Diagnosing physical systems in A-Prolog

Michael Gelfond, Marcello Balduccini®, and Joel Galloway?

! Department of Computer Science, Texas Tech University
Lubbock, TX 79409, USA
{mgelfond,balduccini}@cs.ttu.edu
WWW home page: http://wuw.cs.ttu.edu/ mgelfond
2 Dupont Pharmaceuticals, San Diego, CA, USA
Joel.R.Galloway@dupontpharma.com

Abstract. In this paper we suggest an architecture for a software agent
which operates a physical device and is capable of making observations
and of testing and repairing the device components. We present novel
definitions of the notions of symptom, candidate diagnosis, and diagnosis
which are based on the theory of action language AL. The new definitions
allow one to give a simple account of the agent’s behavior in which many
of the agent’s tasks are reduced to computing stable models of logic
programs.

1 Introduction

In this paper we continue the investigation of applicability of A-Prolog (a loosely
defined collection of logic programming languages under the answer set semantics
[6]) to knowledge representation and reasoning. The focus is on the development
of an architecture for a software agent acting in a changing environment. We
assume that the agent and the environment (sometimes referred to as a dynamic
system) satisfies the following simplifying conditions.

1. The agent’s environment is viewed as a transition diagram whose states are
sets of fluents (relevant properties of the domain whose truth values may
depend on time) and whose arcs are labeled by actions.

2. The agent is capable of making correct observations, performing actions, and
remembering the domain history.

These assumptions hold in many realistic domains and are suitable for a broad
class of applications. In many domains, however, the effects of actions and the
truth values of observations can only be known with a substantial degree of
uncertainty which cannot be ignored in the modeling process. It remains to be
seen if some of our methods can be made to work in such situations. The above
assumptions determine the structure of the agent’s knowledge base. It consists
of three parts. The first part, called an action (or system) description, specifies
the transition diagram representing possible trajectories of the system. It con-
tains descriptions of domain’s actions and fluents, together with the definition
of possible successor states to which the system can move after an action a is

o
s2

s (O)

I
I
:
I
| .9

; s

+

Fig. 1. AC

executed in a state 0. The second part of the agent’s knowledge, called history
description, contains observations made by the agent together with a record of
its own actions. It defines a collection of paths in the diagram which can be inter-
preted as the system’s possible pasts. If the agent’s knowledge is complete (i.e., it
has complete information about the initial state and the occurrences of actions)
and the system’s actions are deterministic then there is only one such path. The
third part of agent’s knowledge base contains a collection of the agent’s goals.
All this knowledge is used and updated by the agent who repeatedly executes
the following steps:

1. observe the world and interpret the observations;
2. select a goal;

3. plan;

4. execute part of the plan.

In this paper we concentrate on agents operating physical devices and capable
of testing and repairing the device components. We are especially interested in
the first step of the loop, i.e. in agent’s interpretations of discrepancies between
agent’s predictions and the system’s actual behavior. The following example will
be used throughout the paper:

Ezample 1. Consider a system S consisting of an analog circuit AC from figure
1. We assume that switches s; and ss are mechanical components which cannot
become damaged. Relay ris a magnetic coil. If not damaged, it is activated when
s1 is closed, causing s; to close. Undamaged bulb b emits light if s is closed. For
simplicity we consider an agent capable of performing only one action, close(s;).
The environment can be represented by two damaging exogenous actions: brk,
which causes b to become faulty, and srg, which damages r and also b assuming
that b is not protected. Suppose that the agent operating this device is given
a goal of lighting the bulb. He realizes that this can be achieved by closing the
first switch, performs the operation, and discovers that the bulb is not lit. The
goal of the paper is to specify the agent’s behavior after this discovery.

We start with presenting our definitions of the notions of symptom, candidate
diagnosis, and diagnosis which are based on the theory of action language AL

[1]. These definitions are used to give a simple account of the agent’s behavior
in which many of the agent’s tasks are reduced to computing stable models of
logic programs.

Background

By a physical system S we mean a triple (C, F, A) of finite sets. Elements of C are
called components of S. Elements of F' are referred to as fluents. By fluent literals
we mean fluents and their negations (denoted by —f). The set A of elementary
actions is partitioned into two disjoint sets, A; and A.; As consists of actions
performed by an agent and A. consists of exogenous actions whose occurrence
can cause system components to malfunction.

A system S will be associated with the transition diagram 7'(S) (or simply T').
States of T are labeled by complete and consistent sets of fluent literals corre-
sponding to possible physical states of S. The arcs are labeled by subsets of A
called compound actions. Execution of a compound action {ai,...,ax} corre-
sponds to the simultaneous execution of its components. Paths of 7' correspond
to possible behaviors (or trajectories) of S. To reason about S we need to have a
concise and convenient way to define its transition diagram. This will be done by
a system description SD(S) (or simply SD) consisting of rules of A-Prolog defin-
ing components of S, its fluent and actions, causal laws determining the effects of
these actions, and the actions’ executability conditions. We assume that SD has
a unique answer set which defines an action description of AL. (In our further
discussion we will identify this action description with SD.) Causal laws of SD
can be divided into two parts. The first part, SD,,, contains laws describing nor-
mal behavior of the system. Their bodies usually contain special fluent literals
of the form —ab(c). As usual ab(c) is read as “component c of S is abnormal”. Its
use in diagnosis goes back to [15]. The second part, SDy, describes effects of ex-
ogenous actions damaging the components. Such laws normally contain relation
ab in the head or positive parts of the bodies.

In addition to describing all possible trajectories of S, we need to describe the
history of S up to a current moment n. This is done by a collection I3, of
statements in the ‘history description’ part of AL. We assume that the system’s
time is discrete and t; and ¢;;; stand for two consecutive moments of time in
the interval 0...n. Statements of I, have the form:

1. obs(l,t) - ‘fluent literal [was observed to be true at moment ¢’;
2. hpd(a,t) - elementary action a € A was observed to happen at moment ¢

where 0 < t < n. For simplicity we only consider histories with observations
closed under the static causal rules of AL, (i.e. if every state of S must satisfy a
constraint ‘fluent literal [y is true if fluent literals from P are true’ and literals
from P are observed in I' then so must be ly). Let S be a system with the
transition diagram T and let I, be a history of S up to moment n. A path
00,00,01y...,0n_1,0y, in T is a model of I, iff

1. ap = {a: hpd(a,k) € I, };
2. if obs(l, k) € I, then [€ oy.

T, is consistent (with respect to T') if it has a model. A fluent literal [holds
in a model M at time k < n (M | h(l,k)) if [l € ok. Finally, I, = h(l, k)
if, for every model M of I,, M = h(l,k). Notice that, in contrast to action
description language £ from [2], [3] a domain description of AL is consistent
only if changes in the observations of system’s states can be explained without
assuming occurrences of any action not recorded in I7,.

The following is a description, SD, of system S from Example 1:

Fluents:
comp(r). comp(b). switch(s1). switch(sz)
f(active(r)). f(on(b)). f(prot(b)).
f(closed(SW)) < switch(SW).
f(ab(X)) +— comp(X).

Agent Actions: Exogenous Actions
a_act(close(s1)). z_act(brk).
z_act(srg).

Causal Laws and Executability Conditions describing normal functioning of S:

causes(close(s1), closed(s1), [])-
caused(active(r), [closed(s1), ~ab(r)]).
caused(closed(ss), [active(r)]).
caused(on(b), [closed(sz2), ~ab(b)]).
caused(—on(b), [-closed(sz2)]).
impossible_if(close(s1), [closed(s1)]).

SD,

(causes(A, L, P) says that execution of action A in a state satisfying fluent liter-
als from P causes fluent literal L to become true in a resulting state; caused(L, P)
means that every state satisfying P must also satisfy L, impossible_if(A, P) in-
dicates that action A is not executable in states satisfying P.) The system’s
malfunctioning information is given by:

causes(brk, ab(b),[])
causes(srg, ab(r),|[])
SDy < causes(srg, ab(b), [-prot(b)]).
caused(—on(b), [ab(b)]).
caused(—active(r), [ab(r)]).

Now consider a history, Iy of S:

hpd(close(s1),0).
obs(—closed(s1),0).
obs(—closed(sz),0).
obs(—ab(b),0).
obsgﬁ (r),0).

prot(b),0).

Io ab
ab

It is easy to see that the path (o9, close(s1), 1) is the only model of I and that
Iy = h(on(b),1)

2 Basic Definitions

Let S be a system with the transition diagram 7', n be a moment of time, O,
be a collection of observations made by the agent starting at n, and I, ; be the
previous history of S. We say that a pair

S=(I'h_1,0n) (1)

is a symptom of the system’s malfunctioning if I',_; is consistent (w.r.t. T) and
I',_1UO,, is not. Our definition of a candidate diagnosis of symptom (1) is based
on the notion of ezxplanation from [1]. In our terminology, an explanation, E, of
symptom (1) is a collection of statements

E = {hpd(a;,t): 0 <t<mnand a; € A} (2)
such that I,_; UO, U E is consistent.

Definition 1. A candidate diagnosis D of symptom (1) consists of an explana-
tion E(D) of (1) together with the set A(D) of components of S which could
possibly be damaged by actions from E(D). More precisely, A(D) = {c¢: M =
h(ab(c),n — 1)} for some model M of I,_; U O, U E(D).

Definition 2. We say that a diagnosis of a symptom S = (I,_1,0,,) is a can-
didate diagnosis in which all components in A are faulty.

3 Computing candidate diagnoses

In this section we show how the need for diagnosis can be determined and can-
didate diagnoses found by the techniques of answer set programming [10].

Consider a system description SD of S whose behavior up to the moment n — 1
from some interval [0, N] is described by history I),_;. (We assume that N is
sufficiently large for our application.) We start by describing an encoding of
SD into programs of A-Prolog suitable for execution by SMODELS [14]. Since
SMODELS takes as an input programs with finite Herbrand bases, references to
lists should be eliminated from SD. To do that we expand the signature of SD
by new terms - names of the corresponding causal laws - and consider a mapping
a defined as follows:

1. a(causes(a,lo,[ly...ln])) is the collection of atoms d_law(d), head(d,lo),
action(d,a), prec(d,i,l;) for 1 < ¢ < m, and prec(d,m + 1,nil) (Here and
below d will refer to the name of the corresponding law).

2. a(caused(lo, [l1 -..1ly))) is the collection of atoms s_law(d), head(d,),
prec(d, i,1;) for 1 < i < m, and prec(d,m + 1, nil).

3. a(impossible_if(a,[l1...ly])) is a constraint

— (11, T),..., k(s T),
o(a,T).

where o(a,t) stands for action a occurred at time t.

By a(SD) we denote the result of applying a to the laws of SD. Finally, for any
history, I', of S
a(SD,I'Y=IODUa(SD)UT

where IT is defined as follows:

(1. h(L,T") + dlaw(D),
head(D, L),
action(D, A),
o(A,T),
prec_h(D,T).
2. h(L,T) + slaw(D),
head(D, L),
prec_h(D,T).
3. all_.h(D, N, T) + prec(D, N, nil).
IT { 4. all.h(D,N,T) « prec(D, N, P),
h(P,T),
all_h(D,N',T).
5. prec.h(D,T) < all_h(D,1,T).

6. h(L,T") « h(L,T),
not h(L,T").
7. 0(A,T) <+ hpd(A,T).
8. h(L,0) + obs(L,0).
9. + obs(L,T),
L not h(L,T).

Here D, A, L are variables for the names of laws, actions, and fluent literals
respectively, T, 7" denote consecutive time points from the interval [0, N], and
N, N’ are variables for consecutive integers. (The corresponding typing predi-
cates in the bodies of some rules of IT are omitted to save space; o is used instead
of hpd to distinguish between actions observed and actions hypothesized). The
following terminology will be useful for describing the relationship between an-
swer sets of a(SD, I, 1) and models of I7, ;.

We say that an answer set AS of a(SD, I, 1) defines the trajectory

D = 00,80,01,-..,0n_2,0n_1 Where o, = {l : h(l,k) € AS} and ar = {a :
o(a, k) € AS}.

The following theorem establishes the relationship between the theory of actions
in AL and logic programming.

Theorem 1. If the initial situation of I, 1 is complete, i.e. for any fluent f
of SD, I',,_1 contains obs(f,0) or obs(—f,0) then M is a model of I',_1 iff M
is a trajectory defined by some answer set of a(SD,I',_1).

(The theorem is similar to the result from [18] which deals with a different
language and uses the definitions from [11]).

Now let S be a symptom of the form (1), and let
TEST(S)=a(SD,[,-1)UO, UR (3)

where

R obs(f,0) < not obs(—f,0).
obs(—f,0) + not obs(f,0).

for any fluent f € F. The rules of R are sometimes called the awareness axioms.
They guarantee that initially the agent considers all possible values of the do-
main fluents. (If the agent’s information about the initial state of the system is
complete these axioms can be omitted.) The following corollary forms the basis
for our diagnostic algorithms.

Corollary 1. Let S = (I',_1,0,,) where I',_ is consistent. Then S is a symp-
tom of system’s malfunctioning iff the program
TEST(S) has no answer set.

To diagnose the system, S, we construct a program, DM, defining an ezpla-
nation space of our diagnostic agent - a collection of sequences of exogenous
events which could happen (unobserved) in the system’s past and serve as pos-
sible explanations of unexpected observations. We call such programs diagnostic
modules for S. The simplest diagnostic module, DM, is defined by rules:

o(A,T) + 0<T<n, zact(4),
not —o(A,T).
DM,
—0(A,T) + 0< T < n, zact(A4),
not o(A,T).
or, in the more compact, choice rule, notation of SMODELS ([16])

{0(A,T): z_act(A)} «+ 0<T < n.
(Recall that a choice rule has the form
m{p(X) : ¢(X)}n < body
and says that, if the body is satisfied by an answer set AS of a program then

AS must contain between m and n atoms of the form p(¢) such that ¢(¢) € AS.)

Finding candidate diagnoses of symptom (1) can be reduced to finding answer
sets of a diagnostic program

Dy(S) = TEST(S) U DM, (4)

It is not difficult to see that DM, generates every possible sequence of the past
occurrences of exogenous actions and hence, by Theorem 1, Dy(S) finds all the
candidate diagnoses of S.

Ezample 2. Let us again consider system S from Example 1. According to Iy
initially the switches s; and s, are open, all circuit components are ok, s; is
closed by the agent, and b is protected. It is predicted that b will be on at
1. Suppose that, instead, the agent observes that at time 1 bulb b is off, i.e.
0; = {obs(—on(b),1)}. Intuitively, this is viewed as a symptom Sy = (I, O1)
of malfunctioning of S. By running SMODELS on TEST(Sy) we discover that
this program has no answer sets and therefore, by corollary 1, Sy is indeed a
symptom. Diagnoses of Sy can be found by running SMODELS on Dy(Sp) and
extracting the necessary information from the computed answer sets. It is easy
to check that, as expected, there are three candidate diagnoses:

D, = ({o(brk,0)}, {b})
D, = ({o(srg,0)},{r})
D3 = <{O(brka 0)’ 0(57'97 0)}, {b, r}>

which corresponds to our intuition. Theorem 1 guarantees correctness of this
computation.

The basic diagnostic module Dy can be modified in many different ways. For in-
stance, a simple modification, D; (S) which eliminates some candidate diagnoses
containing actions unrelated to the corresponding symptom can be constructed
as follows: Let

DM, =DMy UREL

where
(1. rel(A, L) « dlaw(D),

head(D, L),
action(D, A),
z_act(A).

2. rel(A, L) + slaw(D),
head(D, L),
prec(D, P),
rel(A, P),
z_act(A).

3. rel(A) <+ obs(L,T),
T >n,
rel(A,L).

4. +— T <n,
o(A,T),
not hpd(A,T),
not rel(A).

REL

and let
Dy(S) =TEST(S) UDM,

It is easy to see that this modification is safe, i.e. D; will not miss any useful
predictions about the malfunctioning components.*

! In the full paper we will make this and other similar statements mathematically
precise.

Ezxample 3. Let us expand the system S from Example 1 by a new component, c,
unrelated to the circuit, and an exogenous action a which damages this compo-
nent. It is easy to see that diagnosis ¢ from Example 1 will still be a symptom
of malfunctioning of a new system, S,, and that the basic diagnostic module
applied to S, will return diagnoses D; — D3 from Example 2 together with new
diagnoses containing a and ab(c), e.g.

D, = ({o(brks,0),0(a,0)}, {b,c})
Diagnostic module D; will ignore actions unrelated to S and return only D;—Ds3.

It may be worth noticing that the distinction between hpd and o allows actions
unrelated to observations at n to actually happen at moment n — 1. Constraint
(4) of REL only prohibits generating such actions in our search for diagnosis.
Even more unrelated actions can be eliminated from the search space of our
diagnostic modules by considering relevance relation rel depending on time.
The diagnostic module D; can also be further modified by limiting its search to
recent occurrences of exogenous actions. This can be done by

Dy(S) = TEST(S) U DM,

where DM is obtained by replacing an atom 0 < T < n in the bodies of rules
of DMy by n—m < T < n. The constant m determines the time interval in the
past that an agent is willing to consider in it’s search for possible explanations.
To simplify our discussion in the rest of the paper we assume that m = 1. Finally,
the rule

+— k{o(A,n—1)}.

added to DM, will eliminate all diagnoses containing more than &k actions. Of
course the resulting module D3 as well as D> can miss some diagnoses and
deepening of the search and/or increase of k£ may be necessary if no diagnosis
of a symptom is found. There are many other interesting ways of constructing
efficient diagnostics modules. We are especially intrigued by the possibilities of
using new features of answer sets solvers such as weight rules of SMODELS and
soft constraints of DLV [19] to specify a preference relation on diagnosis. This
however is a subject of further investigation. Suppose now the diagnostician has
a candidate diagnosis D of a symptom S. Is it indeed a diagnosis?

4 Finding a diagnosis

To answer this question the agent should be able to test components of A(D).
Assuming that no ezxogenous actions occur during testing a diagnosis can be
found by the following simple algorithm, Find_Diag(S):

function Find_Diag(S)
repeat
(E, Q) := Candidate_Diag(S);

diag := true; Ap:= A;
while Ay #0 and diag do
select c € Ag; Ag := Ap \ {c};
if faulty(c) then
Oy, := O, U obs(ab(c),n);

else
Oy, := O, U obs(—ab(c),n);
diag := false;

end

end {while}
until diag or A = 0;
return (E, A).

The algorithm uses functions Candidate_Diag(S) which returns a candidate
diagnosis (E, A) of S and faulty(c) which checks if a component c of S is faulty.
Notice that A =) indicates that no diagnosis is found - the diagnostician failed.
To illustrate the algorithm, consider

Ezxample 4. Consider the system .S from Example 1 and a history I in which b is
not protected, all components of S are ok, both switches are open, and the agent
closes s1 at time 0. At time 1, he observes that the bulb b is not lit, considers S =
(I'v, 01) where O; = {obs(—on(b),1)} and calls function Need_Diag(S) which
searches for an answer set of TEST(S). There are no such sets, the diagnostician
realizes he has a symptom to diagnose and calls function F'ind_Diag(S). Let us
assume that the first call to Candidate_Diag returns

PD; = ({o(srg,0)}, {r,b})

Suppose that the agent selects component r from A and determines that it is not
faulty. Observation obs(—ab(r),1) will be added to Oy, diag will be set to false
and the program will call Candidate_Diag again with the updated symptom S
as a parameter. Candidate_Diag will return another possible diagnosis

PD;y = ({o(brk,0)},{b})

The agent will test bulb b, find it to be faulty, add observation obs(ab(b), 1) to
0, and return PD,.

Now let us consider a different scenario:

Ezxample 5. Let Iy and observation O; be as in Example 4 and suppose that
the program’s first call to Candidate_Diag returns PD1, b is found to be faulty,
obs(ab(b), 1) is added to O, and Find_Diag returns PD;. The agent proceeds
to have b repaired but, to his disappointment, discovers that b is still not on!
Intuitively this means that PD; is a wrong diagnosis - there must have been a
power surge at 0.

The example shows that, in order to find a correct explanation of a symptom, it
is essential for an agent to repair damaged components and observe the behavior

of the system after repair. For simplicity we assume that, similar to testing,
repair occurs in well controlled environment, i.e. no erogenous actions happen
during the repair process. To formally model this process we introduce a special
action, repair(c) for every component c of S. The effect of this action will be
defined by the causal law:

causes(repair(c), —ab(c),[])

The diagnostic process will be now modeled by the following algorithm: (Here
S =(I,_1,0)) and {obs(f;, k)} is a collection of observations the diagnostician
makes to test his repair at moment k.)

procedure Diagnose(S;
k:=mn;
while Need_Diag(S) do
(E,A) = Find_Diag(S);

if A =0 then
no diagnosis

else
Repair(A);
O := O U {hpd(repair(c), k) : c € A};
k:=k+1;
O :=0U{obs(fi,k)};

end

end

Ezxample 6. To illustrate the above algorithm let us go back to the agent from
Example 5 who just discovered diagnosis D;. He will repair the bulb and check
if the bulb is lit. It is not, and therefore a new observation is recorded as follows:

01 := 01 U {hpd(repair(b), 1), obs(—on(b), 2)}

Need_Diag(S) will detect a continued need for diagnosis, Find_Diag(S) will
return D3, which, after new repair and testing will hopefully prove to be the
right diagnosis.

The diagnosis produced by the above algorithm can be viewed as a reason-
able interpretation of discrepancies between the agent’s predictions and actual
observations. To complete our analysis of step 1 of the agent’s acting and reason-
ing loop we need to explain how this interpretation can be incorporated in the
agent’s history. If the diagnosis discovered is unique then the answer is obvious
- O is simply added to I,_;. If however faults of the system components can be
caused by different sets of exogenous actions the situation becomes more subtle.
Complete investigation of the issues involved is the subject of further research.

5 Related work

There is a numerous number of papers on diagnosis many of which substantially
influenced the authors views on the subject. The roots of our approach go back

to [15] where diagnosis for a static environment were formally defined in logical
terms. Recent expansions of this work [17,12,3] which take into account the
dynamics of system’s behavior served as the starting point of the work presented
in this paper. We

1. substantially simplified the basic definitions of [3];

2. presented reasonable efficient and provenly correct algorithms for computing
‘dynamic’ diagnosis;

3. showed how to combine diagnostics with planning and other activities of a
reasoning agent.

The simplification of basic definitions from [3]is achieved by a careful choice of the
‘history description’ language - AL seems to be more suitable for our purposes
that £ used in [3]. The reasoning algorithms are based on recent discoveries of
close relationship between A-Prolog and reasoning about effects of actions [11]
and the ideas from answer set programming [10, 13,9]. This approach of course
would be impossible without existence of efficient answer set reasoning systems.
Finally, the integration of a diagnostic and other activities is based on the agent
architecture from [1].

6 Conclusion

The paper describes an ongoing work on the development of a diagnostic problem
solving agent in A-Prolog. In particular we are looking for for good modeling
techniques with clear and provenly correct algorithms. The following can be of
interest to people who share these interests:

e definitions of a symptom, candidate diagnosis, and diagnosis which we believe
to be substantially simpler than other similar approaches;

e a new algorithm for computing candidate diagnoses. (The algorithm is based
on answer set programming and views the search for candidate diagnoses as
‘planning in the past’);

e a simple account of diagnostics, testing and repair based on the use of answer
set solvers.

In the full paper we plan to give mathematical analysis of correctness of the
corresponding algorithms and test them on medium size examples.

References

1. Baral, C., and Gelfond, M. Reasoning agents in dynamic domains. In Minker, J,. ed.,
Logic-Based Artificial Intelligence, Kluwer Academic Publishers, (2000), 257-279,

2. Baral, C., Gelfond, M., and Provetti, A. Reasoning about actions: laws, observations,
and hypotheses. In Journal of Logic Programming, volume 31, 201-244, 1994.

3. Baral, C., Mcllraith, S., and Son, T. Formulating diagnostic problem solving using
an action language with narratives and sensing. In Proceedings of the 2000 KR
Conference, 311-322, 2000.

4. de Kleer, J., Mackworth, A., and Reiter, R. Characterizing diagnoses and systems.
In Artificial Intelligence, volume 56(2-3), 197222, 1992.

5. Gelfond, M., and Lifschitz, V. The stable model semantics for logic programming.
In Logic Programming: Proc. of the Fifth Int’l Conf. and Symp., 1070-1080, 1988.
6. Gelfond, M., and Lifschitz, V. Classical negation in logic programs and disjunctive

databases. In New Generation Computing, 365-387, 1991.

7. Gelfond, M., and Lifschitz, V. Representing actions in extended logic programs.
In Proc. of Joint International Conference and Symposium on Logic Programming,
559-573, 1992.

8. Gelfond, M., and Lifschitz, V. Action languages. In Electronic Transactions on Al
volume 3(16), 1998.

9. Lifschitz, V. Action languages, Answer Sets, and Planning. In The Logic Program-
ming Paradigm: a 25-Year Perspective. 357-373, Springer Verlag, 1999.

10. Marek, W., and Truszczynski, M. Stable models and an alternative logic paradigm.
In The Logic Programming Paradigm: a 25-Year Perspective, 375-398, Springer Ver-
lag, 1999.

11. McCain, T., and Turner, H. A causal theory of ramifications and qualifications.
In Artificial Intelligence, volume 32, 57-95, 1995.

12. Mcllraith, T. Explanatory diagnosis conjecturing actions to explain observations.
In Proceedings of the 1998 KR Conference, 167-177, 1998.

13. Niemela, I. Logic programs with stable model semantics as a constraint program-
ming paradigm. In Annals of Mathematics and Artificial Intelligence, 25(3-4), 241—
273, 1999.

14. Niemela, I., and Simons, P. SMODELS - an implementation of the well-founded
and stable model semantics for normal logic programs. In Proc. of LPNMR’97,
volume 1265 of Lecture Notes in Computer Science, 420-429, 1997.

15. Reiter, R. A theory of diagnosis from first principles. In Artificial Intelligence,
volume 32, 57-95, 1987.

16. Simons, P. Extending the stable model semantics with more expressive rules. In
5th International Conference, LPNMR’99, 305-316, 1999.

17. Thielscher, M. A theory of dynamic diagnosis. In Linkoping Electronic Articles in
Computer and Information Science, volume 2(11), 1997.

18. H. Turner. Representing actions in logic programs and default theories. In Journal
of Logic Programming, 31(1-3):245-298, May 1997.

19. Eiter, T., Faber, Leone, N., Pfeifer, G. Declarative Problem Solving in DLV In
Minker, J,. ed., Logic-Based Artificial Intelligence, Kluwer Academic Publishers, 257—
279, 2000.

