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Abstract

In Causality,actual causecan be defined as an event determined to be responsible for bringing about a
given outcome in a specific scenario. For example, Socrates drinking hemlock can be viewed as the actual
cause of the philosopher’s death. However, it is also reasonable to consider why he consumed it in the
first place — if he was forced to drink the hemlock as punishment for a crime, then is his acting against
the law another cause of his death? Clearly, an outcome can be associated with multiple actual causes
and choosing the most suitable among them often requires considering the context of the inquiry. In this
paper, we introduce the conceptazfuse with contexiCwC), a variation on the notion of actual cause that
considers contextual information about a cause’s relationship to the domain in which it has occurred. We
present a novel framework for representing CwCs, inspired by Counterfactual Reasoning and making use
of technigues from Reasoning about Actions and Change to support reasoning over domains that change
over time. We also present an approach for computing CwCs via Answer Set Programming.

KEYWORDScausality, counterfactual reasoning, reasoning about actions and change, knowledge repre-
sentation and reasoning, answer@@gramming

Introduction

In Causality, actual cause can be defined as an event determined to be responsible for bring-
ing about a given outcome in a specific scenario (Pearl 2009). When humans inquire about an
outcome, determining the actual cause often requires considering the context of the query. Con-
sider a simplified story outlining the events of the trial of Socrates: Socrates questioned the gods
recognized by his city, was charged with impiety, was sentenced to death, and drank poisonous
hemlock in accordance with his sentence. If we were to ask experts in the fields of medicine,
law, and philosophy to determine the cause of Socrates’ death with respect to the context of their
expertise, we might receive the following answers:

e Medical contextSocrates drank poisonous hemlock.
e Legal contextSocrates was sentenced to death.
e Philosophical contextSocrates questioned the deities recognized by his city.

Each answer corresponds to a different event in the story and each is reasonable with respect
to its context. This thought exercise reconfirms the well-known fact that an outcome of interest
(here, Socrates’ death) may be associated with multiple actual causes (Pearl 2009). Moreover, it
confirms our position that selecting the most suitable cause for an outcome of interest can require
consideration of the query’s context. This is the primary motivation of our work.
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In this paper, we introduce the concept afause with contexdr CwC (pronounced “quick”),

a variation on the notion of actual cause that considers contextual information about a cause’s
relationship to the outcome of interest and the domain in which it has occurred. We present a
novel framework for defining CwCs inspired by the counterfactual definition of cause (Lewis
1973), discussed in greater detail in the Background section of this paper. Our approach makes
use of techniques from Reasoning about Actions and Change (RAC) (McCarthy and Hayes 1969)
to support reasoning over domains that change over time.

The organization of the paper is as follows. In the next section, we discuss the counterfactual
definition of cause and RAC as they pertain to our approach. Following that, we provide back-
ground for our formalization of knowledge and events. Next, we present the technical details
of our framework and demonstrate its ability to represent CwCs using the example of Socrates’
death. We then present an approach to computing CwCs via Answer Set Programming. Following
that, we present a summary of related work. Finally, we draw conclusions and discuss directions
for future research.

Background

The Counterfactual Definition of Cause.Counterfactual reasoning is the process of reasoning
about the consequences of events, circumstances, or scenarios that have not occurred. In this
work, we are concerned with reasoning counterfactually about scenarios that are contrary to
observations that we have gathered. The counterfactual definition of cause (Lewis 1973) is based
on the idea that ik is anecessary causa y andx does not occur, thepwill not occur. From a
reasoning perspective, this suggests that if we can determine that the countetfbxtuad not
occurred, then y would not have occurred’true, then it is possible to claim thahas causeyg

in a particular scenario. The relationship of counterfactuals and cause, particularly actual cause,
have been the subject of much study in philosophy (Lewis 1973; Collins and Hall 2004) and in
Artificial Intelligence (Ginsberg 1986; Pearl 2009; Pereira et al. 1991; Halpern and Hitchcock
2011; Vennekens et al. 2010; Merck and Kleinberg 2016).

Reasoning about Actions and Change (RACRAC is concerned with representing the proper-

ties of actions (McCarthy and Hayes 1969). Research in this field studies reasoning over domain
knowledge and, specifically, about the direct and indirect effects of actions, and has uncovered a
variety of interesting representation and reasoning problems (Lifschitz 1987; Haugh 1987; Gel-
fond and Lifschitz 1993; Lin 1996; McCain et al. 1997; Thielscher 1997). In our work, we aim to
leverage mentions of observed events and domain knowledge to determine a detailed picture of
a scenario over time. The section on Preliminaries provides a more technical discussion of RAC
with respect to the description of domains.

Preliminaries

Action Language .« % . For the representation of the domain and of its evolution over time we
rely on action languager.¥ (Baral and Gelfond 2000). The syntax .of.#Z builds upon an
alphabet consisting of a sét of symbols forfluentsand a se of symbols forevents.

Fluents are boolean properties of the domain, whose truth value may change over time. A

1 For convenience and compatibility with the terminology from RAC, in this paper wact&nandeventas synonyms.
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fluent literalis a fluentf or its negation-f. Additionally, f = —f and—f = f A statement of
the form

ecausedp if 14,l2,..., 1y ()

is calleddynamic (causal) lawand intuitively states that, if evertoccurs in a state in which
literalsly, ..., I, hold, thenly, theconsequence of the lawill hold in the next state. A statement

loif I1,...,In )

is calledstate constrainfand says that, in any state in whith. ...l hold, Iy also holds. This
second kind of statement allows for an elegant and concise representation of side-effects, which
increases the expressivity of the language. Finallyexacutability conditions a statement of
the form:

eimpossible ifl1,...,I, 3)
whereeandly,...,l, are as above. (3) states tlatannot occur ify, ..., 1, hold. A set of state-
ments ofe/ 7 is calledaction descriptionThe semantics of7 . maps action descriptions to
transition diagrams, as discussed next.

A set S of literals is closed under a state constraif®) if {I1,...,In} £ Sorlp €S Sis
consistentf, for every f € %, at most one off, —~f is in S It is completef at least one off,
—fisin S A stateof an action descriptioAD is a complete and consistent set of literals closed
under the state constraintsAD.

Given an evene and a stat@, the set of(direct) effects of e irr, denoted byE(e, ), is the
set that contains a literdy for every dynamic law (1) such thdts,...,Iz} C 0. Given a seS
of literals and a seZ of state constraints, theet Crz(S) of consequences of S undeiisZthe
smallest set of literals that contai8&nd is closed undet. Finally, an eveneis non-executable
in a stateo if there exists an executability condition (3) such thiat...,In} C g. Otherwise, the
event isexecutablén o.

The semantics of an action descriptidD is defined by itdransition diagramt(AD), a di-
rected grapHN, E) such that:

e N is the collection of all states &D;
e Eisthe setofall triplego, e, o’) whereo, o’ are statesis an event executable m, and
o, e, ¢’ satisfy thesuccessor state equation

o' =Cmnz(E(e,0)U(0na’))
whereZ is the set of all state constraintsAD.

Atriple (0,e,0’) € E is called a transition of (AD) and g’ is asuccessor state @ (under
e). As sequencéadi, a1, 0z, ..., Ok, Ok+1) IS apath of (D) of lengthk if every (ai, i, 0i11) is
a transition int(D). We refer to stater; of a pathp as theinitial state of p. A path of length
0 contains only an initial state. In the next section, we build upon this formalization to define a
framework for defining CwCs.

Representing Causes with Context

In the example of the trial of Socrates, we claimed that a legal expert would tell us that the actual
cause of his death is that he was charged with impiety. This conclusion can be reached intuitively
by considering that Socrates was sentenced to his death as a consequence of the charge and
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that he carried out his sentence by drinking the poison. In this section, we formally define the
concepts of a novel framework for representing causes with context and show that the framework
is capable of representing a CwC relating Socrates’ death to his sentencing.

Assumptions.The goal of our investigation is to develop a framework with which we may repre-
sent and reason about CwCs. We assume that we have complete knowledge of direct and indirect
effects of any events occurring in the domain. The knowledge is specified by a combination of
dynamic laws, state constraints, and executability conditions. We also assume that all knowledge
is correct. This assumption simplifies the problem and allows us to disregard issues related to
uncertainty and inaccurate information that might lead to questionable conclusions about CwCs.

Representing CwCs. In order to represent CwCs, our framework requires a description of a
scenario, an action description for the domain in which the scenario occurred, and the outcome
of interest for which a cause must be identified. We assume that these are provided by an ex-
ternal source and therefore we regard this information as constituting a query to the framework.
We begin our discussion on the formalization of CwCs by defining the components of a query. A
domain descriptiortonsists of an action description reflecting the scenario’s domain and of an
event sequencee. a temporal ordering of the events from the scenario:

Definition 1
A domain descriptions the tupleDD = (v,AD) wherev = (e, e,...,€) iS an event sequence
containingk events, and\D is an action description.

Recall the events leading up to the death of Socrates in our example: he questioned the gods,
was charged with impiety, was sentenced to death, and drank the poison. These events can be
encoded as an event sequence as follows:
Vsoc =(questionsGodsocrates,
chargedWitlisocratesimpiety),
sentencedT@ocratesdeath,
drinks(socrateshemlock)

The following action descriptioADsoc provides a characterization of events occurring in the
Socrates domain:

chargedWitliX,Y) causesnPrison(X), (4)
escapefX, prison) causes-inPrison(X) if inPrison(X), (5)
ADsgoc = ¢ drinks(X,hemlock causes-isAlive(X) if isAlive(X), (6)
sentencedT(X,Y) impossible if-inPrison(X), (7)
walksOutsidéX) impossible ifinPrison(X) (8)

Some rules oADgqc are straightforward, such as the effectofirinking hemlock being that
X is not alive, and so we will not describe them in detail here. For illustration purpAfkss
includes a few simplified commonsense rules about the legal domain. Law (7) states that it is
impossible forX to be sentenced KX is not in custody. Law (8) states that it is impossible for
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Table 1:Table representation of the factual patkydin the trial of Socrates example

State Eent

o1 = {isAlive(socrateg, —inPrison(socrate$}  questionsGods(socrates)

0, = {isAlive(socrate$, —inPrison(socrate$}  chargedWith(socrates, impiety)
o3 = {isAlive(socrate$, inPrison(socrates} sentencedTo(socrates, death)
o4 = {isAlive(socrates, inPrison(socrateg} drinks(socrates, hemlock)

o5 = {—isAlive(socrate$,inPrison(socratey} —

someone to take a walk outside (of the prison) when they are imprisoned. agj¢@mdADsqc,
the domain description for the Socrates scenar®Dgoc = (Vsoc, ADsoc) -
As we mentioned earlier, we also assume that we are provided with a consistent set of fluent
literals 6 representing anutcomeof interest. In our example, we are interested in representing
a cause for Socrates’s death, so the outconi.is= {—isAlive(socrate$} in accordance with
the fluents iPADggc

Definition 2
A queryis a tuple2 = (v,AD, 8) wherev andAD are the elements of a domain descriptidD
andé is an outcome.

The query for our example i€soc= (Vsoc, ADsoc, Bs0c) - Given a query, we build upon its com-
ponents in order to define CwCs. We begin this process by representing the set of all possible
mappings of the event sequencitom the domain description to paths of the transition diagram
T(AD). We refer to these mappings &tual paths

Definition 3
Given a query2 = (v,AD, 8) such thav = (e}, e, ..., &), afactual pathis a path
f = (01,01, 09, ..., 0k, Ok+1) Of T(AD) satisfying the following conditions:

1LVil<i<k a =g
2. 9§0k+1

Note that, because of potentially non-deterministic effects of actioABjfian event sequence
may map to multiple paths im(AD). In the following discussion, the set of all factual paths
with respect to some domain descripti@® = (v,AD) and outcomef is denoted byF =
{f1,fo,..., fm}.

Condition 1 requires that the events fincorrespond to the events wofin order of their oc-
currence, capturing the idea that each event@drresponds to a transition between statek.in
Condition 2 requires that the fluent literals of the outcafnare satisfied in the final state 6f
capturing the idea that the outcome is expected to hold in the final state of every factual path. Ta-
ble 1 provides a representation of a factual ptathat corresponds to querysqc given above.

2 For example, consider the action descript{ayif —r, p; r if —q, p; a causes}.
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Figure 1 Factual and counterfactual paths for reasoning about Socrates’ death.

The first column of the table lists the values of fluents in each statd fsoc and the second
column gives the evertt; that causes a transition to the state; given in the following row. It
is easy to see that the factual pdtkatisfies both conditions with respecttg: and 6soc.

In our approach, the process of reasoning about actual cause requires fiodimgrfactual
pathsin 7(AD) that diverge from a given factual pathwith the occurrence of some “counter-
factual event” and terminates in a state where the outcome of interest does not hold. A (possibly
empty) set of counterfactual paths exists for every factual patlF with respect to a query.
Representing a counterfactual path and its divergence froaguires, in part, identifying states
and events shared by both paths prior to the point at which they diverge. We formalize this notion
as follows.

Givenapatlp= (01,01,02,...,0k, Okt1,), we call the sequenge= (01,01, 02, ..., 0}, Tj11),
wherej <k, astate-terminated prefjor st-prefix of p. Notice that an st-prefix is defined so that
it always begins and ends in a state. Clearly, an st-prefix is a patfAin). We also require a
representation of the “opposite” of the outcome of interest to help define counterfactual paths.
Given an outcomé, we defineinverseoutcomed to be the sefl || € 6}. We now build upon
these concepts to define counterfactual paths.

Definition 4
Given query2 = (v,AD, 8), a factual patt with respect ta2, and invers@utcomed, acounter-
factual pathis a pathf’ = (01,01, 02, ..., Ok, Ok.1) Of T(AD) satisfying the following conditions:

1. The factual patif and counterfactual patf share an st-prefix
p = (01,01,0,...,0),0)41) Where 0< j < k.

In the following discussion, the set of all possible counterfactual paths with respect to the factual
pathf is denoted by’ = {f7, f;,.... f/ }.

Condition 1 requires that any counterfactual péthvith respect to the factual pathshares
an st-prefixp with f. Condition 2 requires that the fluent literals of the invessécome@ final
state are satisfied in the final stateféf

In our example, it is straightforward to reason o#&Is.cand obtain a counterfactual patfy
for fsocthat shares an st-prefpgoc terminating in stat@s of fsoe In both fsocand ., Socrates
is charged with impiety at stat® and as a result is in prison in the successor sfgteecause
of law (4) in ADso¢. The pathfl,. shown in the Figure 1 diverges frofgyc at stateos, at which
point evente; = escapegsocratesprison) occurs. Note thaDsoc contains no laws preventing
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such an event from occurring. Escaping prison results in Socrates not being imprisoned in the
successor state) of f{,.as per law (5) irADso. Because Socrates is not imprisoned in stgte
eventwalksOutsid€X) is executable and thui,.is a valid path in which he avoids sentencing.
Socrates is therefore alive in the final state It is easy to see thdf satisfies the conditions

of the definition of counterfactual paths. Figure 1 gives a graphical representation, with English
descriptions of the events, of the divergencefQf from fsoc with the occurrence of Socrates’
counterfactual escape from prison. To simplify the presentation, we assunig,thathe only
counterfactual path fa2secand thereford,.= { f,c}, although it is easy to see that in another

of numerous possible counterfactual pathsfige, Socrates could have taken a walk instead of
guestioning the gods in the first state, avoiding death in the final state.

For every counterfactual path with respect to a factual path we can define a cause with
context. CwCs capture information about the factual and counterfactual paths, the outcome of
interest, and a possible cause. In the remainder of this section, we present the concepts required
to represent CwCs using our framework. We begin by formally representing the divergence of a
counterfactual patli’ from a factual patif and use it to determine the eventfitthat represents
a cause for the outcome of interest.

Definition 5

Let f and f’ be a factual and counterfactual path, respectively, and let their maximal shared st-
prefix bep = (01,01,07,...,0j,0j4+1). We say thatj + 1 is thedivergence poinbf f and f’,
denoted byd(f, f').

Definition 6
Given a factual patt, a counterfactual patf/, and a divergence poid( f, f’), thecauseis the
eventc = a(;(f,f/) of f.

Intuitively, eventag(f ) of f' is the event that triggered the divergence frénowards a

state in which the inverseutcome8 is satisfied. Eventrs 1,1 is the event that “actually” hap-
pened, leading to the final state where the outcome of intérestatisfied. The representation

of cause from Definition 6 follows the counterfactual definition of cause discussed earlier in the
paper. In our example, we have already determined fthatliverges fromfsyc at the stateds,

and sod(f, f')soc= 3. In other words, if eventls f f) = 03 in the factual pathfsoc had not
occurred, ultimately leading to Socrates’ deatlwinthen evenug“‘f,) = o} of the counterfac-

tual pathfZ,. could have occurred instead, leading to an alternate sequence of events in which
Socrates is alive in the final state of the sequence. Referencingaeyehfsy, we can state that
Csoc= SentencedT(@ocratesdeath is the cause of for this pair of f andf’ as per Definition 6.

Definition 7
A cause with contexor CwC, for a query2 = (v,AD, 8) is the tuple® = (c, 6, f, f') wherec
is a caused is an outcomef is a factual path, anfl’ is a counterfactual path.

The definition ofCwC captures information about the relationship between a caasel an
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outcomed by providing the paths needed to determirand the query containing the information
used to obtain the paths. In our example, the CwC

Gsoc= (sentencedT@ocratesdeath, ~isAlive(socrates, fsoc, fio0)

represents a scenario in which the sentencing of Socrates is a possible cause of his death.

Computing Causes with Context

In the previous section, we presented a framework for formalizing CwCs. In this section, we
demonstrate how it is possible to compute CwCs for a given qwnjia Answer Set Pro-
gramming (ASP) (Gelfond and Lifschitz 1988; Gelfond and Lifschitz 1991), a form of declara-
tive programming that is useful in knowledge-intensive applications. In the ASP methodology,
problem-solving tasks are reduced to computing answer sets of suitable logic programs. As such,
ASP is well suited to the task of computing CwCs from event mentions and domain knowledge.
We begin this section with a discussion of the syntax and semantics of Answer Set Programming.

Answer Set Programming.Let X be a signature containing constant, function and predicate
symbols. Terms and atoms are formed as in first-order logidefal is an atoma or its strong
negation-a. Literals are combined to form rules that represent both domain knowledge and event
mentions in our approach. Alle in ASP is a statement of the form:

h—14,....Im,notlng,...,notly

whereh;’s (the head) andi’s (the body) are literals andot is the so-calledlefault negation
Intuitively, the meaning of default negation is the following: “if you belielle,...,In} and

have no reason to beliefén.1,...,In}, then you must believe”. An ASP rule with an empty

body is called a fact, and that in writing facts, the connective is dropped. Rules of the form

1L «14,...,not |, are abbreviated- I4,...,not I,,, and calledconstraints intuitively meaning
that{l,...,notl,} must not be satisfied. A rule with variables (denoted by an uppercase initial)
is interpreted as a shorthand for the set of rules obtained by replacing the variables with all
possible variable-free terms. gxogramis a set of rules ovex.

A consistent se$ of domain literals is closed under a rulenie Swhenever{ly,...,In} C S
and{lm:1,...,In} NS= 0. SetSis an answer set of ot-free prograntl if Sis the minimal set
closed under its rules. The reduftS, of a prograntl w.r.t. Sis obtained fronT1 by removing
every rule containing an expression “rés.t. | € Sand by removing every other occurrence of
not . Finally, etSis an answer set of a prograif Sis the answer set dilS,

For a convenient representation of choices, in this paper we alsmuaseaint literals which
are expressions of the form{l,l5,...,lIk}n, wherem, n are arithmetic expressions ah
are basic literals. A constraint literal is satisfied w&twheneverm < [{l,...,Ik} NS < n.
Constraint literals are especially useful to reason about available choices. For example, a rule
1{p,q,r}1. intuitively states that exactly one ¢p,q,r} should occur in every answer set.

Translating a query 2 to ASP.A query 2 = (DD, 0) is translated to ASP as follows. First, the
elements oDD = (v,AD) are translated into their ASP counterpd@, = (vp, ADp). For every
events in v, a factoccurge, i) is included invp, indicating that eveng occurred at stepof the
story.

SetAD, contains the ASP encoding of every dynamic causal law, state constraint, and exe-
cutabilty condition ofAD according to the mapping from Table 2. The encoding illustrated in the
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Table 2:ASP translations of action descriptidaws.

Law ASPRepresentation

Dynamic Causal Law  holdglg,| + 1) « holdgly,1),...,holdgln,1),occurge, ).
State Constraint holdglo,l) < holdgl4,1),...,hold<In,I).
Executability Condition « holdgl4,1),...,holdgl,,1),0occurge,l).

table follows a rather typical translation of Z, see e.g. (Balduccini and Gelfond 2003). In this
mapping,| is a variable ranging over all possible states, or time $tépshe evolution of the
domain. Atomholdg(l,i) state$ that a fluent literal holds at time step. For example, law (5)
from ADgqcis translated to the following ASP rule:

—holdginPrison(X),1) < occurgescape®X, prison),l), holdginPrison(X),I).

An ASP action description also contains rules formalizing the principle of inertia, which states
that things generally stay as they are (McCarthy and Hayes 1969):

holdqF,| +1) « fluent(F),holdgF,I),not —=holdgF,I + 1).

—holdgF,| + 1) < fluent(F),-holdgF,I),not holdgF,I| + 1).
Finally, 8 is translated to ASP so that, for each fluérg 8, the following constraint is added
to Bp:
— notholdg f,k+1).
wherek is the number of events in the sequengeSimilarly, for every—f € 8, 8, contains the
constraint:
— not—holdgl,k+1).

In general, the translated query is represented by the set oflfiues v, UADy U 8y, con-
taining rules corresponding to each element of the query.

Differentiating between Factual and Counterfactual Paths. Our approach to computing
CwCs depends in part on the ability to differentiate between factual and counterfactual paths
during computation. We facilitate this by enabling the reasoner to create labeled variants of the
literals that encode a path by means of the following séypihg rules

holdg(L,1,T) < holdg(L,1),typg(T).
rlT = ﬁhOldiLJ,T) <—ﬁh0|diL7|>7typdT)
occurgE, I, T) « occurE,I),typeT).

Relationty pespecifies the type of path being considered by the reasoner. Its argument can be
fp, for factual path, ocfp, for counterfactual path. The useldf: is illustrated next.

3 Herein, the termstateandtime stepare used interchangeably.
4 To ensure that all ASP literals are syntactically legdliifa negated fluent; f, then we write the corresponding ASP
literal as—holdq f,i).
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Computing Factual Paths from a Query. Given a progranily representing the translated
query 2 and the set of typing ruleldt, we define rules for computing factual paths as follows.
Recall that the events of, are the events of the factual path as per Definition 3, each representing

a transition between states in the factual path. Thus, in order to determine a factual path, we need
to identify a possible initial state for it. The successive states in the path can then be inferred by
means ofADs,q,. In order to determine the initial state for a factual path, we use:

Mine = { 1{holds(F. 0), ~holds(F. 0)}1 — fluent(F).

The careful reader may notice that this rule is of form similar to the awareness axiom from
(Gelfond and Kahl 2014). However, the intention behind the two axioms is arguably different.
We say that a factual path= (01,e1, 02,..., €, Oky1) IS encodedy a setA of literals if-and-
only-if occurge,i, fp) € A for every evenig in f andholdql,i, fp) € A for every stateg; of
f andl € g;. Similarly, a counterfactual path is given by literals of the fovoturge, i, cfp)
andholdg(l,i, cfp). Thus, the factual paths for a given que®ycan be found by computing the
answer sets of the program consisting of the transldiignof 2, the typing rules ofl1y, and
the rules for computing the initial state of the factual patk:. More precisely:

Proposition 1.
Let Fp be the set of factual paths for a given que2y A path f, belongs td=, if-and-only-if f,
is encoded by some answer set of the progfam= Mo U Minit UMt U {typeg fp).}.

In the rest of the papef]t, denotes the set of literals of answer #eof Mp; that encode a
factual path. The sdf, = {M,,My,,...,M,} is the ASP representation of detof all factual
paths. We will use a sély, to aid the next program in the computation of counterfactual paths.

Computing Counterfactual Paths and Cause from Factual PathswWe can now define a pro-

gram for computing the counterfactual paths for a factual path encoded by, s#tliterals

from the previous computation, as well as the cause as per Definition 6. Each answer set of
such program contains the elements of a CwC. As we did previously, we make use of the typing

rules, this time specifying that the computed paths should be labeled as counterfactual paths by
including the atontype(cfp)

When computing counterfactual paths, we are looking for any paths in the transition diagram
of the action description that share an st-prefix with the factual path in question and whose final
state satisfies the inverse outcome. In this case, we cannot assume any initial knowledge of any
of the events of (the non-prefix part of) the counterfactual path. For this reason, we begin by
allowing considering all paths of the transition diagrani@¥, as candidate counterfactual paths
using:

Mo — ste1..k).
e 1{occurgE,1) : evenfE)}1 — stefl).

The first rule specifies the number of transitions in a candidate path and the second rule states
that any (single) event may occur at any step.
Recall Condition 1 from Definition 4, which requires any counterfactual pathat diverges
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from a factual pathf to share an st-prefip with f. This implies thatf and f’ must share the
initial state:

Lemma 1
If £’ is a counterfactual path for a factual pdththen the initial states of’ and f coincide.

Lemma 1 tells us that and f’ share an initial state, and it is straightforward to show that the
theorem holds in the general case. Hence, the initial state of the counterfactual path can defined

by:

_ [hold(L,1) « holds(L, 1, fp).
Oinit — _‘h0|dd|_7 ]_) «— ﬂhOldiL, 1, f p)

Intuitively, the purpose dfl ¢, , is to produce literals of the fortmold<(,i) andoccurge, i), so
that they can be used, together with the ruleADbf, to reason about paths ofAD) stemming
from the given initial state. Once desired paths have been found, the typing rules, together with a
facttypecfp), will yield literals of the formholdg,i,cfp) andoccurge,i,cfp) to create the paths
labeledcfp.

In order to satisfy Condition 1 of the definition of counterfactual path, we must ensure that any
path found shares an st-prefix with the factual path being considered. This is accomplished via
the following rules, which leverage the typed variants of relatiooislsandoccurs

1{div(l) : sted!)}1.
Mgiv = § < holdgF,I,P1), —holdgF,1,P2), P1+# P2, div(d),l <9.
«— occurgE,|,P1), notoccurgE,I,P1), P1+# P2 div(d), | < 9.

These rules enable the reasoner to find counterfactual paths by “guessing” a possible diver-
gence point and checking if the literals and events of the factual pathf(typed of the coun-
terfactual path (typefp) are identical up to the point indicated by the guess.

Condition 2 of the definition of counterfactual path is enforced as follows. For each fluent
f € 6, setf, contains:

— not—holdg f,k+1).
Similarly, for every-f € 6, 8, includes:

— notholdg f,k+1).

which ensures that all computed counterfactual paths end in axtated,, is satisfied.
Finally, we include a rule that computes the cause according to Definition 6 by identifying the
event that occurs at the state indicated by the divergence point:

Mcause= {causéE) —div(l),occurgE, I, f).

We can now find a seﬁr’, of counterfactual paths and corresponding causes for a factual path
M. given bylp; above by computing the answer sets of the program consisting of the literals
encoding the factual paffiy,, the translation of the action descriptié,,, the inverseoutcome
Bp, the rules for generating candidate paffs, the rules for finding the divergence point of
pathslg;y, the rule for isolating the cause in the factual p8thuse and the typing rules dflt.

More precisely:
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Proposition 2
Let FFQ be the set of counterfactual paths for a given factual path encdtingsiven program
Mpz = M, UADp U B, U Mg UMgiy UMcausdd Mt U {type(cfp).}, the following hold:

1. Pathf’ € F}if and only if f" is encoded by some answer sef i,
2. Eventeis a cause if and only ifausége) is in some answer set 6fp;

In the following, f denotes the set of literals from answer Aebf MNp, that encode a coun-
terfactuals path. The sﬁ’) = {I‘Ifi, I'Ifé,...,l'lfr/n} is the ASP representation of sét of all
counterfactual paths.

Summing up, given a query = (v,AD, 8), a factual patff for it can be found by computing
an answer set dflp;; then, a counterfactual patt for f can be found by computing an answer
set of Mpy. The same answer set also encodes cau3egether withd from 2, this yields a
CwC% = (e 0, f, f') with respect ta2.

It is straightforward to translate the query from the Socrates example of the previous section
into ASP using the approach given in this section. Then, using the programs given by Proposi-
tions 1 and 2 for computing factual paths, counterfactual paths, and causes, we can compute the
CwC obtained in the previous section relating Socrates’ death to his sentencing.

Related Work

To our knowledge, there are no related efforts to representing and reasoning about causes with
context as we have presented here. The majority of research regarding counterfactuals and actual
cause in artificial intelligence is concerned with modeling and evaluating provided counterfac-
tual statements, e.{if x had (or had not) been true, then y would be trydly simulating the
proposed relationship in a model of causal dependencies and analyzing the behavior of system
(Pearl 2009; Baral and Hunsaker 2007; Pereira and Saptawijaya 2016; Chockler and Halpern
2004). Our work differs from these approaches in that we infer the possible cause via counter-
factual inference over a domain description and outcome of interest, rather than evaluating a
statement that proposes a possible cause.

Conclusions and Future Work

In this paper we have introduced the notion of cause with context, or CwC, which is a variation
on the concept of actual cause that provides us not only with a possible cause for an outcome of
interest, but with additional information about how the cause fits into the world. We presented
a novel framework linking CwCs and counterfactual reasoning and demonstrated it on a CwC
for the cause of Socrates’ death in the legal context from the introductory example. We have
also presented an approach to computing CwCs via Answer Set Programming. Note that our
approach to representing and reasoning about CwCs does not strictly rely upon the use of Answer
Set Programming as we have shown here. It may be possible to formalize our framework using
other well-known logical languages (e.g. Event or Situation Calculus) for reasoning about actions
and change as long as they provide the ability to represent and reason about the occurrence of
events and information about the state of the world before, during, and after them via a transition
diagram.

The aim of the work presented here is to lay the foundations of CwCs from a representational
standpoint, leveraging techniques from RAC and counterfactual reasoning to represent scenarios
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and to identify possible actual causes for an outcome of interest. In future phases of our work we
aim to conduct a case study to explore how our framework can handle common issues that arise
when determining cause (e.g. overdetermination, preemption, contributory cause), investigate
possible relationships between our work and existing approaches to evaluating causal relation-
ships, explore how the contextual information in CwCs can be characterize@&{g; gelates to

the legal domain), and address issues of computational complexity.
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