stemming from a partnership with Bancroft
(https://bancroft.org), a non-profit organization dedicated to helping individ-
uals with autism, intellectual and developmental disabilities, brain injury, and
neurological conditions. A challenge faced by service providers like Bancroft is
that direct care facility staff may become overwhelmed with routine tasks, lead-
ing to low job satisfaction and retention, and hindering their performance in
higher-level duties and communication with clinical staff. High turnover exacer-
bates these issues, as new and temporary staff lack the specific knowledge needed
for effective patient care. All of these staff issues, in the long term, cause reduced
quality of care thus impacting the quality of life of the individuals served. The
goal of the project is to research methods at the intersection of symbolic rea-
soning, machine learning, and robotics that can lead to enhancing both staff
satisfaction and resident care.

The project augments Iggy, a Pepper humanoid robot [9], with a neuro-
symbolic architecture, called IR4D1, which combines the powerful knowledge
representation and reasoning capabilities of Answer Set Programming (ASP) [4]
with Large Language Models (LLMs).

Given information on a group of patients, the reasoning module builds a
sequence of appropriate activities and monitors their execution, making real-
time adjustments based on user responses. Whenever a menu is presented on
the robot’s display, the reasoning module generates text that is read out by the
robot to introduce the menu. This is done not only for a more natural interaction
but also because some of the patients have minimal or no reading skills. Given
that the robot controlled by the architecture interacts with individuals with
potentially impaired cognitive skills, the text produced by the symbolic reasoning
component is based on fragments that are carefully crafted by psychologists in
order to ensure that the vocabulary level is suitable for the audience.

Depending on the circumstances, the same menu may be displayed multiple
times in a row. In order to make the interaction more engaging for the audience
and in order to make the robot sound more natural, the robot automatically
produces variations of the text generated by the symbolic reasoning component.
While LLM are a natural choice for generating these variations, the variations
must still match the audience’s capabilities, and in particular their (receptive)
vocabulary level.

In this paper, we present an initial evaluation of methods for controlling the
vocabulary level of the text produced by LLMs in rewording tasks, with a specific
attention to the use with individuals with cognitive impairment. We begin by
considering different kinds of metrics normally associated with the vocabulary
level of text, and then evaluate the use of a continuous validation process, in
which the output produced by the LLM is vetted at runtime by a critic that
determines if the output is acceptable. Due to considerations on practical use, in
this paper we focus our evaluation on LLMs that are either free or moderately
priced, but also of sufficient power and ease of use, i.e. GPT 3.5, Google Gemini

1 IR4D stands for Intelligent Robotics for Disabilities



IDD: The Role of LLMs in Communication 3

Pro, and Claude 3 Opus. In a later phase of the study, we will evaluate more
powerful versions of these as well as self-hosted LLMs.

The paper is organized as follows. We begin with a discussion on methods
of measuring the vocabulary of text and clarify the research questions that our
analysis aims at answering. The following sections analyze metrics of progres-
sively increasing sophistication. We conclude the paper with final considerations
and a discussion on future work.

2 Measuring the Vocabulary Level of Text

Typically, the evaluation of the vocabulary level of text takes into account met-
rics such as length, frequency of use, morphological complexity and semantic
complexity, as discussed, e.g., in [1, 7, 8]. Length refers to the number of charac-
ters, words, and syllables in the text, as it is conceivable that longer text might
require stronger cognitive efforts. Frequency of use refers to how often words are
used in everyday language. If they are less common, they might be more com-
plex and thereby more difficult to understand. Morphological complexity refers
to the complexity of a word’s internal structure and words with more complex
structures might be more difficult to understand. Lastly, semantic complexity
refers to the number of meanings or senses a word has. If a word has multi-
ple meanings, reaching the desired understanding of a word can be much more
complex. In this paper, we focus on the first two metrics, and use the following
research questions to guide the analysis:

– How capable are the LLMs of producing output that is of comparable length
to the input if instructed to do so? And how reliable is length as an indicator
of vocabulary level in the context of our application domain?

– How capable are LLMs of producing output in which frequency-of-use is
comparable to that of the input?

– Is there an algorithmic way of leveraging frequency-of-use as a way to im-
prove the vocabulary level of output text?

We conduct our analysis over a benchmark set of 10 passages that covers all
the categories of passages generated by the reasoning module during a session.
Categories are represented by a uniform number of passages in the benchmark
set. The passages are show in Figure 1.

For each input passage, we produce three output passages for each LLM.
We chose to produce multiple output passages in order to limit the impact of
statistical anomalies on our analysis.

It is important to note that some of the passages contain the names of activ-
ities that the audience can choose from using the robot’s display. Those names
are familiar to the audience. In preliminary experiments, we observed that the
LLMs have a tendency to reword the activity names, often making the activ-
ities difficult to recognize, sometimes drastically altering the semantics of the
names – for example, turning “a name that sound game” into “a name-based



4 M Lutzen, M Balduccini

Fig. 1. Benchmark set used in the analysis
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sound game”, and even rewording “an emotion recognition game” into “a mind-
reading game”. To our surprise, we were only partially successful at designing
prompts that directly prevented the LLMs from rewording the activity names,
and resorted to an algorithmic approach for preserving them. In our algorithmic
preservation approach, the activity names are replaced by strings that the LLMs
do not appear to reword, such as “X1X”. After receiving the LLM’s output, they
are then converted back to produce the final output. While in our analysis we
considered both kinds of approaches to activity name preservation, in this paper
we focus on the analysis of the passages obtained through the algorithmic preser-
vation approach. Additionally, due to space considerations, in the sections that
follow we will be providing only excerpts of some of the tables. The complete
tables can be found at https://g34r.short.gy/dataset.

3 Length-Based Metrics

Length of text is a readily-usable metric in the context of LLMs, as phrases such
as “of length comparable to the input” can be easily included in the prompt to
an LLM. In this section, we evaluate the output produced by the LLMs under
consideration when the prompt instructs the LLM to constrain the length of the
output. Specifically, we use the prompt:2

“Take what I say after the new-line character and paraphrase it. The
new text should have a similar length to the one in input as well as the
same tone and language.”

The complete list of the output passages produced by the LLMs can be found at
the link provided earlier. We provide sample output passages – specifically for
P10 – in Figure 2.

In this section, we compare the various LLMs in terms of number of charac-
ters, words, and syllables of the output w.r.t. to those of the input.

For every metric and LLM, we calculate average change (i.e., difference be-
tween input length and output length) for every passage, as well average change
across all passages. The results of the analysis on length in characters are shown
in Figure 3. The analysis of the average change, per LLM, on each input passage
shows a clear trend. GPT has the lowest average change, followed by Gemini
and then Claude, which has the highest average change. This is also the case for
the aggregate average change on all passages, which is shown in the 3 bottom
rectangles for each metric, where GPT has 0% average change, Gemini 10%, and
Claude 44%. The results from the analysis of length measured in characters is
confirmed by looking at the average change in length measured by word count
2 One might argue that more sophisticated ways of phrasing the prompt should be

considered. While that is indeed possible, we intentionally stay away from the route
of prompt engineering and focus on analyzing what LLMs are capable of producing
given a reasonably precise prompt that an average human would likely be able to
understand and act upon.
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Fig. 2. Output passages produced for passage P10
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Fig. 3. Change in length measured in characters, word count and syllables
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where the average change on all the different passages by LLM for GPT is -4%,
Gemini shows 5% average change and Claude shows 34% average change.

While length and average change in length might show how well a large lan-
guage model is able to follow directions from a prompt, our analysis highlighted
that, at least for our target population, the length of the text is not a good
indicator of the vocabulary level. Consider for instance the input text:

Before we say goodbye, I have a little surprise for you. Here are some
activities that I hope you’ll like: “a name that sound game for David",
“some dancing fun", and “a name that sound game". Pick from one of
the boxes on my screen to start an activity! ”

The output created by Claude is:

Hold your horses! Before we part ways, I’ve got a treat in store. I’ve
handpicked some cracking activities that I reckon you’ll dig: “a name
that sound game for David”, “some dancing fun”, and “a name that
sound game”. Go ahead and click on any of the boxes on your screen to
get the party started!

The vocabulary level of phrases such as “hold your horses”, “handpicked some
cracking activities” and “I reckon you’ll dig” is significantly different from “I have
a little surprise” and “I hope you’ll like”, even though the change in number of
characters (13%) and in number of words (12%) might be considered modest by
comparison.

When it comes to syllables, Figure 3 shows that the overall average change
in number of syllables resembles follows trends similar to those of the number
of characters and words. GPT has the overall smallest average change with only
2% from input to output, Gemini is second with only 10% overall average change
from input to output and Claude performed the worst with 49% overall average
change from input to output. The conclusion of this analysis thereby shows that
GPT is best at following directions in the prompt given to it specifically about
desired length in a paraphrased output whereas Gemini is slightly worse but can
still be considered acceptable as it within a 10% change. However, in many of
the 30 Claude cases in our analysis, the LLM includes part of the prompt in its
output, such as ’with the specified variables’.. It should therefore be noted that
one reason for Claude’s great positive change in length is due to the fact that
Claude tends to include part of the prompt in the output thereby increasing the
length, however this also shows how it is unable to follow directions from the
prompt.

However, the number of syllables does not appear to have a strong relation-
ship with the vocabulary level, at least for the types of passages and population
considered here. Consider one of the outputs produced by Claude for P5:

– Input: Before we say goodbye, I have a little surprise for you. Here are
some activities that I hope you’ll like: “a Frosty the Snowman sing-along”,
“a name that sound game for David”, and “a name that tune game”. Pick
from one of the boxes on my screen to start an activity!
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– Output: Before we part ways, I’ve got a special treat in store for you. Take a
look at these fun options I’ve prepared: “a Frosty the Snowman sing-along”,
“a name that sound game for David”, and “a name that tune game”. Simply
select one of the boxes displayed to embark on an exciting activity!

Here, phrases such as “part ways”, “special treat in store for you” and “em-
bark on” have a significantly different vocabulary level than “goodbye”, “little
surprise” and “to start”.

In conclusion, while the change in length between input and output can tell
us how well an LLM is at following directions related to the length of the output
– and is useful in preventing the output from being boring or wordy – it does not
help ensure that the vocabulary level of the output matches that of the input.

4 Frequency-of-Use Metric

Of the other possible options for estimating the vocabulary level of a passage,
the frequency of use (abbreviated uf in this paper) of its words appears to be a
practically viable metric. The intuition behind this metric is simple: frequency
of use refers to how often certain words are used in a corpus of text that is used
as a reference; if words are less common, it is conceivable that they are more
complex or difficult to understand.

The minimum frequency of use (abbreviated min uf) across all the words of
a passage seems particularly useful in our application domain. After all, we are
looking for text that, when spoken by the robot, can be promptly understood
by our target population. Even a single word that is outside of the receptive
vocabulary of the audience can be sufficient to prevent them from promptly
understanding the passage. It must be noted, however, that it is not sufficient to
consider the uf of individual words, as phrases, especially if idiomatic, may have
a meaning that is different from that of their constituent words and a frequency
of use that is also different from of the constituent words. Consider for example
“let the fun begin”. While the individual words of this phrase are fairly common,
the specific combination is not as frequently used as, for example “let’s have
fun.” For this reason, we adopt the following approach.

Let τ(p) denote the parse tree associated with passage p (if multiple parse
trees exist, we assume that a parse tree has been arbitrarily selected). For a node
n ∈ τ(p), let uf(n) denote the frequency of use of the text associated with n.
uf(n) is undefined if no frequency of use is available for the text.

Definition 1. A node n of τ(p) is a uf-top node if:

– uf(n) is defined, and
– uf(n′) is undefined for every ancestor n′ of n in τ(p).

We can now give the following:

Definition 2. Given a passage p:
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– The min uf of p, written min−uf(p), is

min−uf(p) =
∑

n∈τ(p)

uf(n)

– The min-uf phrase of p is the fragment of text associated with a uf-top node
of τ(p) that has minimum uf. (For simplicity, if multiple such nodes exist,
we select the first node in leftmost traversal of the parse tree.)

For the analysis that follows, the parse trees were generated using the spacy
library3 with the en_core_web_lg model. The uf of phrases has been obtained
from the absTotalMatchCount metric of the ngrams tool4 with default settings5.
ngrams uses the Google Books Ngram Dataset v3 as the source of ngram data.

At least at first sight, the min uf appears to provide meaningful a indication
of the vocabulary level of passages. For example, the phrase “on my screen”
which one might consider fairly simple to understand, has a comparatively high
min uf of 33090, while phrases such as “our prior encounter” and “infringing
on any copyrights,” which arguably belong to a higher vocabulary level, have a
comparatively low min uf of 72 and 42 respectively.

So, the question is: how capable are LLMs of producing output whose min
uf is comparable to the min uf of the input given our prompt?

To answer the question, we compared the min uf of our input and output
passages. However, one should notice that activity names deserve some attention.
In fact, it so happens that some activity names are rather infrequent in the corpus
used for the calculation of min uf, even though they are promptly understood
by the audience, causing them to have a low use frequency that may bias the
evaluation. Since the rewording process ensures that the activity names are kept
verbatim in the output, in many cases those are also the min-uf phrases of the
output.

For this reason, we disregard the activity names in the calculation of the min
uf, leading to the comparison outlined in Figure 4. We observe that in 50% of
cases the min uf of the output was worse than that of the input. That is, in only
50% of the cases the passage produced by the LLM was satisfactory in terms of
min uf.

It is worth noting that a potential issue with the ngrams used for estimating
frequency of use. As seen from Figure 4, in a number of cases in which the min
uf of the output is greater than or equal to the min uf of the input, the min-uf
phrase of the input is “Which activity would you like.” For some reason, that
phrase is assigned a rather low uf, which causes most outputs to have a better
min uf than the input passage – even in cases where the min-uf phrase of the
output is “with the specified variables”, which intuitively seems to be at a higher
3 https://spacy.io
4 https://ngrams.dev/
5 It is certainly possible that different settings may affect the results of our analysis,

particularly if one selects specific year ranges for the frequency of the ngrams. We
defer an evaluation of the impact of these settings to a later phase of our study.
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Fig. 4. Change in min uf from revised input to revised output (excerpt)
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vocabulary level. As we discuss later in this paper, we hypothesize that better
quality ngram data may reduce this type of noise.

5 A Vocabulary Level Critic: an Evaluation

In the previous section, we saw how LLMs have some capability of producing
output of comparable vocabulary level to the input as estimated via uf, although
the performance of LLMs is less than ideal. In this section, we consider the
possibility of algorithmically filtering the output of the LLMs based on this
metric, and evaluate whether uf provides indeed a reliable filtering mechanism.

For our evaluation, we consider a simple filtering mechanism based on a
continuous validation of the output of the LLM being used. That is, we can
leverage min uf to develop a critic that compares the min uf of the output
with that of the input. If the min uf of the output is lower than that of the
input, the critic rejects the output, and the architecture may decide to either
have the LLM produce a new output, or use the input directly. In practice, the
decision will be likely based on timeliness considerations: given the statistical
nature of LLMs, there is no telling how many times the output will need to be
regenerated before something of acceptable quality is produced, and long delays
before the robot speaks might make for an unnatural experience.

Our goal in this section is to answer the question: suppose the critic rejects
the output produced by the LLM; based on human judgement, is that a good
decision or a bad decision? This evaluation will give us some insights both on
the reliability of min uf as a filtering metric, and if the critic as a practically
viable algorithmic filtering method.

The results of this evaluation are summarized in Figure 5, where a judgement
of “good decision” is indicated as a true positive, and a bad decision as a false
positive. At this early stage of the project, we relied on our own judgment to
determine whether a decision was good or bad. In the future, we plan to conduct
a more rigorous evaluation with independent test subjects. In spite of the sim-
plicity of our validation method, we believe that the evaluation provided some
interesting results. As the figure illustrates, out of 53 cases flagged by the critic,
33 are true positives, which means that in 62% of cases, min uf is a reliable
indicator of whether the vocabulary level of the output produced by an LLM
is acceptable. Figure 6 provides a breakdown of the information for each LLM.
For GPT, the true positive rate is 61%, for Gemini it is 79%, and for Claude
it is 52%. One consideration to make is that the generation of the parse tree,
and possibly also the ngram data, appear to introduce some noise in the filtering
process. For example, some of the cases marked as false positives during our val-
idation are due to the string “’s have some fun” being the min-uf phrase in the
output, and being associated with a low uf. Those cases were marked as false
positives during our validation because it is clear that the string refers to “let’s
have some fun”, and the vocabulary level of that phrase is low. We speculate
that, had the parse tree correctly extracted the string “let’s have some fun”, its
uf might have been higher and thus the output would not have been rejected on
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Fig. 5. Human validation of revised min uf phrases
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Fig. 6. Comparative results of the human validation process

its account. (A similar result would have been obtained if the ngram data had
not included the entry “’s have some fun”.) That is, we hypothesize that better
quality of the parsing process and of ngram data might lead to a higher accuracy
of the filtering process.

The data also highlights another interesting aspect. In a certain number of
cases marked as false positives during the human validation, the min-uf phrases
in question contain place names related to the location of the robot, such as
“Innovation Center” and “Saint Joseph’s University.” Clearly, those names occur
infrequently in the text corpus used for determining the uf, but are well known
to the audience. The results obtained after excluding those place names from
the calculation of the min uf are illustrated in Figure 7. With this refinement,

Fig. 7. Comparative results of the human validation process excluding place names

the percentage of true positives is substantially higher, standing at 70%, with a
67% for GPT, 91% for Gemini, and 61% for Claude.

6 Conclusions and Future Work

In this paper, we presented an initial evaluation of methods for controlling the
vocabulary level of the text produced by LLMs in rewording tasks, with specific
attention to the use with individuals whose cognitive capabilities are impaired.
We considered length-based metrics as well as frequency of use, and defined an
approach for identifying which nodes of the parse tree should be considered when
measuring frequency of use. While there is space for improvement, we hope our
results provide an informative initial account on the topic. For practical reasons,
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at this stage we considered a set of free or moderately-priced LLMs. In the future,
we plan to evaluate more powerful versions of those LLMs as well as self-hosted
LLMs. We will also conduct a human validation with independent test subjects,
investigate morphological and semantic complexity measures, and explore the
ability of more sophisticated prompt designs to ensure a consistent vocabulary
level.
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