
Building Blocks in Standards: Improving Consistency in

Standardization with Ontology and Reasoning

Marcello Balduccini1 and Claire Vishik2

1 Saint Joseph’s University

Philadelphia, PA, USA

Email: marcello.balduccini@sju.edu

2 Claire Vishik

Intel Corporation

Austin, TX, USA

Email: claire.vishik@intel.com

Abstract. International standardization in ICT has grown in importance due to

the rapid technology development, the increasing need for interoperability, and

the global nature of the digital infrastructure. However, technical resources avail-

able to international standards bodies have become more limited. With its focus

on international collaboration and consensus, the standardization community has

not invested significantly in the automation of the process of developing stand-

ards. In this paper, we describe potential gains in efficiency with an ontology-

based approach and automated reasoning. As part of the exploratory phase of the

project, we built a prototype ontology and evaluated the benefits of automated

reasoning to improve the process of developing and harmonizing broadly under-

stood ICT assessment standards. The exploratory phase confirmed feasibility and

clarified the benefits of the ontology-based approach to standardization, but also

highlighted difficulties and unsolved problems in this area.

─ Keywords: Assessment standards, ontology, knowledge engineering, automated

reasoning.

1 Introduction

In the past two decades, the importance of open international standards in ICT (Infor-

mation and computer technologies) increased significantly, while the resources availa-

ble to develop new standards became scarce (see, e.g., (Boje, 2015)). The dynamic cy-

cle of technology development, the massive need for integration, where previously-

independent technology domains have to be connected, and the global nature of the

digital infrastructure combined to elevate the need for international standards. At the

same time, the availability of industry experts decreased as companies shifted their fo-

cus to core technologies and products. While governments, universities, and consultants

mailto:marcello.balduccini@sju.edu

2

stepped in, the standardization community felt the strain as the need to develop and

ratify new standards became more acute.

As a result, it often takes a long time to develop new standards and update the exist-

ing ones, and the pace of standardization has been out of step with the technology needs

for some time. Additionally, as the body of available standards continued to grow and

the diversification of the ICT space intensified, it has become more difficult to ensure

consistency of approaches used in similar standards. Standards bodies, such as ISO,

have taken a number of steps to improve the level of harmonization, enforcing unified

formats, rules for references, and consistent terminology (see, e.g., ISO 704 “Termi-

nology: Principles and Methods”). But creating a formal process to re-use building

blocks used in standards beyond terminology and some other components has proved

challenging.

In this paper, we propose an automated approach based on ontologies and reasoning

that could pave the way for the re-use of standard building blocks in standards. In order

to test our methodology, we have defined a set of building blocks in a sample of broadly

understood assessment standards and created a prototype that demonstrates the feasi-

bility of this approach.

While we don’t advocate anything approaching automated standard generation, we

consider mechanisms to improve consistency of the body of standards and speed up

standards development necessary for the standardization community to keep pace with

the needs of the technology and society. The open consensus driven process for devel-

oping international standards is one of the greatest achievements that made possible the

development and deployment of the global digital infrastructure. The efficiency of this

process will be enhanced by the ability to automate repetitive tasks and to achieve

greater harmonization among diverse requirements described in standards.

The nature of standardization, a process based on collaboration and consensus, will

always require a significant amount of time, we believe that the efficiency and con-

sistency can be increased by employing knowledge engineering techniques. In addition

to speeding up the development of consistent standards with non-conflicting require-

ments, the proposed approach can also lead to the development of more focused and

context driven requirements, especially in the area of ICT assessment that is the purpose

of the study described in this paper.

2 ICT Security and Privacy Assessment Standards

Over the past decades, a number of standards related to various types of assessments

were developed in various standards bodies. For the purpose of this work, we describe

assessment standards and those that can facilitate the evaluation of products, technolo-

gies and ecosystems. The assessment standards comprise a variety of approaches, in-

cluding governance, secure development lifecycles, risk management, deterministic

product testing, and many other. Examples of complementary approaches include the

following:

1. ISO/IEC 15408. Evaluation criteria for IT security

3

2. ISO/IEC 17825Testing methods for the mitigation of non-invasive attack

classes against cryptographic modules

3. ISO/IEC 18045. Methodology for IT security evaluation.

4. ISO/IEC TS 19249:2017 Catalogue of architectural and design principles for

secure products, systems and application

5. ISO/IEC 19790:2012. Security requirements for cryptographic modules

6. ISO/IEC 19792:2009. Security evaluation of biometrics

7. Most standards from the 27000 series, e, g., ISO/IEC 27034

8. ISO/IEC 29134:2017. Guidelines for privacy impact assessment

9. ISO/IEC 29190:2015. Privacy capability assessment model

 These standards are represented by highly structured documents that comprise simi-

lar building blocks, such as principles, requirements, or components of processes. Some

of these building blocks are similar, but not identical in these standards, and others are

very specific to the context that is the subject of a standard. In the course of the first

stage of our project, we evaluated several standards documents, with the objective to:

1. Determine the extent of structural and semantic similarities in different assess-

ment related standards.

2. Develop a prototype ontology to capture relationships among these building

blocks.

3. Obtain the insights from this experiment.

4. Define the advantages of the approach with regards to the efficiency and flex-

ibility of the standardization process that an ontology could provide.

For this project, we focused on structural building blocks, e.g., principles or pro-

cesses. In other research projects focusing on defining ontologies for security related

standards (see, e.g., de Franco Rosa 2018 1/2), building blocks were defined based on

semantics, e.g., risk or vulnerability. Ideally, both structural and semantic building

blocks need to be defined, but semantics could also be presented differently in the

model, as demonstrated in this work.

3 Ontologies and their Use in Standardization and Related

Areas

In order to evaluate the feasibility of structural and semantic analysis of ICT assessment

standards based on ontology and other knowledge engineering methods, we need to

start with the definitions.

 An ontology is a formal, logic-based representation of knowledge typically aimed at

supporting reasoning by means of logical inference. Broadly speaking, an ontology is

a collection of statements in a logical language representing a given domain in terms of

classes (i.e., sets) and subclasses of objects, individuals (i.e., objects of a specific class),

and relationships between objects and/or classes. For instance, an ontology of standards

4

produced by ISO/IEC JTC1 SC27 (IT Security Techniques)1 might contain a

𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡 class capturing the set of all standard documents, and a subclass

27000_𝑠𝑒𝑟𝑖𝑒𝑠. 𝐼𝑆𝑂_𝐼𝐸𝐶_27032 would then be an individual of class 27000_𝑠𝑒𝑟𝑖𝑒𝑠.

To describe the title of a standard document, one might introduce a relationship

ℎ𝑎𝑠𝑇𝑖𝑡𝑙𝑒(𝑑𝑜𝑐, 𝑠𝑡𝑟) where 𝑑𝑜𝑐 is a document and 𝑠𝑡𝑟 is a string, e.g.

ℎ𝑎𝑠𝑇𝑖𝑡𝑙𝑒(𝐼𝑆𝑂_𝐼𝐸𝐶_27032, "𝐺𝑢𝑖𝑑𝑒𝑙𝑖𝑛𝑒𝑠 𝑓𝑜𝑟 𝑐𝑦𝑏𝑒𝑟𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦"). Additionally, one

could specify that 𝐼𝑆𝑂_𝐼𝐸𝐶_27034_𝑝𝑎𝑟𝑡_1 and 𝐼𝑆𝑂_𝐼𝐸𝐶_27034_𝑝𝑎𝑟𝑡_2 are part of

𝐼𝑆𝑂_𝐼𝐸𝐶_27034 by means of a suitable relationship, e.g.:

𝑝𝑎𝑟𝑡𝑂𝑓(𝐼𝑆𝑂_𝐼𝐸𝐶_27034_𝑝𝑎𝑟𝑡_1, 𝐼𝑆𝑂_𝐼𝐸𝐶_27034),
𝑝𝑎𝑟𝑡𝑂𝑓(𝐼𝑆𝑂_𝐼𝐸𝐶_27034_𝑝𝑎𝑟𝑡_2, 𝐼𝑆𝑂_𝐼𝐸𝐶_27034).

 Ontologies are utilized in a wide range of areas, from media to robotics, and from

engineering to medicine. Researchers working in the areas of standardization have ap-

plied ontologies for a variety of purposes, but typically to create a semantic meta model

of a complex space. Huang and Li (2010) used ontologies to link standards tags relating

properties of the IoT space to the descriptions of the functions they denote. In the med-

ical field, Cai et al (2014) used an ontology to standardize and classify adverse drug

reactions based on Adverse Drug Reaction Classification System. Ramanauskaitė et al.

(2013) described how ontologies could be used to map existing security standards, and

Fenz & Ekelhart (2009) developed ontologies to formalize security knowledge and

make it more amenable to various analyses. Gonzalez-Perez et al. (2016) developed an

ontology for ISO software engineering standards, complete with a prototype demon-

strating their approach.

Outside of the research literature, several standardization efforts have explored or

used ontologies to make sense of complex subject areas, such as IoT (Internet of

Things) or Smart Cities. Ontology-based standards exist, mostly to provide a model for

complex interactions, such as ISO/TS 19150 (“Geographic Information—Ontology”2).

However, the use of ontologies for harmonization and process efficiency that is com-

mon in, e.g., requirements engineering, has not been adapted to standardization, with

the exception of some experimental studies. In the paper, we hope to demonstrate that

some level of automation is feasible in the field of standardization as well and that it is

compatible with the currently used standards development processes.

4 Ontology-Based Representation of Standard Documents

The analysis of various standard documents from the ISO/IEC 19000 series and 27000

series showed that documents can be viewed as consisting of a hierarchically-organized

collection of building blocks, each describing a key component of the document. A

relatively small number of structural building blocks is shared by all documents ana-

lyzed:

1 https://www.iso.org/committee/45306.html, ISO/IEC JTC 1/SC 27 IT Security techniques.
2 https://www.iso.org/standard/57465.html

https://www.iso.org/committee/45306.html

5

• Concepts – concepts used throughout the document.

• Definitions – definitions of notions.

• Guidelines –guidelines pertaining to the standard.

• Principles – guiding principles used in the document.

• Process – a process (or task) being standardized.

• Purpose – purpose of the document or of a part of the document.

• Test – one or more tests being standardized, possibly used as part of a process.

• Misc – general-purpose block

The types of building blocks are formalized in the prototype ontology as subclasses of

class “Building Block”, as shown in Fig. 1.

Fig. 1. Ontology fragment: classes for building blocks and standard document

Note that the specific selection of types of building blocks listed above is intended

only for demonstration of the proposed formalization and not as a definitive list and

that it is limited to structural building blocks. Analysis of further documents may well

result in additional types of building blocks or in a reorganization of their hierarchy.

Although the prototype ontology was built manually, the structured nature of standards

provides an option to build it semi-automatically, by harvesting certain types of struc-

tures, clustering terms by frequency, and other methods developed by the text pro-

cessing and knowledge engineering communities.

An occurrence of a building block in a document is captured by an individual of a

suitable class. When available, a string representing the title is associated with a build-

ing block by means of relation ℎ𝑎𝑠𝑇𝑖𝑡𝑙𝑒. Similarly, relation ℎ𝑎𝑠𝐵𝑜𝑑𝑦 specifies the

main narrative of the building block. The concepts (see below) identified in the title are

associated with the building block by relation 𝑚𝑎𝑖𝑛𝑇𝑜𝑝𝑖𝑐.

The hierarchy of building blocks that make up a document is captured by relation

𝑝𝑎𝑟𝑡𝑂𝑓, so that 𝑥 𝑝𝑎𝑟𝑡𝑂𝑓 𝑦 holds if building block 𝑦 is a component of 𝑥, where 𝑥 is

an individual of class Element, i.e. a building block or a standard document (see Fig.

1).

6

For instance, a clause defining guidelines related to communicating roles and re-

sponsibilities might be captured in the ontology by an individual of class Guilde-

linesBB, which is linked to its parent clause by relation 𝑝𝑎𝑟𝑡𝑂𝑓. Fig. 2 provides an

illustration of such an individual.

Fig. 2. Individual for clause 5.4 of ISO/IEC 27034

Next, we identified reoccurring relevant terms, such as “assurance,” “authority,” and

“framework.” We noted that these terms are often used to form combinations, which

appear to have importance in defining the content of a building block. The terms typi-

cally have specific functions within a combination, and we have identified three main

categories of these: “Activity,” “Concern,” and “Context”. To formalize these combi-

nations, we introduced the Concept class with associated relations 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑠𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦,

𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑠𝐶𝑜𝑛𝑐𝑒𝑟𝑛, and 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑠𝐶𝑜𝑛𝑡𝑒𝑥𝑡. Each relation informally states that a given

Concept individual includes a term with the indicated function. The occurrence of mul-

tiple terms with the same function is formalized by multiple occurrences of a suitable

relation.

The terms are currently organized hierarchically along three categories matching the

categories of functions identified in the combinations.3 For the sake of illustration, we

created a notional set of frequent terms. The three branches of the term hierarchy are

shown in Fig. 3.

3 While this approach is convenient for illustration purposes, preliminary examination of a

broader set of documents seems to suggest that the same term may be used for multiple func-

tions. In that case, it may be more appropriate to organize the term hierarchy along other di-

mensions than the functions themselves.

7

Fig. 3. Ontology fragment: term hierarchy

Fig. 4 illustrates the definition of a sample individual for the concept “application-

security verification framework”.

Fig. 4. Concept individual for “application-security verification framework”

In order to indicate that the narrative of a certain building block contains a concept,

we introduce relation 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠𝐶𝑜𝑛𝑐𝑒𝑝𝑡, where 𝑥 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠𝐶𝑜𝑛𝑐𝑒𝑝𝑡 𝑦 means that

building block 𝑥 contains an occurrence of concept 𝑦. For instance, a clause might con-

tain occurrences of concepts “Application-Security Verification” and “Application-Se-

curity Verification Scheme”. Hence, the definition of the corresponding building block

would include the items shown in Fig. 5.

8

Fig. 5. Concepts occurring in clause 10.3.19 of ISO/IEC 27034

In a similar way, concepts that occur in the title of a building block are captured by

relation ℎ𝑎𝑠𝑀𝑎𝑖𝑛𝑇𝑜𝑝𝑖𝑐.

The formalization of building blocks in assessment-related standards offers a foun-

dation for several efficiency-related opportunities that will be the subjects of future

work. Some of them are listed below:

1. Harmonize building blocks from different standards that are meant to denote

the same context.

2. Pre-populate new or updated standards with typical building blocks that al-

ready exist.

3. Update building blocks across several standards when an error or an incon-

sistency are found or when the technology environment changes.

4. Build context-driven and focused assessments that combined components of

several areas, such as privacy, SDL (Secure development lifecycle), safety,

and governance.

5. Ensure greater harmonization across diverse standards and detect potential

conflicts between assessment requirements.

Having built a prototype ontology in order to extract the recurring components in

assessment standards, we can now evaluate the advantages provided by automated rea-

soning capabilities.

5 Inference and Reasoning Capabilities

An ontology can be used to achieve sophisticated inference and querying capabilities,

and this is useful for the document analysis, such as the analysis of standards.4 The

SPARQL query language (Harris, Seaborne, & Prud’hommeaux, 2013) allows for ef-

ficient extraction from an ontology of data satisfying certain criteria. The basic syntax

of a SPARQL query is:

4 In fact, a whole hierarchy of ontology-based languages exist, with varying degrees of expres-

sivity and computational complexity. A thorough discussion is beyond the scope of this paper.

9

 𝑆𝐸𝐿𝐸𝐶𝑇 ? 𝑣𝑎𝑟1 ? 𝑣𝑎𝑟2 ? 𝑣𝑎𝑟3 …

 𝑊𝐻𝐸𝑅𝐸

 { ? 𝑣𝑎𝑟𝑥 𝑟𝑒𝑙𝐴 ? 𝑣𝑎𝑟𝑦 .

 ? 𝑣𝑎𝑟𝑦 𝑟𝑒𝑙𝐵 ? 𝑣𝑎𝑟𝑧 .

 …

 }

where each variable ? 𝑣𝑎𝑟_𝑖 is a placeholder for an ontology item of interest and

every 𝑟𝑒𝑙𝑖 is the name of a relationship. Note the syntax used for relations in the

𝑊𝐻𝐸𝑅𝐸 block, where ? 𝑣𝑎𝑟𝑥 𝑟𝑒𝑙𝐴 ? 𝑣𝑎𝑟𝑦 stands for the more traditional mathematical

logic atom 𝑟𝑒𝑙𝐴(? 𝑣𝑎𝑟𝑥 , ? 𝑣𝑎𝑟𝑦). Typically, the variables from the 𝑆𝐸𝐿𝐸𝐶𝑇 line also

occur in the 𝑊𝐻𝐸𝑅𝐸 block, but additional variables may appear in the block. When a

tuple of items is found such that the 𝑊𝐻𝐸𝑅𝐸 block is satisfied, the tuple of items cor-

responding to the variables from the 𝑆𝐸𝐿𝐸𝐶𝑇 line is considered to be an answer to the

query. For instance, consider the query:

 𝑆𝐸𝐿𝐸𝐶𝑇 ? 𝑝𝑎𝑟𝑡 ? 𝑑𝑜𝑐_𝑐𝑙𝑎𝑠𝑠

 𝑊𝐻𝐸𝑅𝐸

 { ? 𝑝𝑎𝑟𝑡 𝑝𝑎𝑟𝑡𝑂𝑓 ? 𝑑𝑜𝑐 .
 ? 𝑑𝑜𝑐 𝑡𝑦𝑝𝑒 ? 𝑑𝑜𝑐_𝑐𝑙𝑎𝑠𝑠

 }

where 𝑡𝑦𝑝𝑒 is a built-in relationship stating that the left-hand side is an individual

of the class mentioned on the right-hand side. Intuitively, the query identifies all docu-

ments that are part of another document (? 𝑝𝑎𝑟𝑡 𝑝𝑎𝑟𝑡𝑂𝑓 ? 𝑑𝑜𝑐), finds the class of the

containing document (? 𝑑𝑜𝑐 𝑡𝑦𝑝𝑒 ? 𝑑𝑜𝑐_𝑐𝑙𝑎𝑠𝑠) and yields all pairs consisting of a doc-

ument part and of the class of the containing document. When evaluated against the

sample ontology given earlier, the query will yield the answers:

(𝐼𝑆𝑂_𝐼𝐸𝐶_27034_𝑝𝑎𝑟𝑡_1, 27000_𝑠𝑒𝑟𝑖𝑒𝑠)

(𝐼𝑆𝑂_𝐼𝐸𝐶_27034_𝑝𝑎𝑟𝑡_2, 27000_𝑠𝑒𝑟𝑖𝑒𝑠)

For increased flexibility of representation, we make also use of an extension of prop-

ositional logic called Answer Set Programming (ASP) (Gelfond & Lifschitz, 1991)

(Marek & Truszczynski, 1999). ASP is a rule-based language, where a rule is a logical

formula of the form:

𝑙0 ← 𝑙1, 𝑙2, … , 𝑙𝑚, 𝑛𝑜𝑡 𝑙𝑚+1, … , 𝑛𝑜𝑡 𝑙𝑛.

Every 𝑙𝑖 is a literal, i.e. an atom of the form 𝑟𝑒𝑙(𝑐1, 𝑐2, … , 𝑐𝑙) – where each 𝑐𝑖 is a

numerical or string constant – or an expression ¬𝑎 for some atom 𝑎. Intuitively, the

above rule states that, if all of 𝑙1, … , 𝑙𝑚 hold and there is no reason to believe (conveyed

by the 𝑛𝑜𝑡 keyword) that any of 𝑙𝑚+1, … , 𝑙𝑛 hold, then 𝑙0 must hold.

A program is a set of rules. When a literal 𝑙 can be derived from a program Π, we

write:

Π ⊨ 𝑙

10

A formal description of the semantics of ASP can be found in (Gelfond & Lifschitz,

1991). For use in this paper, we will somewhat simplistically define an answer set of a

program Π as one of the sets of literals that can be derived from Π.5

Following common representational practices, we allow for logical variables to be

used as arguments of literals. A logical variable is a string denoted by an uppercase

initial (unless enclosed by double-quotes). For instance, 𝑝𝑎𝑟𝑡𝑂𝑓(𝑃𝑎𝑟𝑡, 27000_𝑠𝑒𝑟𝑖𝑒𝑠)

is a literal whose first argument is the logical variable 𝑃𝑎𝑟𝑡 and whose second argument

is the string constant 27000_𝑠𝑒𝑟𝑖𝑒𝑠. A rule containing variables is viewed as an abbre-

viation for all rules that can be obtained by replacing all variables by all possible con-

stant symbols. For example, suppose one would like to identify all documents that are

not subdivided further in document parts. This can be accomplished by the rules:

ℎ𝑎𝑠𝑃𝑎𝑟𝑡𝑠(𝐷𝑜𝑐) ← 𝑝𝑎𝑟𝑡𝑂𝑓(𝑃𝑎𝑟𝑡, 𝐷𝑜𝑐).
𝑚𝑜𝑛𝑜𝑙𝑖𝑡ℎ𝑖𝑐(𝐷𝑜𝑐) ← 𝑛𝑜𝑡 ℎ𝑎𝑠𝑃𝑎𝑟𝑡𝑠(𝐷𝑜𝑐).

Assuming that one is given information about document parts in the form of 𝑝𝑎𝑟𝑡𝑂𝑓

atoms, then the first rule will yield the atom ℎ𝑎𝑠𝑃𝑎𝑟𝑡𝑠(𝑑) for every document 𝑑 that

is subdivided. The second rule will yield an atom 𝑚𝑜𝑛𝑜𝑙𝑖𝑡ℎ𝑖𝑐(𝑑) for every document

𝑑 for which there is no reason to believe that ℎ𝑎𝑠𝑃𝑎𝑟𝑡𝑠(𝑑) holds. So, given information

about 𝐼𝑆𝑂_𝐼𝐸𝐶_27034 and 𝐼𝑆𝑂_𝐼𝐸𝐶_27032 as in the prototype ontology, the rules will

yield ℎ𝑎𝑠𝑃𝑎𝑟𝑡𝑠("ISO_IEC_27034") and 𝑚𝑜𝑛𝑜𝑙𝑖𝑡ℎ𝑖𝑐("𝐼𝑆𝑂_𝐼𝐸𝐶_27036").

5.1 Towards Automation of Information Extraction

A number of approaches have been developed to simplify the automated generation of

ontologies or to support the semi-automatic generation of an ontology and a related

knowledge base. They are typically based on the frequency of occurring terms, their

positioning or proximity to other terms. Even with the automated generation, the

maintenance of automated ontological models presents a problem in areas where ontol-

ogies are commonly used, such as Geographic Information Systems (GIS) or biomedi-

cal databases. Fortunately, advances have been made helping automate the creation or

maintain the maintenance of single or linked ontologies. Innovative approaches are de-

scribed in Alobaidi et al. (2018) for biomedical databases or in Fraga & Vegetti (2017)

for manufacturing and product data. In pursuing the automation of the ontology creation

process, we are helped by the fact that standards-related documents are highly struc-

tured, due to the requirements of standards bodies and traditions of standards develop-

ment. As a result, the automation process is considerably simplified, although it re-

quires a rigorous high-level model to make it meaningful.

At this stage of our work, we do not commit to a specific way of obtaining the infor-

mation captured by the ontology. At some point, tools may be built for standard docu-

ment creation that automatically create the ontology as a by-product. On the other hand,

5 Certain programs have multiple answer sets. For example, { 𝑝 ← 𝑛𝑜𝑡 𝑞. 𝑞 ← 𝑛𝑜𝑡 𝑝. } has two

answer sets, { 𝑝 } and { 𝑞 }, corresponding to two alternative, equally possible views of the

world captured by Π..

11

one might develop dedicated information extraction techniques for processing existing

documents. For our study, we have developed a basic but effective technique that ena-

bles extraction of information from existing documents. We describe it as it may lay

the foundations of more sophisticated approaches.

The algorithm we devised takes in input an input ontology representing concepts and

building block types (see Sec. 4), and a set of files containing clauses of a standards

document. The algorithm produces an output ontology that can be used for the reason-

ing processes described in this paper. The output ontologies for multiple standards doc-

uments can be easily merged by applying traditional ontology-manipulation tools. To

facilitate the task of the algorithm, each concept in the input ontology is augmented

with a list of synonyms. For instance, concept “Application Security Verification

Framework” has synonym “AS Verification Framework.”

Each clause file lists the clause number (e.g., 10.3.19) followed by its title. The rest

of the file contains the narrative of the clause. A special document file contains the

number of the document (e.g., 27034) and its title.

The algorithm begins by creating an individual of class StandardDocument with the

title and number provided by the document file. Next, each clause file is processed and

a building block individual is created. The class of the individual is determined from

the title of the clause, by identifying occurrences of the names of building blocks found

in the ontology (augmented with plurals and other syntactic variations). If the building

block cannot be identified, the algorithm defaults to type Misc. The clause number is

used to identify the parent clause, if it exists. The association is made by means of

relation 𝑝𝑎𝑟𝑡𝑂𝑓. The text of the title and of the text of the clause are linked with the

individual by means of relations ℎ𝑎𝑠𝑇𝑖𝑡𝑙𝑒 and ℎ𝑎𝑠𝐵𝑜𝑑𝑦.

Next, the clause title is inspected for occurrences of the concepts and their synonyms,

which are then associated with the building block individual by means of relation

𝑚𝑎𝑖𝑛𝑇𝑜𝑝𝑖𝑐. Note that, in some cases, the title of a clause should be interpreted within

the context set forth by higher-level clauses. For instance, in ISO/IEC 19792 (“Security

evaluation of biometrics”), the title of clause 6, “Security evaluation”, should be inter-

preted within the context of the document, i.e. “Security evaluation for biometrics.” For

this reason, the algorithm allows for the manual specification of additional text to be

considered in the determination of the main topic of a clause.

Finally, the text of the clause is matched against the known concepts in a similar

way. Matching concepts are associated with the building block individual by means of

relation 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠𝐶𝑜𝑛𝑐𝑒𝑝𝑡.

For an example application of the algorithm, consider clause 3 of ISO/IEC 27034,

with title “Terms and definitions.” The input ontology from Sec. 4 does not contain a

building block matching the title, and thus the algorithm creates a building block indi-

vidual of class Misc and suitable attributes (title, etc.). When the text of the clause is

inspected for occurrences of known concepts, the algorithm finds various matches, in-

cluding:

• Application Security Authority

• Application Security Verification

• Application Security Verification Scheme

12

• Application Normative Framework

• Application Security Audit

6 Automated Reasoning in Support of Standardization

We have identified two broad classes of reasoning tasks that appear to be relevant to

the process of document creation and querying, the drill-down type of query and the

harvest type of query.

For each type of the query, we formalized the type of reasoning involved by means

a set of axioms that make it possible to carry it out through the general-purpose logical

inference mechanisms introduced earlier. The reasoning process is broken down into

two parts: ontology-based querying and non-monotonic reasoning. The former applies

relatively light-weight inference mechanisms to efficiently extract a broad set of rele-

vant pieces of information from the ontology. The latter applies more sophisticated in-

ference mechanisms to the restricted set of pieces of information identified in order to

obtained the desired answer.

The process of answering a query 𝑄 can thus be reduced to checking whether 𝑄

follows from ontology Ω and axioms Λ, i.e.:

τ(Ω) ∪ Λ ⊨ 𝑄

where τ(Ω) denotes the set of tuples extracted from Ω through ontology-based que-

rying. At the current stage, ontology-based querying is implemented by SPARQL que-

ries and checking for entailment (⊨ in the above equation) is reduced to finding answer

sets of suitable ASP programs. Next, we discuss in more details the types of reasoning

tasks considered and the axioms that formalize them.

In the drill-down task, the user looks for clauses relevant to a certain concept and

may progressively refine the query to focus on particular types of documents or sets of

clauses. For example, a user might want to investigate all the building blocks, technical,

procedural, or descriptive, that apply to deployment of IoT edge devices while devel-

oping a standard document describing a new IoT framework. An example query is:

“What are the typical components of the existing frameworks?”

In response to this query, the reasoning mechanism will identify all building blocks

pertaining to the description of frameworks and return the list of building blocks con-

tained in them and whose types reoccur in all frameworks. This is accomplished as

follows:

• 𝜏(Ω) identifies (*) every building block whose main topic (given by relation

ℎ𝑎𝑠𝑀𝑎𝑖𝑛𝑇𝑜𝑝𝑖𝑐) is a concept whose context (relation 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑠𝐶𝑜𝑛𝑡𝑒𝑥𝑡) is term

Framework, and (*) all building blocks that are part of it. The query yields a set of

triples (𝑟𝑜𝑜𝑡, 𝑏𝑏𝑙𝑜𝑐𝑘, 𝑡𝑦𝑝𝑒) where 𝑟𝑜𝑜𝑡 is the identifier of the building block with

suitable main topic, 𝑏𝑏𝑙𝑜𝑐𝑘 is one of its constituents, and 𝑡𝑦𝑝𝑒 is the type of 𝑏𝑏𝑙𝑜𝑐𝑘

(see Fig. 1).

13

• Λ identifies the building block types that occur in all triples of 𝜏(Ω). The two key

axioms are:

 ¬𝑐𝑜𝑚𝑚𝑜𝑛(𝑇) ←

 𝑟𝑜𝑜𝑡(𝑅1), 𝑟𝑜𝑜𝑡(𝑅2),
 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠_ 𝑏𝑏_ 𝑡𝑦𝑝𝑒(𝑅1, 𝑇),
 𝑛𝑜𝑡 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠_𝑏𝑏_𝑡𝑦𝑝𝑒(𝑅2, 𝑇).

 𝑐𝑜𝑚𝑚𝑜𝑛(𝑇) ←

 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠_𝑏𝑏_𝑡𝑦𝑝𝑒(𝑅, 𝑇),
 𝑛𝑜𝑡 ¬𝑐𝑜𝑚𝑚𝑜𝑛(𝑇).

The first axiom finds every building block type that occurs in the description of

one framework, but not in some other. Relations 𝑟𝑜𝑜𝑡 and 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠_𝑏𝑏_𝑡𝑦𝑝𝑒 are

obtained from the triples of 𝜏(Ω) (axioms omitted). The second axiom states that a

type 𝑇 is common to all framework descriptions if it occurs in at least one of them

and was not flagged by the first axiom.

• 𝑄 is the atom 𝑐𝑜𝑚𝑚𝑜𝑛(𝑇), i.e. one is interested in every building block type 𝑇 for

which 𝑐𝑜𝑚𝑚𝑜𝑛(𝑇) holds.

For illustration purposes, let us suppose that an ontology contains building blocks

for two frameworks, an application security verification framework (clause 1), a

hardware security verification framework (clause 3.5) and a process-related frame-

work (clause 7.2). Specifically, for the former the ontology contains the following

components:

• A purpose building block (clause 1.1)

• A concepts building block (clause 1.2)

• A test building block (clause 1.3)

• A guidelines building block (clause 1.4)

For the hardware security verification framework, the ontology contains:

• A concepts building block (clause 3.5.1)

• A purpose building block (clause 3.5.2)

• A misc building block (clause 3.5.3)

For the process-related framework, the ontology contains:

• A process building block (clauses 7.2.1)

• A concepts building block (clause 7.2.2)

One can check that, for this example, 𝜏(Ω) will contain the triples

(1,1.1, 𝑃𝑢𝑟𝑝𝑜𝑠𝑒𝐵𝐵), (1,1.2, 𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑠𝐵𝐵), (1,1.3, 𝑇𝑒𝑠𝑡𝐵𝐵), (1,1.4, 𝐺𝑢𝑖𝑑𝑒𝑙𝑖𝑛𝑒𝑠𝐵𝐵),
(3.5,3.5.1, 𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑠𝐵𝐵), (3.5,3.5.2, 𝑃𝑢𝑟𝑝𝑜𝑠𝑒𝐵𝐵), (3.5,3.5.3, 𝑀𝑖𝑠𝑐𝐵𝐵),
(7.2,7.2.1, 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝐵𝐵), (7.2,7.2.2, 𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑠𝐵𝐵)

14

One can also check that the only atom of the form 𝑐𝑜𝑚𝑚𝑜𝑛(𝑇) entailed by 𝜏(Ω) ∪
Λ is 𝑐𝑜𝑚𝑚𝑜𝑛("𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑠𝐵𝐵"). The reasoning mechanism has thus determined that the

only type of building block the (known) frameworks share is 𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑠𝐵𝐵. Note that,

while this is a simple example, it can be easily extended by adding suitable axioms, e.g.

to find building blocks that are most frequently occurring or occurring at least with a

certain frequency.

Let us now turn our attention to harvest queries that can assist in, e.g., the creation

of new standards by identifying and harvesting relevant components of existing docu-

ments. A sample harvest query might ask:

“What are the relevant building blocks for a Security development lifecycle (SDL)

framework for IoT?”

Let us assume that background knowledge related to SDL is available to the reason-

ing mechanism through the ontology or encoded by axioms such as:

 𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑒𝑑_𝑖𝑛(𝑠𝑑𝑙, "𝐴𝑢𝑑𝑖𝑡").
 𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑒𝑑_𝑖𝑛(𝑠𝑑𝑙, "𝑉𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛").
 𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑒𝑑_𝑖𝑛(𝑠𝑑𝑙, "𝐴𝑠𝑠𝑢𝑟𝑎𝑛𝑐𝑒").

Additional background knowledge might state that, in the case of frameworks for

auditing, verification, and assurance, one should consider IoT-related concerns, hard-

ware-related concerns and software-related concerns. For illustration purposes, we

show the axioms that determine if two concepts are similar based on the above state-

ments about concerns and activities:

𝑖𝑠_𝑎𝑢𝑑𝑖𝑡_𝑣𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑎𝑠𝑠𝑢𝑟𝑎𝑛𝑐𝑒("𝐴𝑢𝑑𝑖𝑡").
𝑖𝑠_𝑎𝑢𝑑𝑖𝑡_𝑣𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑎𝑠𝑠𝑢𝑟𝑎𝑛𝑐𝑒("𝑉𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛").
𝑖𝑠_𝑎𝑢𝑑𝑖𝑡_𝑣𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑎𝑠𝑠𝑢𝑟𝑎𝑛𝑐𝑒("𝐴𝑠𝑠𝑢𝑟𝑎𝑛𝑐𝑒").

𝑖𝑠_ℎ𝑤_𝑠𝑤_𝑖𝑜𝑡_𝑐𝑜𝑛𝑐𝑒𝑟𝑛(𝐶𝑅𝑁) ← 𝑡𝑐_𝑠𝑢𝑏𝑐𝑙𝑎𝑠𝑠𝑜𝑓(𝐶𝑅𝑁, "𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒𝐶𝑜𝑛𝑐𝑒𝑟𝑛").
𝑖𝑠_ℎ𝑤_𝑠𝑤_𝑖𝑜𝑡_𝑐𝑜𝑛𝑐𝑒𝑟𝑛(𝐶𝑅𝑁) ← 𝑡𝑐_𝑠𝑢𝑏𝑐𝑙𝑎𝑠𝑠𝑜𝑓(𝐶𝑅𝑁, "𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒𝐶𝑜𝑛𝑐𝑒𝑟𝑛").
𝑖𝑠_ℎ𝑤_𝑠𝑤_𝑖𝑜𝑡_𝑐𝑜𝑛𝑐𝑒𝑟𝑛(𝐶𝑅𝑁) ← 𝑡𝑐_𝑠𝑢𝑏𝑐𝑙𝑎𝑠𝑠𝑜𝑓(𝐶𝑅𝑁, "𝐼𝑜𝑇𝐶𝑜𝑛𝑐𝑒𝑟𝑛").

𝑡𝑐_𝑠𝑢𝑏𝑐𝑙𝑎𝑠𝑠𝑜𝑓(𝑋, 𝑋) ← 𝑐𝑙𝑎𝑠𝑠(𝑋).
𝑡𝑐_𝑠𝑢𝑏𝑐𝑙𝑎𝑠𝑠𝑜𝑓(𝑋, 𝑌) ← 𝑠𝑢𝑏𝑐𝑙𝑎𝑠𝑠𝑜𝑓(𝑋, 𝑍), 𝑡𝑐_𝑠𝑢𝑏𝑐𝑙𝑎𝑠𝑠𝑜𝑓(𝑍, 𝑌).

𝑠𝑖𝑚𝑖𝑙𝑎𝑟_𝑡𝑜(𝐶1, 𝐶2) ←

𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑠𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝐶1, 𝐴𝐶𝑇),
𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑠𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝐶2, 𝐴𝐶𝑇),
𝑖𝑠_𝑎𝑢𝑑𝑖𝑡_𝑣𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑎𝑠𝑠𝑢𝑟𝑎𝑛𝑐𝑒(𝐴𝐶𝑇),
𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑠𝐶𝑜𝑛𝑡𝑒𝑥𝑡(𝐶1, "𝐹𝑟𝑎𝑚𝑒𝑤𝑜𝑟𝑘"),
𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑠𝐶𝑜𝑛𝑡𝑒𝑥𝑡(𝐶2, "𝐹𝑟𝑎𝑚𝑒𝑤𝑜𝑟𝑘"),
𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑠𝐶𝑜𝑛𝑐𝑒𝑟𝑛(𝐶1, 𝐶𝑅𝑁1),

15

𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑠𝐶𝑜𝑛𝑐𝑒𝑟𝑛(𝐶2, 𝐶𝑅𝑁2),
𝑖𝑠_ℎ𝑤_𝑠𝑤_𝑖𝑜𝑡_𝑐𝑜𝑛𝑐𝑒𝑟𝑛(𝐶𝑅𝑁1),
𝑖𝑠_ℎ𝑤_𝑠𝑤_𝑖𝑜𝑡_𝑐𝑜𝑛𝑐𝑒𝑟𝑛(𝐶𝑅𝑁2).

The first three axioms describe the set of activities of interest. The next three axioms

capture the set of (possibly indirect) subclasses of 𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒𝐶𝑜𝑛𝑐𝑒𝑟𝑛,

𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒𝐶𝑜𝑛𝑐𝑒𝑟𝑛 and 𝐼𝑜𝑇𝐶𝑜𝑛𝑐𝑒𝑟𝑛 (see Fig. 3). To identify possibly indirect sub-

classes, the axioms leverage relation 𝑡𝑐_𝑠𝑢𝑏𝑐𝑙𝑎𝑠𝑠𝑜𝑓 (abbreviation of transitive closure

of 𝑠𝑢𝑏𝑐𝑙𝑎𝑠𝑠𝑜𝑓), which is defined in a standard way by the following two axioms. The

last axiom states that two concepts 𝐶1 and 𝐶2 are similar if they include the same audit,

verification or assurance activity, have context 𝐹𝑟𝑎𝑚𝑒𝑤𝑜𝑟𝑘, and include concerns that

are (possibly indirect) subclasses of 𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒𝐶𝑜𝑛𝑐𝑒𝑟𝑛, 𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒𝐶𝑜𝑛𝑐𝑒𝑟𝑛 or

𝐼𝑜𝑇𝐶𝑜𝑛𝑐𝑒𝑟𝑛.

The query can thus be reduced to finding building blocks for frameworks whose

main topic is an SDL framework for IoT or a framework similar to it, as defined by the

above axioms. That is, given an axiom:6

𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡(𝑅𝑂𝑂𝑇_𝐵𝐵) ←

𝑐𝑜𝑛𝑐𝑒𝑝𝑡(𝐶2),
𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑠𝐶𝑜𝑛𝑡𝑒𝑥𝑡(𝐶2, "𝐹𝑟𝑎𝑚𝑒𝑤𝑜𝑟𝑘"),
𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑠𝐶𝑜𝑛𝑐𝑒𝑟𝑛(𝐶2, "𝐼𝑜𝑇𝐶𝑜𝑛𝑐𝑒𝑟𝑛"),
𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑒𝑑_𝑖𝑛(𝑠𝑑𝑙, 𝐴𝐶𝑇),
𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑠𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝐶2, 𝐴𝐶𝑇),
ℎ𝑎𝑠𝑀𝑎𝑖𝑛𝑇𝑜𝑝𝑖𝑐(𝑅𝑂𝑂𝑇_𝐵𝐵, 𝐶1),
𝑠𝑖𝑚𝑖𝑙𝑎𝑟_𝑡𝑜(𝐶1, 𝐶2).

query 𝑄 is captured by atom 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡(𝑅𝑂𝑂𝑇_𝐵𝐵).

Given the prototype ontology, since SDL includes verification activities, the appli-

cation-security verification framework discussed earlier is potentially relevant to the

query – were it not for the fact that it is related to application security, rather than IoT.

A similar argument holds for the hardware verification framework. This gap is bridged

by the background knowledge.

Thus, one can check that, while no building block exists for an SDL framework for

IoT, 𝜏(Ω) ∪ Λ entails two atoms of the form 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡(𝑅𝑂𝑂𝑇_𝐵𝐵): 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡(1), in-

dicating the application-security verification framework (clause 1) is a match for the

query, and 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡(3.5), indicating that the hardware security verification framework

(clause 3.5) is another match for the query. In fact, both have context 𝐹𝑟𝑎𝑚𝑒𝑤𝑜𝑟𝑘,

describe an activity of interest (𝑉𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛), and have a concern that is a subclass of

𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒𝐶𝑜𝑛𝑐𝑒𝑟𝑛, 𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒𝐶𝑜𝑛𝑐𝑒𝑟𝑛 or 𝐼𝑜𝑇𝐶𝑜𝑛𝑐𝑒𝑟𝑛. Specifically for clause 1,

while the application-security verification framework does not mention concern

𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒𝐶𝑜𝑛𝑐𝑒𝑟𝑛, it is related to application security, which, based on the knowledge

from Fig. 3, is a software-related concern.

6 We omit the axiom for matching of SDL framework for IoT, which is straightforward.

16

7 Benefits and obstacles

The area of standardization, and specifically a sample of security assessment related

standards that we have evaluated, demonstrate excellent premises for knowledge engi-

neering and automated reasoning. The creation of standards is a structured collaborative

process that results in highly structured documents. Thus, extracting building blocks

from standards, organizing them within an ontology, developing reasoning tools, and

incorporating the use of ontology and reasoning at certain stages of the development of

standards is feasible, as was confirmed by our experiment.

 Moreover, some level of automation and harmonization in the development of stand-

ards would speed up the development process. With limited resources, increasing spe-

cialization of experts, diverse ICT infrastructures, and shortening technology lifecycles,

expanded use of technology will be vastly beneficial.

 Although the knowledge engineering community developed a wide range of tools to

support the ontology-based management of some standard building blocks, the nature

of the standardization process makes the initial investment in the technology and pro-

cess difficult for standards bodies. Most standards experts are volunteers, spending a

fraction of their working time on the development of standards and specifications. Even

with the highly structure nature of standards, the planning and creation of the initial

ontology is a daunting task, but it may become necessary as the need for standards

continues to expand.

Another obstacle is connected to the positioning of the ontology within a standardi-

zation field. In order to be effective, the ontology itself and/or the building blocks it

organizes need to be standardized. Although many areas of technology development

have become automated and now rely on tools and processes these tools enforce, this

change has not yet happened in standardization. The development of assessment-related

standards has decade long traditions that served the field well. Creating an ontology to

formalize building blocks and relationships among them may require reassessment of

some practices.

However, we believe that the circumstances have aligned to make automation of

some parts of the standardization process more important. The lack of cross-domain

expertise among experts, the sheer number of existing standards, and the needs of the

global digital infrastructure make some levels of formalization of building blocks in

standards inevitable. And greater formalization is likely to lead to increase in automa-

tion.

8 Conclusions and Future Work

The first stage of our work was exploratory, but it confirmed the feasibility of the on-

tology-based management of standards, while also highlighting many difficulties along

the way. We have built a prototype ontology based on a sample of ISO/IEC standards

and determined that there are easily detectable building blocks that can help technolo-

17

gists working in the areas of security or “trustworthiness” assessment to build and up-

date standards faster, to detect conflicts, and to promote harmonization within the field.

Screenshots of the prototype system can be found in Fig. 6 and Fig. 7.

We have also taken stock of the obstacles to introducing ontologies into standardi-

zation. Overcoming these obstacles will be an important area of the future work. De-

fining the structure of the most common building blocks as well as methodologies to

promote harmonization in standards will be another important direction. The improve-

ment of the techniques for automated reasoning in the context of ICT assessment-re-

lated standards will continue to be important. Finally, applications of this work to ad-

jacent areas, such as automated classification of standards, will be explored.

18

Fig. 6. Prototype system: ontology creation page

19

Fig. 7. Prototype system: query demonstration interface

20

References

Alobaidi, M., Malik, K. M., & Hussain, M. (2018). Automated Ontology Generation

Framework Powered by Linked Biomedical Ontologies for Disease-Drug Do-

main. Computer Methods and Programs in Biomedicine.

Boje, D. M. (Ed.). (2015). Organizational change and global standardization: Solu-

tions to standards and norms overwhelming organizations. Routledge.

Cai, M. C., Xu, Q., Pan, Y. J., Pan, W., Ji, N., Li, Y. B., & Ji, Z. L. (2014). ADReCS:

an ontology database for aiding standardization and hierarchical classification

of adverse drug reaction terms. Nucleic acids research, 43(D1), D907-D913.

de Franco Rosa, F., Jino, M., & Bonacin, R. (2018). Towards an Ontology of Security

Assessment: A Core Model Proposal. In Information Technology-New Gener-

ations (pp. 75-80). Springer, Cham.

de Franco Rosa, F., Jino, M., Bueno, P. M. S., & Bonacin, R. (2018, April). Coverage-

Based Heuristics for Selecting Assessment Items from Security Standards: A

Core Set Proposal. In 2018 Workshop on Metrology for Industry 4.0 and

IoT (pp. 192-197). IEEE.

Fenz, S., & Ekelhart, A. (2009). Formalizing information security knowledge. In Pro-

ceedings of the 4th international Symposium on information, Computer, and

Communications Security (pp. 183-194). ACM.

Fraga, A. L., & Vegetti, M. (2017). Semi-Automated Ontology Generation Process

from Industrial Product Data Standards. In III Simposio Argentino de On-

tologías y sus Aplicaciones (SAOA)-JAIIO 46 (Córdoba, 2017).

Gelfond, M., & Lifschitz, V. (1991). Classical Negation in Logic Programs and

Disjunctive Databases. New Generation Computing, 9, 365–385.

Gonzalez-Perez, C., Henderson-Sellers, B., McBride, T., Low, G. C., & Larrucea, X.

(2016). An Ontology for ISO software engineering standards: 2) Proof of con-

cept and application. Computer Standards & Interfaces, 48, 112-123.

Harris, S., Seaborne, A., & Prud’hommeaux, E. (2013). SPARQL 1.1 query language.

W3C recommendation, 21(10).

Huang, Y., & Li, G. (2010). A semantic analysis for internet of things. In Intelligent

computation technology and automation (ICICTA), 2010 international

conference on (Vol. 1, pp. 336-339). IEEE.

Marek, V. W., & Truszczynski, M. (1999). Stable Models and an Alternative Logic

Programming. In The Logic Programming Paradigm: a 25-Year Perspective

(pp. 375–398).

Ramanauskaitė, S., Olifer, D., Goranin, N., & Čenys, A. (2013). Security ontology for

adaptive mapping of security standards. International Journal of Computers,

Communications & Control (IJCCC), 8(6), 813-825.

