
Under consideration for publication in Theory and Practice of Logic Programming 1

Contextual Representations of Cause via Reasoning
about Actions and Change

EMILY C. LEBLANC, MARCELLO BALDUCCINI
College of Computing and Informatics, Drexel University, Philadelphia, PA

submitted 1 January 2003; revised 1 January 2003; accepted 1 January2003

Abstract

In Causality,actual causecan be defined as an event determined to be responsible for bringing about a
given outcome in a specific scenario. For example, Socrates drinking hemlock can be viewed as the actual
cause of the philosopher’s death. However, it is also reasonable to consider why he consumed it in the
first place — if he was forced to drink the hemlock as punishment for a crime, then is his acting against
the law another cause of his death? Clearly, an outcome can be associated with multiple actual causes
and choosing the most suitable among them often requires considering the context of the inquiry. In this
paper, we introduce the concept ofcause with context(CwC), a variation on the notion of actual cause that
considers contextual information about a cause’s relationship to the domain in which it has occurred. We
present a novel framework for representing CwCs, inspired by Counterfactual Reasoning and making use
of techniques from Reasoning about Actions and Change to support reasoning over domains that change
over time. We also present an approach for computing CwCs via Answer Set Programming.

KEYWORDS: causality, counterfactual reasoning, reasoning about actions and change, knowledge repre-
sentation and reasoning, answer setprogramming

Introduction

In Causality, actual cause can be defined as an event determined to be responsible for bring-
ing about a given outcome in a specific scenario (Pearl 2009). When humans inquire about an
outcome, determining the actual cause often requires considering the context of the query. Con-
sider a simplified story outlining the events of the trial of Socrates: Socrates questioned the gods
recognized by his city, was charged with impiety, was sentenced to death, and drank poisonous
hemlock in accordance with his sentence. If we were to ask experts in the fields of medicine,
law, and philosophy to determine the cause of Socrates’ death with respect to the context of their
expertise, we might receive the following answers:

• Medical context:Socrates drank poisonous hemlock.
• Legal context:Socrates was sentenced to death.
• Philosophical context:Socrates questioned the deities recognized by his city.

Each answer corresponds to a different event in the story and each is reasonable with respect
to its context. This thought exercise reconfirms the well-known fact that an outcome of interest
(here, Socrates’ death) may be associated with multiple actual causes (Pearl 2009). Moreover, it
confirms our position that selecting the most suitable cause for an outcome of interest can require
consideration of the query’s context. This is the primary motivation of our work.

2 Emily C. LeBlanc and Marcello Balduccini

In this paper, we introduce the concept of acause with contextor CwC (pronounced “quick”),
a variation on the notion of actual cause that considers contextual information about a cause’s
relationship to the outcome of interest and the domain in which it has occurred. We present a
novel framework for defining CwCs inspired by the counterfactual definition of cause (Lewis
1973), discussed in greater detail in the Background section of this paper. Our approach makes
use of techniques from Reasoning about Actions and Change (RAC) (McCarthy and Hayes 1969)
to support reasoning over domains that change over time.

The organization of the paper is as follows. In the next section, we discuss the counterfactual
definition of cause and RAC as they pertain to our approach. Following that, we provide back-
ground for our formalization of knowledge and events. Next, we present the technical details
of our framework and demonstrate its ability to represent CwCs using the example of Socrates’
death. We then present an approach to computing CwCs via Answer Set Programming. Following
that, we present a summary of related work. Finally, we draw conclusions and discuss directions
for future research.

Background

The Counterfactual Definition of Cause.Counterfactual reasoning is the process of reasoning
about the consequences of events, circumstances, or scenarios that have not occurred. In this
work, we are concerned with reasoning counterfactually about scenarios that are contrary to
observations that we have gathered. The counterfactual definition of cause (Lewis 1973) is based
on the idea that ifx is anecessary causeof y andx does not occur, theny will not occur. From a
reasoning perspective, this suggests that if we can determine that the counterfactual“If x had not
occurred, then y would not have occurred”is true, then it is possible to claim thatx has causedy
in a particular scenario. The relationship of counterfactuals and cause, particularly actual cause,
have been the subject of much study in philosophy (Lewis 1973; Collins and Hall 2004) and in
Artificial Intelligence (Ginsberg 1986; Pearl 2009; Pereira et al. 1991; Halpern and Hitchcock
2011; Vennekens et al. 2010; Merck and Kleinberg 2016).

Reasoning about Actions and Change (RAC).RAC is concerned with representing the proper-
ties of actions (McCarthy and Hayes 1969). Research in this field studies reasoning over domain
knowledge and, specifically, about the direct and indirect effects of actions, and has uncovered a
variety of interesting representation and reasoning problems (Lifschitz 1987; Haugh 1987; Gel-
fond and Lifschitz 1993; Lin 1996; McCain et al. 1997; Thielscher 1997). In our work, we aim to
leverage mentions of observed events and domain knowledge to determine a detailed picture of
a scenario over time. The section on Preliminaries provides a more technical discussion of RAC
with respect to the description of domains.

Preliminaries

Action LanguageA L . For the representation of the domain and of its evolution over time we
rely on action languageA L (Baral and Gelfond 2000). The syntax ofA L builds upon an
alphabet consisting of a setF of symbols forfluentsand a setE of symbols forevents1.

Fluents are boolean properties of the domain, whose truth value may change over time. A

1 For convenience and compatibility with the terminology from RAC, in this paper we useactionandeventas synonyms.

Contextual Representations of Cause via Reasoning about Actions and Change3

fluent literal is a fluent f or its negation¬ f . Additionally, f = ¬ f and¬ f = f A statement of
the form

ecausesl0 if l1, l2, . . . , ln (1)

is calleddynamic (causal) law, and intuitively states that, if evente occurs in a state in which
literalsl1, . . . , ln hold, thenl0, theconsequence of the law, will hold in the next state. A statement

l0 if l1, . . . , ln (2)

is calledstate constraintand says that, in any state in whichl1, . . . , ln hold, l0 also holds. This
second kind of statement allows for an elegant and concise representation of side-effects, which
increases the expressivity of the language. Finally, anexecutability conditionis a statement of
the form:

e impossible ifl1, . . . , ln (3)

wheree andl1, . . . , ln are as above. (3) states thate cannot occur ifl1, . . . , ln hold. A set of state-
ments ofA L is calledaction description. The semantics ofA L maps action descriptions to
transition diagrams, as discussed next.

A set S of literals is closed under a state constraint(2) if {l1, . . . , ln} 6⊆ S or l0 ∈ S. S is
consistentif, for every f ∈F , at most one off , ¬ f is in S. It is completeif at least one off ,
¬ f is in S. A stateof an action descriptionAD is a complete and consistent set of literals closed
under the state constraints ofAD.

Given an evente and a stateσ , the set of(direct) effects of e inσ , denoted byE(e,σ), is the
set that contains a literall0 for every dynamic law (1) such that{l1, . . . , ln} ⊆ σ . Given a setS
of literals and a setZ of state constraints, theset CnZ(S) of consequences of S under Zis the
smallest set of literals that containsSand is closed underZ. Finally, an evente is non-executable
in a stateσ if there exists an executability condition (3) such that{l1, . . . , ln} ⊆ σ . Otherwise, the
event isexecutablein σ .

The semantics of an action descriptionAD is defined by itstransition diagramτ(AD), a di-
rected graph〈N,E〉 such that:

• N is the collection of all states ofAD;
• E is the set of all triples〈σ ,e,σ ′〉 whereσ , σ ′ are states,e is an event executable inσ , and

σ , e, σ ′ satisfy thesuccessor state equation:

σ ′ = CnZ(E(e,σ)∪ (σ ∩σ ′))

whereZ is the set of all state constraints ofAD.

A triple 〈σ ,e,σ ′〉 ∈ E is called a transition ofτ(AD) andσ ′ is asuccessor state ofσ (under
e). As sequence〈σ1,α1,σ2, . . . ,αk,σk+1〉 is apath ofτ(D) of lengthk if every 〈σi , αi , σi+1〉 is
a transition inτ(D). We refer to stateσ1 of a pathp as theinitial state of p. A path of length
0 contains only an initial state. In the next section, we build upon this formalization to define a
framework for defining CwCs.

Representing Causes with Context

In the example of the trial of Socrates, we claimed that a legal expert would tell us that the actual
cause of his death is that he was charged with impiety. This conclusion can be reached intuitively
by considering that Socrates was sentenced to his death as a consequence of the charge and

4 Emily C. LeBlanc and Marcello Balduccini

that he carried out his sentence by drinking the poison. In this section, we formally define the
concepts of a novel framework for representing causes with context and show that the framework
is capable of representing a CwC relating Socrates’ death to his sentencing.

Assumptions.The goal of our investigation is to develop a framework with which we may repre-
sent and reason about CwCs. We assume that we have complete knowledge of direct and indirect
effects of any events occurring in the domain. The knowledge is specified by a combination of
dynamic laws, state constraints, and executability conditions. We also assume that all knowledge
is correct. This assumption simplifies the problem and allows us to disregard issues related to
uncertainty and inaccurate information that might lead to questionable conclusions about CwCs.

Representing CwCs. In order to represent CwCs, our framework requires a description of a
scenario, an action description for the domain in which the scenario occurred, and the outcome
of interest for which a cause must be identified. We assume that these are provided by an ex-
ternal source and therefore we regard this information as constituting a query to the framework.
We begin our discussion on the formalization of CwCs by defining the components of a query. A
domain descriptionconsists of an action description reflecting the scenario’s domain and of an
event sequence, i.e. a temporal ordering of the events from the scenario:

Definition 1
A domain descriptionis the tupleDD = 〈v,AD〉 wherev = 〈e1,e2, . . . ,ek〉 is an event sequence
containingk events, andAD is an action description.

Recall the events leading up to the death of Socrates in our example: he questioned the gods,
was charged with impiety, was sentenced to death, and drank the poison. These events can be
encoded as an event sequence as follows:

vsoc=〈questionsGods(socrates),

chargedWith(socrates, impiety),

sentencedTo(socrates,death),

drinks(socrates,hemlock)〉

The following action descriptionADsoc provides a characterization of events occurring in the
Socrates domain:

ADsoc=






chargedWith(X,Y) causesinPrison(X), (4)

escapes(X, prison) causes¬inPrison(X) if inPrison(X), (5)

drinks(X,hemlock) causes¬isAlive(X) if isAlive(X), (6)

sentencedTo(X,Y) impossible if¬inPrison(X), (7)

walksOutside(X) impossible ifinPrison(X) (8)

Some rules ofADsoc are straightforward, such as the effect ofX drinking hemlock being that
X is not alive, and so we will not describe them in detail here. For illustration purposes,ADsoc

includes a few simplified commonsense rules about the legal domain. Law (7) states that it is
impossible forX to be sentenced ifX is not in custody. Law (8) states that it is impossible for

Contextual Representations of Cause via Reasoning about Actions and Change5

Table 1:Table representation of the factual path fsoc in the trial of Socrates example.

State Event

σ1 = {isAlive(socrates),¬inPrison(socrates)} questionsGods(socrates)
σ2 = {isAlive(socrates),¬inPrison(socrates)} chargedWith(socrates, impiety)
σ3 = {isAlive(socrates), inPrison(socrates)} sentencedTo(socrates, death)
σ4 = {isAlive(socrates), inPrison(socrates)} drinks(socrates, hemlock)
σ5 = {¬isAlive(socrates), inPrison(socrates)} —

someone to take a walk outside (of the prison) when they are imprisoned. Givenvsoc andADsoc,
the domain description for the Socrates scenario isDDsoc= 〈vsoc,ADsoc〉.

As we mentioned earlier, we also assume that we are provided with a consistent set of fluent
literalsθ representing anoutcomeof interest. In our example, we are interested in representing
a cause for Socrates’s death, so the outcome isθsoc= {¬isAlive(socrates)} in accordance with
the fluents inADsoc.

Definition 2
A queryis a tupleQ = 〈v,AD,θ〉 wherev andAD are the elements of a domain descriptionDD
andθ is an outcome.

The query for our example isQsoc= 〈vsoc,ADsoc,θsoc〉. Given a query, we build upon its com-
ponents in order to define CwCs. We begin this process by representing the set of all possible
mappings of the event sequencev from the domain description to paths of the transition diagram
τ(AD). We refer to these mappings asfactual paths.

Definition 3
Given a queryQ = 〈v,AD,θ〉 such thatv = 〈e1,e2, . . . ,ek〉, a factual pathis a path
f = 〈σ1,α1,σ2, ...,αk,σk+1〉 of τ(AD) satisfying the following conditions:

1. ∀i,1≤ i ≤ k, αi = ei

2. θ ⊆ σk+1

Note that, because of potentially non-deterministic effects of actions inAD,2 an event sequencev
may map to multiple paths inτ(AD). In the following discussion, the set of all factual paths
with respect to some domain descriptionDD = 〈v,AD〉 and outcomeθ is denoted byF =
{ f1, f2, . . . , fm}.

Condition 1 requires that the events inf correspond to the events ofv in order of their oc-
currence, capturing the idea that each event ofv corresponds to a transition between states inf .
Condition 2 requires that the fluent literals of the outcomeθ are satisfied in the final state off ,
capturing the idea that the outcome is expected to hold in the final state of every factual path. Ta-
ble 1 provides a representation of a factual pathfsoc that corresponds to queryQsoc given above.

2 For example, consider the action description{q if ¬r, p; r if ¬q, p; a causesp}.

6 Emily C. LeBlanc and Marcello Balduccini

Figure 1: Factual and counterfactual paths for reasoning about Socrates’ death.

The first column of the table lists the values of fluents in each stateσi of fsoc and the second
column gives the eventαi that causes a transition to the stateσi+1 given in the following row. It
is easy to see that the factual pathf satisfies both conditions with respect tovsoc andθsoc.

In our approach, the process of reasoning about actual cause requires findingcounterfactual
pathsin τ(AD) that diverge from a given factual pathf with the occurrence of some “counter-
factual event” and terminates in a state where the outcome of interest does not hold. A (possibly
empty) set of counterfactual paths exists for every factual pathf ∈ F with respect to a queryQ.
Representing a counterfactual path and its divergence fromf requires, in part, identifying states
and events shared by both paths prior to the point at which they diverge. We formalize this notion
as follows.

Given a pathp= 〈σ1,α1,σ2, . . . ,αk,σk+1,〉, we call the sequenceρ = 〈σ1,α1,σ2, . . . ,α j ,σ j+1〉,
where j ≤ k, astate-terminated prefix, or st-prefix, of p. Notice that an st-prefix is defined so that
it always begins and ends in a state. Clearly, an st-prefix is a path inτ(AD). We also require a
representation of the “opposite” of the outcome of interest to help define counterfactual paths.
Given an outcomeθ , we defineinverseoutcomeθ to be the set{l | l ∈ θ}. We now build upon
these concepts to define counterfactual paths.

Definition 4
Given queryQ = 〈v,AD,θ〉, a factual pathf with respect toQ, and inverseoutcomeθ , acounter-
factual pathis a pathf ′ = 〈σ1,α1,σ2, ...,αk,σk+1〉 of τ(AD) satisfying the following conditions:

1. The factual pathf and counterfactual pathf ′ share an st-prefix
ρ = 〈σ1,α1,σ2, ...,α j ,σ j+1〉 where 0≤ j < k.

2. θ ⊆ σk+1

In the following discussion, the set of all possible counterfactual paths with respect to the factual
path f is denoted byF ′ = { f ′1, f ′2, ..., f ′m′ }.

Condition 1 requires that any counterfactual pathf ′ with respect to the factual pathf shares
an st-prefixρ with f . Condition 2 requires that the fluent literals of the inverseoutcomeθ final
state are satisfied in the final state off ′.

In our example, it is straightforward to reason overADsocand obtain a counterfactual pathf ′soc

for fsoc that shares an st-prefixρsoc terminating in stateσ3 of fsoc. In both fsoc and f ′soc, Socrates
is charged with impiety at stateσ2 and as a result is in prison in the successor stateσ3 because
of law (4) in ADsoc. The pathf ′soc shown in the Figure 1 diverges fromfsoc at stateσ3, at which
point evente3 = escapes(socrates, prison) occurs. Note thatADsoc contains no laws preventing

Contextual Representations of Cause via Reasoning about Actions and Change7

such an event from occurring. Escaping prison results in Socrates not being imprisoned in the
successor stateσ ′4 of f ′socas per law (5) inADsoc. Because Socrates is not imprisoned in stateσ ′4,
eventwalksOutside(X) is executable and thusf ′soc is a valid path in which he avoids sentencing.
Socrates is therefore alive in the final stateσ ′5. It is easy to see thatf ′soc satisfies the conditions
of the definition of counterfactual paths. Figure 1 gives a graphical representation, with English
descriptions of the events, of the divergence off ′soc from fsoc with the occurrence of Socrates’
counterfactual escape from prison. To simplify the presentation, we assume thatf ′soc is the only
counterfactual path forQsocand thereforeF ′soc= { f ′soc}, although it is easy to see that in another
of numerous possible counterfactual paths forfsoc, Socrates could have taken a walk instead of
questioning the gods in the first state, avoiding death in the final state.

For every counterfactual pathf ′ with respect to a factual pathf , we can define a cause with
context. CwCs capture information about the factual and counterfactual paths, the outcome of
interest, and a possible cause. In the remainder of this section, we present the concepts required
to represent CwCs using our framework. We begin by formally representing the divergence of a
counterfactual pathf ′ from a factual pathf and use it to determine the event inf that represents
a cause for the outcome of interest.

Definition 5

Let f and f ′ be a factual and counterfactual path, respectively, and let their maximal shared st-
prefix beρ = 〈σ1,α1,σ2, . . . ,α j ,σ j+1〉. We say thatj + 1 is thedivergence pointof f and f ′,
denoted byδ (f , f ′).

Definition 6

Given a factual pathf , a counterfactual pathf ′, and a divergence pointδ (f , f ′), thecauseis the
eventc = αδ (f , f ′) of f .

Intuitively, eventα ′δ (f , f ′) of f ′ is the event that triggered the divergence fromf towards a

state in which the inverseoutcomeθ is satisfied. Eventαδ (f , f ′) is the event that “actually” hap-
pened, leading to the final state where the outcome of interestθ is satisfied. The representation
of cause from Definition 6 follows the counterfactual definition of cause discussed earlier in the
paper. In our example, we have already determined thatf ′soc diverges fromfsoc at the stateσ3,
and soδ (f , f ′)soc = 3. In other words, if eventαδ (f , f ′) = α3 in the factual pathfsoc had not
occurred, ultimately leading to Socrates’ death inσ5, then eventα ′δ (f , f ′) = α ′3 of the counterfac-

tual path f ′soc could have occurred instead, leading to an alternate sequence of events in which
Socrates is alive in the final state of the sequence. Referencing eventα3 of fsoc, we can state that
csoc= sentencedTo(socrates,death) is the cause ofθ for this pair of f and f ′ as per Definition 6.

Definition 7

A cause with context, or CwC, for a queryQ = 〈v,AD,θ〉 is the tupleC = 〈c,θ , f , f ′〉 wherec
is a cause,θ is an outcome,f is a factual path, andf ′ is a counterfactual path.

The definition ofCwC captures information about the relationship between a causec and an

8 Emily C. LeBlanc and Marcello Balduccini

outcomeθ by providing the paths needed to determinec and the query containing the information
used to obtain the paths. In our example, the CwC

Csoc= 〈sentencedTo(socrates,death),¬isAlive(socrates), fsoc, f ′soc〉

represents a scenario in which the sentencing of Socrates is a possible cause of his death.

Computing Causes with Context

In the previous section, we presented a framework for formalizing CwCs. In this section, we
demonstrate how it is possible to compute CwCs for a given queryQ via Answer Set Pro-
gramming (ASP) (Gelfond and Lifschitz 1988; Gelfond and Lifschitz 1991), a form of declara-
tive programming that is useful in knowledge-intensive applications. In the ASP methodology,
problem-solving tasks are reduced to computing answer sets of suitable logic programs. As such,
ASP is well suited to the task of computing CwCs from event mentions and domain knowledge.
We begin this section with a discussion of the syntax and semantics of Answer Set Programming.

Answer Set Programming.Let Σ be a signature containing constant, function and predicate
symbols. Terms and atoms are formed as in first-order logic. Aliteral is an atoma or its strong
negation¬a. Literals are combined to form rules that represent both domain knowledge and event
mentions in our approach. Arule in ASP is a statement of the form:

h← l1, . . . , lm,not lm+1, . . . ,not ln

wherehi ’s (the head) andli ’s (the body) are literals andnot is the so-calleddefault negation.
Intuitively, the meaning of default negation is the following: “if you believe{l1, . . . , lm} and
have no reason to believe{lm+1, . . . , ln}, then you must believeh”. An ASP rule with an empty
body is called a fact, and that in writing facts, the← connective is dropped. Rules of the form
⊥ ← l1, . . . ,not ln are abbreviated← l1, . . . ,not ln, and calledconstraints, intuitively meaning
that{l1, . . . ,not ln} must not be satisfied. A rule with variables (denoted by an uppercase initial)
is interpreted as a shorthand for the set of rules obtained by replacing the variables with all
possible variable-free terms. Aprogramis a set of rules overΣ.

A consistent setSof domain literals is closed under a rule ifh∈ Swhenever{l1, . . . , lm} ⊆ S
and{lm+1, . . . , ln}∩S= /0. SetS is an answer set of anot-free programΠ if S is the minimal set
closed under its rules. The reduct,ΠS, of a programΠ w.r.t. S is obtained fromΠ by removing
every rule containing an expression “notl ” s.t. l ∈ Sand by removing every other occurrence of
not l . Finally, etS is an answer set of a programΠ if S is the answer set ofΠS.

For a convenient representation of choices, in this paper we also useconstraint literals, which
are expressions of the formm{l1, l2, . . . , lk}n, wherem, n are arithmetic expressions andli ’s
are basic literals. A constraint literal is satisfied w.r.t.S wheneverm≤ |{l1, . . . , lk} ∩S| ≤ n.
Constraint literals are especially useful to reason about available choices. For example, a rule
1{p,q, r}1. intuitively states that exactly one of{p,q, r} should occur in every answer set.

Translating a query Q to ASP.A queryQ = 〈DD,θ〉 is translated to ASP as follows. First, the
elements ofDD = 〈v,AD〉 are translated into their ASP counterpartsDDp = 〈vp,ADp〉. For every
eventei in v, a factoccurs(e, i) is included invp, indicating that evente occurred at stepi of the
story.

SetADp contains the ASP encoding of every dynamic causal law, state constraint, and exe-
cutabilty condition ofAD according to the mapping from Table 2. The encoding illustrated in the

Contextual Representations of Cause via Reasoning about Actions and Change9

Table 2:ASP translations of action descriptionlaws.

Law ASPRepresentation

Dynamic Causal Law holds(l0, I +1)← holds(l1, I), . . . ,holds(ln, I),occurs(e, I).
State Constraint holds(l0, I)← holds(l1, I), . . . ,holds(ln, I).
Executability Condition ← holds(l1, I), . . . ,holds(ln, I),occurs(e, I).

table follows a rather typical translation ofA L , see e.g. (Balduccini and Gelfond 2003). In this
mapping,I is a variable ranging over all possible states, or time steps3, in the evolution of the
domain. Atomholds(l , i) states4 that a fluent literall holds at time stepi. For example, law (5)
from ADsoc is translated to the following ASP rule:

¬holds(inPrison(X), I)← occurs(escapes(X, prison), I), holds(inPrison(X), I).

An ASP action description also contains rules formalizing the principle of inertia, which states
that things generally stay as they are (McCarthy and Hayes 1969):

holds(F, I +1)← f luent(F),holds(F, I),not ¬holds(F, I +1).

¬holds(F, I +1)← f luent(F),¬holds(F, I),not holds(F, I +1).

Finally, θ is translated to ASP so that, for each fluentf ∈ θ , the following constraint is added
to θp:

← notholds(f ,k+1).

wherek is the number of events in the sequencevp. Similarly, for every¬ f ∈ θ , θp contains the
constraint:

← not¬holds(l ,k+1).

In general, the translated query is represented by the set of rulesΠQ = vp∪ADp∪ θp, con-
taining rules corresponding to each element of the query.

Differentiating between Factual and Counterfactual Paths. Our approach to computing
CwCs depends in part on the ability to differentiate between factual and counterfactual paths
during computation. We facilitate this by enabling the reasoner to create labeled variants of the
literals that encode a path by means of the following set oftyping rules:

ΠT =






holds(L, I ,T)← holds(L, I), type(T).

¬holds(L, I ,T)←¬holds(L, I), type(T).

occurs(E, I ,T)← occurs(E, I), type(T).

Relationtypespecifies the type of path being considered by the reasoner. Its argument can be
fp, for factual path, orcfp, for counterfactual path. The use ofΠT is illustrated next.

3 Herein, the termsstateandtime stepare used interchangeably.
4 To ensure that all ASP literals are syntactically legal, ifl is a negated fluent,¬ f , then we write the corresponding ASP

literal as¬holds(f , i).

10 Emily C. LeBlanc and Marcello Balduccini

Computing Factual Paths from a Query. Given a programΠQ representing the translated
queryQ and the set of typing rulesΠT , we define rules for computing factual paths as follows.
Recall that the events ofvp are the events of the factual path as per Definition 3, each representing
a transition between states in the factual path. Thus, in order to determine a factual path, we need
to identify a possible initial state for it. The successive states in the path can then be inferred by
means ofADsocp. In order to determine the initial state for a factual path, we use:

Πinit =
{

1{holds(F,0),¬holds(F,0)}1← f luent(F).

The careful reader may notice that this rule is of form similar to the awareness axiom from
(Gelfond and Kahl 2014). However, the intention behind the two axioms is arguably different.

We say that a factual pathf = 〈σ1,e1,σ2, . . . ,ek,σk+1〉 is encodedby a setA of literals if-and-
only-if occurs(ei , i, fp) ∈ A for every eventei in f andholds(l , i, fp) ∈ A for every stateσi of
f and l ∈ σi . Similarly, a counterfactual path is given by literals of the formoccurs(ei , i, cfp)
andholds(l , i, cfp). Thus, the factual paths for a given queryQ can be found by computing the
answer sets of the program consisting of the translationΠQ of Q, the typing rules ofΠT , and
the rules for computing the initial state of the factual pathΠinit . More precisely:

Proposition 1.
Let Fp be the set of factual paths for a given queryQ. A path fp belongs toFp if-and-only-if fp

is encoded by some answer set of the programΠP1 = ΠQ ∪Πinit ∪ΠT ∪{type(f p).}.

In the rest of the paper,Π fi denotes the set of literals of answer setAi of ΠP1 that encode a
factual path. The setFp = {Π f1,Π f2, . . . ,Π fm} is the ASP representation of setF of all factual
paths. We will use a setΠ fi to aid the next program in the computation of counterfactual paths.

Computing Counterfactual Paths and Cause from Factual Paths.We can now define a pro-
gram for computing the counterfactual paths for a factual path encoded by a setΠ fi of literals
from the previous computation, as well as the cause as per Definition 6. Each answer set of
such program contains the elements of a CwC. As we did previously, we make use of the typing
rules, this time specifying that the computed paths should be labeled as counterfactual paths by
including the atomtype(cfp).

When computing counterfactual paths, we are looking for any paths in the transition diagram
of the action description that share an st-prefix with the factual path in question and whose final
state satisfies the inverse outcome. In this case, we cannot assume any initial knowledge of any
of the events of (the non-prefix part of) the counterfactual path. For this reason, we begin by
allowing considering all paths of the transition diagram ofADp as candidate counterfactual paths
using:

ΠG =

{
step(1..k).

1{occurs(E, I) : event(E)}1← step(I).

The first rule specifies the number of transitions in a candidate path and the second rule states
that any (single) event may occur at any step.

Recall Condition 1 from Definition 4, which requires any counterfactual pathf ′ that diverges

Contextual Representations of Cause via Reasoning about Actions and Change11

from a factual pathf to share an st-prefixρ with f . This implies thatf and f ′ must share the
initial state:

Lemma 1
If f ′ is a counterfactual path for a factual pathf , then the initial states off ′ and f coincide.

Lemma 1 tells us thatf and f ′ share an initial state, and it is straightforward to show that the
theorem holds in the general case. Hence, the initial state of the counterfactual path can defined
by:

Πσinit =

{
holds(L,1)← holds(L,1, f p).

¬holds(L,1)←¬holds(L,1, f p).

Intuitively, the purpose ofΠσinit is to produce literals of the formholds(l , i) andoccurs(e, i), so
that they can be used, together with the rules ofADp, to reason about paths ofτ(AD) stemming
from the given initial state. Once desired paths have been found, the typing rules, together with a
facttype(cfp), will yield literals of the formholds(l , i,cfp) andoccurs(e, i,cfp) to create the paths
labeledcfp.

In order to satisfy Condition 1 of the definition of counterfactual path, we must ensure that any
path found shares an st-prefix with the factual path being considered. This is accomplished via
the following rules, which leverage the typed variants of relationsholdsandoccurs:

Πdiv =






1{div(I) : step(I)}1.

← holds(F, I ,P1), ¬holds(F, I ,P2), P1 6= P2, div(δ), I ≤ δ .

← occurs(E, I ,P1), notoccurs(E, I ,P1), P1 6= P2, div(δ), I < δ .

These rules enable the reasoner to find counterfactual paths by “guessing” a possible diver-
gence point and checking if the literals and events of the factual path (typefp) and of the coun-
terfactual path (typecfp) are identical up to the point indicated by the guess.

Condition 2 of the definition of counterfactual path is enforced as follows. For each fluent
f ∈ θ , setθ p contains:

← not¬holds(f ,k+1).

Similarly, for every¬ f ∈ θ , θ p includes:

← notholds(f ,k+1).

which ensures that all computed counterfactual paths end in a statewhereθ p is satisfied.
Finally, we include a rule that computes the cause according to Definition 6 by identifying the

event that occurs at the state indicated by the divergence point:

Πcause=
{

cause(E)← div(I),occurs(E, I , f).

We can now find a setF ′p of counterfactual paths and corresponding causes for a factual path
Π fi given byΠP1 above by computing the answer sets of the program consisting of the literals
encoding the factual pathΠ fi , the translation of the action descriptionADp, the inverseoutcome
θ p, the rules for generating candidate pathsΠG, the rules for finding the divergence point of
pathsΠdiv, the rule for isolating the cause in the factual pathΠcause, and the typing rules ofΠT .
More precisely:

12 Emily C. LeBlanc and Marcello Balduccini

Proposition 2
Let F ′p be the set of counterfactual paths for a given factual path encodingΠ fi . Given program
ΠP2 = Π fi ∪ADp∪θ p∪ΠG∪Πdiv∪Πcause∪ΠT ∪{type(cfp).}, the following hold:

1. Pathf ′ ∈ F ′p if and only if f ′ is encoded by some answer set ofΠP2

2. Evente is a cause if and only ifcause(e) is in some answer set ofΠP2

In the following,Π f ′i
denotes the set of literals from answer setAi of ΠP2 that encode a coun-

terfactuals path. The setF ′p = {Π f ′1
, Π f ′2

, . . . ,Π f ′m} is the ASP representation of setF ′ of all
counterfactual paths.

Summing up, given a queryQ = 〈v,AD,θ〉, a factual pathf for it can be found by computing
an answer set ofΠP1; then, a counterfactual pathf ′ for f can be found by computing an answer
set ofΠP2. The same answer set also encodes causee. Together withθ from Q, this yields a
CwCC = 〈e,θ , f , f ′〉 with respect toQ.

It is straightforward to translate the query from the Socrates example of the previous section
into ASP using the approach given in this section. Then, using the programs given by Proposi-
tions 1 and 2 for computing factual paths, counterfactual paths, and causes, we can compute the
CwC obtained in the previous section relating Socrates’ death to his sentencing.

Related Work

To our knowledge, there are no related efforts to representing and reasoning about causes with
context as we have presented here. The majority of research regarding counterfactuals and actual
cause in artificial intelligence is concerned with modeling and evaluating provided counterfac-
tual statements, e.g.“If x had (or had not) been true, then y would be true”, by simulating the
proposed relationship in a model of causal dependencies and analyzing the behavior of system
(Pearl 2009; Baral and Hunsaker 2007; Pereira and Saptawijaya 2016; Chockler and Halpern
2004). Our work differs from these approaches in that we infer the possible cause via counter-
factual inference over a domain description and outcome of interest, rather than evaluating a
statement that proposes a possible cause.

Conclusions and Future Work

In this paper we have introduced the notion of cause with context, or CwC, which is a variation
on the concept of actual cause that provides us not only with a possible cause for an outcome of
interest, but with additional information about how the cause fits into the world. We presented
a novel framework linking CwCs and counterfactual reasoning and demonstrated it on a CwC
for the cause of Socrates’ death in the legal context from the introductory example. We have
also presented an approach to computing CwCs via Answer Set Programming. Note that our
approach to representing and reasoning about CwCs does not strictly rely upon the use of Answer
Set Programming as we have shown here. It may be possible to formalize our framework using
other well-known logical languages (e.g. Event or Situation Calculus) for reasoning about actions
and change as long as they provide the ability to represent and reason about the occurrence of
events and information about the state of the world before, during, and after them via a transition
diagram.

The aim of the work presented here is to lay the foundations of CwCs from a representational
standpoint, leveraging techniques from RAC and counterfactual reasoning to represent scenarios

Contextual Representations of Cause via Reasoning about Actions and Change13

and to identify possible actual causes for an outcome of interest. In future phases of our work we
aim to conduct a case study to explore how our framework can handle common issues that arise
when determining cause (e.g. overdetermination, preemption, contributory cause), investigate
possible relationships between our work and existing approaches to evaluating causal relation-
ships, explore how the contextual information in CwCs can be characterized (e.g.Csoc relates to
the legal domain), and address issues of computational complexity.

References

BALDUCCINI , M. AND GELFOND, M. 2003. Diagnostic reasoning with a-prolog.Theory and Practice of
Logic Programming 3,4+ 5, 425–461.

BARAL , C. AND GELFOND, M. 2000. Reasoning Agents In Dynamic Domains. InWorkshop on Logic-
Based Artificial Intelligence. Kluwer Academic Publishers, 257–279.

BARAL , C. AND HUNSAKER, M. 2007. Using the probabilistic logic programming language p-log for
causal and counterfactual reasoning and non-naive conditioning. InIJCAI. 243–249.

CHOCKLER, H. AND HALPERN, J. Y. 2004. Responsibility and blame: A structural-model approach.
Journal of Artificial Intelligence Research 22, 93–115.

COLLINS, J. D.AND HALL , E. J. 2004.Causation and counterfactuals. MIT Press.
GELFOND, M. AND KAHL , Y. 2014.Knowledge Representation, Reasoning, and the Design of Intelligent

Agents. The Answer-Set Programming Approach. Cambridge University Press.
GELFOND, M. AND LIFSCHITZ, V. 1988. The stable model semantics for logic programming. InProceed-

ings of ICLP-88. 1070–1080.
GELFOND, M. AND LIFSCHITZ, V. 1991. Classical Negation in Logic Programs and Disjunctive

Databases.New Generation Computing 9, 365–385.
GELFOND, M. AND LIFSCHITZ, V. 1993. Representing Action and Change by Logic Programs.Journal

of Logic Programming 17,2–4, 301–321.
GINSBERG, M. L. 1986. Counterfactuals.Artificial intelligence 30,1, 35–79.
HALPERN, J. Y. AND HITCHCOCK, C. 2011. Actual causation and the art of modeling.arXiv preprint

arXiv:1106.2652.
HAUGH, B. A. 1987. Simple causal minimizations for temporal persistence and projection. InAAAI.

218–223.
LEWIS, D. 1973. Counterfactuals and comparative possibility.Journal of Philosophical Logic 2,4, 418–

446.
LIFSCHITZ, V. 1987. Formal theories of action (preliminary report). InIJCAI. 966–972.
LIN, F. 1996. Embracing causality in specifying the indeterminate effects of actions. InProceedings of the

thirteenth national conference on Artificial intelligence-Volume 1. AAAI Press, 670–676.
MCCAIN , N., TURNER, H., ET AL. 1997. Causal theories of action and change. InAAAI/IAAI. 460–465.
MCCARTHY, J. AND HAYES, P. J. 1969. Some philosophical problems from the standpoint of artificial

intelligence.Readings in artificial intelligence, 431–450.
MERCK, C. A. AND KLEINBERG, S. 2016. Causal explanation under indeterminism: A sampling approach.

In AAAI. 1037–1043.
PEARL, J. 2009.Causality. Cambridge University Press.
PEREIRA, L. M., APARÍCIO, J. N., ALFERES, J. J.,AND JOAQUIM, P. 1991. Counterfactual reasoning

based on revising assumptions.
PEREIRA, L. M. AND SAPTAWIJAYA , A. 2016. Counterfactuals, logic programming and agent morality.

Logic, Argumentation & Reasoning. Berlin: Springer (forthcoming).
THIELSCHER, M. 1997. Ramification and causality.Artificial intelligence 89,1-2, 317–364.
VENNEKENS, J., BRUYNOOGHE, M., AND DENECKER, M. 2010. Embracing events in causal modelling:

Interventions and counterfactuals in cp-logic. InEuropean Workshop on Logics in Artificial Intelligence.
Springer, 313–325.

