
Answer Set Programming for Computational Psychological Models 
 

Sara Girotto (sara.girotto@ttu.edu) 
Department of Psychology, Texas Tech University 

Lubbock, TX 79404 

 

Marcello Balduccini (marcello.balduccini@gmail.com) 
Intelligent Systems, KRL, Eastman Kodak Company 

Rochester, NY 14650 

 

 
Keywords: formalization of psychological knowledge; answer 
set programming; short term memory. 
Abstract: Our work explores the use of Answer Set 
Programming (ASP) to formalize and reason about 
psychological knowledge. To demonstrate the viability of ASP 
for this task, in this paper we discuss an ASP-based 
formalization of the mechanisms of Short Term Memory. 

Introduction 

Our work explores the use of Answer Set Programming 

(ASP) (Gelfond & Lifschitz, 1991; Marek & Truszczynski, 

1999) to formalize and reason about psychological 

knowledge. Whereas some psychological models have a 

clear quantitative nature, which allows modeling e.g. with 

neural networks or Bayesian networks, other models have a 

more logical or qualitative nature and are not suitable for 

formalization with these techniques. ASP is a knowledge 

representation formalism allowing for concise and simple 

representations of defaults, uncertainty, common-sense and 

evolving domains, and has been demonstrated to be a useful 

paradigm for the formalization of knowledge of various 

kinds (e.g., Baral & Gelfond, 2005; Son & Sakama, 2009). 

For this reason, we believe that ASP can be used 

successfully for the formalization of psychological 

knowledge that is of qualitative nature. ASP is also directly 

executable, in the sense that the consequences of collections 

of ASP statements can be directly computed using computer 

programs. Hence, ASP-based formalizations of 

psychological knowledge can be viewed as computational 

models of the underlying psychological theories.  

Answer Set Programming 

In ASP, terms and atoms are formed according to the 

standard rules of first-order logic. A literal is either an atom 

a or its strong (also called classical or epistemic) negation 

:a. In its simplest form, a rule is a statement: 

 hÃ l1; l2; : : : ; lm;not lm+1; : : : ;not ln 

where h  and li’s are literals and not is the so-called default 

negation. The intuitive meaning of the rule is that a reasoner 

who believes fl1; : : : ; lmg and has no reason to believe 

flm+1; : : : ; lng, must believe h . The availability of two 

types of negation is one important feature of ASP, allowing 

for great flexibility in knowledge representation. In 

particular, the way default negation is treated in ASP allows 

to easily encode defaults (such as “an action is allowed 

unless it is explicitly stated that it is not”) and also to 

represent uncertainty and alternative, different views of the 

world (e.g. “either symbol a or symbol b, but not both, will 

be forgotten, but we do not know which one). The precise 

definition of the meaning of sets of ASP rules (called an 

ASP program) is given by the answer set semantics 

(Gelfond & Lifschitz, 1991), which characterizes a suitable 

notion of logical consequence. We omit further details due 

to space constraints; rather, in the rest of the paper we rely 

on the informal meaning of rules given above. From a 

practical perspective, the logical consequences of sets of 

ASP rules can be computed automatically, and rather 

efficiently, using computer programs called ASP solvers. 

These solvers can of course be also interfaced to pre-

processors, post-processors and user interfaces, to build 

sophisticated end-to-end systems (e.g., Balduccini, Gelfond 

& Nogueira, 2006). 

ASP-Based Formalization of STM 

To demonstrate that ASP is suitable for and successful at 

formalizing psychological knowledge, we have developed 

an ASP-based formalization of the mechanisms of operation 

of Short-Term Memory (STM), as described by Atkinson & 

Shiffrin (1971). This theory was selected because it reflects 

the type of psychological knowledge that we aim at 

formalizing: it is mostly of qualitative nature and is 

expressed in the literature at a rather high level of 

abstraction. Moreover, its formalization is challenging 

because it involves modeling of a sophisticated dynamic 

domain, involving non-determinism, fixed-capacity storage, 

and decay over time. In order to show that the use of ASP is 

not limited to a single theory, we have formalized not only 

the traditional theory of STM (Atkinson & Shiffrin, 1971), 

but also an alternative STM model (e.g., Card, Moran & 

Newell, 1983) in which decay is influenced not only by 

elapsed time but also by other variables such as the number 

of chunks a user is trying to remember and retrieval 

interference with similar chunks activated in working 

memory. It is worth stressing that the accounts of STM 

(Atkinson & Shiffrin, 1971; Card, Moran & Newell, 1983) 

that have been formalized by means of ASP are relatively 

well-established models from the existing literature. Our 

purpose in this study is not to modify the models but to 

show that they can indeed be formalized using ASP.  

Using a common methodology in ASP-based knowledge 

representation, the formalization process starts by 



condensing the description of STM in a number of precisely 

formulated statements in natural language. For example, the 

set of statements for the traditional theory of STM contains 

16 items, including the following: (1) STM is a collection of 

symbols; (2) the size of STM is limited to ! elements 

(Cowan, 2000); (3) each symbol has an expiration time; (4) 

symbols can be added to STM; (5) if a new symbol is added 

to STM when ! elements are already in it, the symbol that 

is closest to expiring is removed from STM (i.e. forgotten). 

Then, the logical representation of the formalization is 

created by choosing suitable relations and functions, and 

using them to encode the natural language statements and 

the underlying knowledge. Because we are interested in 

describing how the contents of STM change over time, we 

use two special relations, holds(f; i), saying that property f  

holds at step i  in the evolution of the contents of STM, and 

occurs(a; i), saying that action a occurs at step i. For 

instance, statement (4) is encoded by a rule: 

holds(in stm(S); I +1)Ã occurs(store(S); I) 

whose informal reading is: if the action of storing some 

symbol S  (by convention an uppercase initial denotes a 

variable) occurs at some step I , then S   will be in STM at 

the next step I + 1. The rule is based on the stipulation that 

store(S) represents the action of adding a symbol to STM, 

and that in stm(S) encodes the fact that S  is in STM. 

Statement (5) is formalized by the following rule, as well 

as the definition (omitted to save space) of the auxiliary 

relations used in it: 

:holds(in stm(S0); I+1)Ã S 6= S0; occurs(store(S); I);

stm max size(MX);

curr stm size(MX; I)

not some symbol expiring(I);

oldest in stm(S0; I)

The informal reading of the rule is: when S is stored in 

STM, if the current size of STM equals its maximum size 

(represented by relations  and 

, respectively) and no symbol is due 

to expire (written as ), then 

the symbol which is closest to expiring is removed from 

STM (encoded by means of the classical negation of 

holds(in stm(S0); I + 1), saying that S0 will not be in 

STM at the next step). 

Using terminology from the literature on ASP, the set of 

all rules formalizing STM is called action description, and 

denoted by ¦STM .  To use the action description in order to 

predict the behavior of STM in a particular situation, one 

writes additional rules, say ¦sit, describing the situation, 

and then uses an ASP solver to compute the logical 

consequences of the ASP program consisting of ¦STM  and 

¦sit. For example, given the encoding of a memory-span 

test in which the subject is required to remember the 

sequence 1-7-3-2-6-5 and the maximum size of STM is of 4 

items, the output of the ASP solver for ¦STM [¦sit 

contains statements such as holds(in stm(digit 1);1) and 

:holds(in stm(digit 1);5), showing that digit 1 was 

correctly stored initially, but forgotten at step 5 (because 

digit 6 was stored when STM was already at its full 

capacity). 

In our study we also demonstrate the computational 

aspects of our modeling technique by creating an 

application of our formalization to the task of predicting a 

user’s performance in the interaction with a graphical user 

interface. We developed an ASP-based representation of a 

scenario in which a user is told a sequence of tasks and is 

expected to execute it relying only on memory of the 

sequence. The prediction of the corresponding ASP program 

is in line with what the STM model (Atkinson & Shiffrin, 

1971) predicts, correctly determining (1) if the user will or 

will not be able to remember and execute the sequence, and, 

in case the user forgets part of the sequence, (2) which 

pieces of information are (likely to be) forgotten and when. 

Execution of the ASP program is also rather fast, with most 

predictions computed in less than a second.  

Conclusions 

The ASP-based formalization appears promising in terms 

of producing accurate predictions of performance from 

mostly qualitative models of behavior. It also allows 

analysis and comparison of different psychological theories, 

as well as prediction of the outcome of experiments, thus 

making it possible to design better experiments and 

diminishing the need for prototyping and user testing. This 

success opens the door to the use of ASP for the 

formalization of other psychological knowledge and models, 

as well as for its practical use in HCI-oriented applications.  

References 

Atkinson, R. C., & Shiffrin, R. M. (1971). The control of 

short-term memory. Scientific American, 225, 82-90. 

Balduccini, M., Gelfond, M., & Nogueira, M. (2006). 

Answer set based design of knowledge systems. Annals of 

Mathematics and Artificial Intelligence, 47(1-2), 183-219. 

Baral, C., & Gelfond, M. (2005). Reasoning about intended 

actions. Proceedings of the 20
th

 International Conference 

on Artificial Intelligence (pp. 689-694). AAAI Press. 

Card, S. K., Moran, T. P., & Newell, A. (1983). The 

Psychology of Human-Computer Interaction. Mahwah, 

NJ: Lawrence Erlbaum Associates. 

Cowan, N. (2000). The magical number 4 in short-term 

memory: A reconsideration of mental storage capacity. 

Behavioral and Brain Sciences, 24, 87-185. 

Gelfond, M., & Lifschitz, V. (1991). Classical negotiation in 

logic programs and disjunctive databases. New 

Generation Computing, 9, 365-385. 

Marek, V. W., & Truszczynski, M. (1999). Stable models 

and an alternative logic programming paradigm. In Apt, 

K., Marek, V., Truszczynski, M., Warren, D. (Eds), The 

logic programming paradigm: A 25-year perspective. 

Berlin, Germany: Springer Verlag. 

Son, T. C. & Sakama, C. (2009). Negotiation using logic 

 programming with consistency restoring rules. 21
st
     

 International Joint Conferences on Artificial Intelligence    

 (IJCAI). Morgan Kaufmann Publishers Inc. 


