
Planning in RTS Games with Incomplete Action Definitions
via Answer Set Programming

Marcello Balduccini and Alberto Uriarte and Santiago Ontañón
Computer Science Department

Drexel University
Philadelphia, PA, USA 19104

mbalduccini@drexel.edu, albertouri@cs.drexel.edu, santi@cs.drexel.edu

Abstract

Standard game tree search algorithms, such as minimax
or Monte Carlo Tree Search, assume the existence of
an accurate forward model that simulates the effects of
actions in the game. Creating such model, however, is
a challenge in itself. One cause of the complexity of
the task is the gap in level of abstraction between the
informal specification of the model and its implemen-
tation language. To overcome this issue, we propose
a technique for the implementation of forward models
that relies on the Answer Set Programming paradigm
and on well-established knowledge representation tech-
niques from defeasible reasoning and reasoning about
actions and change. We evaluate our approach in the
context of Real-Time Strategy games using a collection
of StarCraft scenarios.

Introduction
Planning in Real-Time Strategy (RTS) games is a very chal-
lenging AI problem for three main reasons: (1) they have
an enormous branching factor, (2) they are real-time (which
means that players can perform durative actions simultane-
ously), and (3) complete forward models are usually not
available. While there has been a recent push to address
the first two problems (Chung, Buro, and Schaeffer 2005;
Churchill, Saffidine, and Buro 2012; Ontañón 2013), little
work exists on addressing the third, which we elaborate be-
low and is the focus of this paper.

A forward model (also known as a transition function or
as a simulator) is a function that, given the current game
state and the actions that the players want to perform, gener-
ates the game state that results from executing those actions.
Most game tree search algorithms such as minimax or Monte
Carlo Tree Search (MCTS) inherently assume the existence
of such forward model, without which a game tree simply
cannot be generated. However, while public perfect for-
ward models are available for classic games such as Chess
or Go, they are not available for many other games, such as
StarCraft. In those cases, a perfect forward model is avail-
able only to the game creator. Players rely on partial, often
qualitative, models inferred by playing the game. Formal-
izing these models for automated reasoning is challenging,

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

for example, SparCraft (Churchill 2013), a partial forward
model for StarCraft, took several years to develop. This
paper presents one step toward a practical effective formal-
ization of forward models for complex games based on An-
swer Set Programming (ASP) (Gelfond and Lifschitz 1991;
Niemelä and Simons 2000). ASP is a well-established
knowledge representation framework from defeasible rea-
soning and reasoning about actions and change. We focus
on (not uncommon) situations in which high-level qualita-
tive information about the action effects is available. For
example, we might be told by a fellow player that “if a unit
A attacks another unit B, B will be killed”, or that “in a
combat, a larger force will defeat a smaller force.” Similar
statements also appear often in the game manuals. In either
case, the exact details are not provided. These approaches
have proved successful in a number of domains, but it is un-
clear whether they can be used to formalize scenarios of the
complexity found in game playing and whether they yield
fast enough computations. Our approach does not eliminate
the challenge of having to provide a formal specification of
the forward model, but aims at alleviating the complexities
of the task by providing a higher-level language with good
representation features.

From a technical perspective, we propose to encode the
available domain knowledge using a combination of action
languages (aimed at encoding the conditions and effects of
actions in a compact and principled way, and capable of cap-
turing indirect and non-deterministic effects) and defeasible
statements. The defeasible statements are formalized as “de-
faults” (statements that are normally true) and their “excep-
tions”, which allow one to define exceptions to the general
rule. Defaults and exceptions provide a high-level and com-
pact way of representing knowledge, since they are robust in
the presence of exceptions and contradictions. For example,
when learning to play StarCraft, the instructions might de-
scribe that the difference between units and structures is that
structures do not move; however, the player will later dis-
cover that some Terran buildings can actually take off and
move.

Although the forward models created by our approach
can in principle be used with any reasoning algorithms, in
this paper the planning algorithm is also formalized in ASP.
This allows for a simple representation of a rather sophisti-
cated reasoning component, which does not assume that the



action definitions are complete, and seamlessly handles de-
faults and exceptions – as well as indirect effects of actions.

To evaluate our approach, we use the domain of Star-
Craft. Specifically, we (1) created scenarios that require
non-obvious planning to achieve a win, (2) compiled a nat-
ural language description of the relevant actions based on
the statements used, in a preliminary experiment, by a hu-
man player to describe the scenarios to a fellow player, (3)
encoded the description in ASP using an existing formaliza-
tion methodology, and (4) used the formalization and a suit-
able planning module to solve the scenarios. The goal was
to evaluate the ability of the corresponding agent to win in
the scenarios in spite of the high-level knowledge provided.
Although our agent is not yet incorporated into a StarCraft
playing bot, and thus direct comparisons are not possible,
we manually compared the strategies devised by our system
with those employed by one of the bots that participated in
the StarCraft AI competition.

Real-Time Strategy Games
RTS is a sub-genre of strategy games where players need to
build an economy and military power in order to defeat their
opponents. From an AI point of view, the main differences
between RTS games and traditional board games such as
Chess are: they have an enormous branching factor, they are
simultaneous move games (more than one player can issue
actions at the same time), they have durative actions (actions
are not instantaneous), they are real-time (each player has a
very small amount of time to decide the next move), they
are partially observable (players can only see the part of the
map that has been explored) and they are non-deterministic.

Classical game tree search algorithms have problems
dealing with the large branching factors in RTS games. For
example, the branching factor in StarCraft can reach num-
bers between 3050 and 30200 (Ontañón et al. 2013). To palli-
ate this problem several approaches have been explored such
as portfolio approaches (Chung, Buro, and Schaeffer 2005),
abstracting the action space (Balla and Fern 2009), hierar-
chical search (Stanescu, Barriga, and Buro 2014), adversar-
ial HTN planning (Ontañón and Buro 2015) or exploration
strategies for combinatorial action spaces (Ontañón 2013).
All of the previous approaches, however, share the fact that
they assume that the system has access to either a forward
model of the domain (in order to apply planning or game tree
search), or that the system is allowed to use the actual game
to run simulations (e.g., (Jaidee and Muñoz-Avila 2012)).
The work presented in this paper differs in that we do not
assume that the system has access to a completely defined
forward model or simulator, but just to a rough definition of
the effect of the actions in the game.

Answer Set Programming
Answer Set Programming enables an elegant and compact
representation of key aspects of forward models, includ-
ing defaults and exceptions, and what changes and does
not change as an effect of the execution of actions, all of
which are fundamental and non-trivial challenges in reason-
ing about actions and change.

ASP terms and atoms are formed as usual in first-
order logic. A literal is an atom a or its strong nega-
tion ¬a. A rule is a statement of the form: l0 ←
l1, . . . , lm, not lm+1, . . . , not ln, where li’s are liter-
als. Its intuitive meaning is that a reasoner who believes
{l1, . . . , lm} and has no reason to believe {lm+1, . . . , ln},
must believe l0. For instance, given a rule ¬moves(X) ←
is(X, structure), not is(X, terran) an agent will always
conclude that a given structure s does not move, unless the
agent has reason to believe that s is Terran1. A program is a
set of rules. An answer set of a program Π can be informally
defined as a set of non-contradictory literals that satisfies all
the rules in Π (the formal semantics can be found in (Gel-
fond and Lifschitz 1991).

In certain situations, programs may have multiple answer
sets, each encoding an alternative, equally likely view of the
world. This feature of ASP is useful for formalizing high-
level knowledge of the kind considered here.

For a convenient representation of choices, we make
use of the syntax m{l1, l2, . . . , lk}n (Niemelä and Simons
2000), where m, n are integers. The expression intuitively
states that elements from {l1, . . . , lk} can be arbitrarily se-
lected as long as their cardinality is between m and n.

ASP has been used before for other game AI tasks. For
example, Thielscher showed how single-player games form
the AAAI general game playing competition could be au-
tomatically translated to an ASP formalism for planning
(Thielscher 2009). Smith and Mateas showed the usefulness
of ASP for procedural content generation in games (Smith
and Mateas 2011). Finally, Stanescu and Certicky used ASP
in the context of RTS games to predict the opponent’s army
composition (Stanescu and Certicky 2014).

RTS Games: Representation Framework
In order to model states and action effects in RTS games,
we employ fluents. In the context of reasoning about actions
and change, fluents are first-order terms denoting the prop-
erties of interest of the domain, whose truth value typically
depends upon time. For example, in(u1, t2) may represent
the fact that unit u1 is (embarked) in transport t2. A fluent
literal is either a fluent f or its negation ¬f . Intuitively, flu-
ents are inertial, meaning that their truth value persists over
time.2 Properties whose truth value does not depend on time
are called statics. For example connected(l1, l2) states that
locations l1, l2 are connected. In this paper, we do not dis-
tinguish between statics and fluents unless necessary. The
key properties used in our formalization are discussed next.

The physical layout of an RTS map is formalized as an
undirected graph, whose nodes correspond to regions in the
map and whose arcs define connectivity. The graph is repre-
sented by means of statics. For example, the following facts
assert statics describing a layout consisting of two connected
regions:

node(battlefield1). node(bridge1).
connected(battlefield1, bridge1).

1Strings with uppercase initials denote variables.
2More sophisticated types of fluents can be defined, but are not

needed in the context of this paper.



Static is a formalizes an ontology of node types and speci-
fies the type of the nodes in a layout, e.g.:

is a(bridge1, bridge). is a(bridge, constrained site).

The latter statement formalizes the idea that a bridge is a
“narrow” region. The properties of units are specified by
suitable statics and fluents. The fact that a group of 8 enemy
marines is on a bridge can be formalized by:

is a(enemy marines,marine). count(enemy marines, 8).
alive(enemy marines). at(enemy marines, bridge1).
affiliation(enemy marines, enemy).

Elementary actions are first-order terms. In this work, we
consider 4 elementary actions: walk(u, l) (unit u walks to
location l), fly(t, l) (transport t flies to l), load(u, t), and
unload(u, t) (respectively, for units loading on and unload-
ing from transports). These actions are enough to capture the
behavior of marines and transports, which are the only two
StarCraft unit types considered in our experiments. A com-
pound action is a set of elementary actions, denoting their
concurrent execution.

The set of the possible evolutions of a domain is repre-
sented by a transition diagram, i.e., a directed graph whose
nodes – each labeled by a complete and consistent set of flu-
ent literals – represent the states of the domain, and whose
arcs – labeled by sets of actions – describe state transi-
tions. A state transition is identified by a triple, 〈σ0, a, σ1〉,
where σi’s are states and a is a compound action. Finally,
a sequence of transitions identifies a trajectory (or path)
〈σ0, a0, σ1, a1, . . .〉 in the transition diagram.

While transition diagrams elegantly capture the evolution
of domains over time, their size makes a direct representa-
tion unfeasible for anything but the simplest cases. How-
ever, transition diagrams can be compactly represented us-
ing an indirect encoding based on research on action lan-
guages (Gelfond and Lifschitz 1998). In this paper, we adopt
the variant of writing such encoding in ASP – see, e.g., (Bal-
duccini, Gelfond, and Nogueira 2000).

In the ASP encoding, the states in a trajectory are identi-
fied by integers (0 is the initial state). The fact that a fluent f
speaker at a step i is represented by atom h(f, i), where rela-
tion h stands for holds. If ¬f holds, we write ¬h(f, i). (For
a static s, we write s and ¬s respectively.) Occurrences of
elementary actions are represented by an expression o(a, i)
(o stands for occurs). ASP rules (also called laws in this con-
text) describe the effects of actions. An action description
is a collection of such rules, together with rules formaliz-
ing the inertial behavior of fluents. Traditionally, laws are
divided in dynamic laws (describing the direct effects of ac-
tions), state constraints (describing the indirect effects), and
executability conditions (stating when the actions can be ex-
ecuted). Often, a fourth type of law – triggers – denotes
actions whose execution is triggered directly by conditions
on states. In our formalization of RTS games, we retain this
classification, but to save space we do not give further de-
tails. Readers can refer to, e.g., (Gelfond 2002).

Action descriptions are the essential building block for
defining the effect of the actions in a game. For example,
the next three rules specify (1) a dynamic law saying that a

direct effect of action walk is that its actor changes location,
(2) a state constraint stating that the unit loaded on a trans-
port moves with the transport (an indirect effect of fly), and
(3) an executability condition prescribing that units that are
dead cannot move:

h(at(U,L2), S + 1)← o(walk(U,L2), S),
h(at(U,L1), S),
connected(L1, L2).

h(at(U,L), S)← h(in(U, T ), S), h(at(T,L), S).

← o(walk(U,L), S), ¬h(alive(U), S).

Finally, the inertia axiom defines compactly and accurately
the inertial behavior of fluents, which can be informally
stated as “things tend to stay as they are”:3

h(F, S + 1)← h(F, S), not ¬h(F, S + 1).

An important advantage of this approach is that the task of
planning can be reduced to finding answer sets of a program
consisting of an action description together with a planning
module. The planning module follows the Generate-Define-
Test methodology from (Lifschitz 2002), which identifies,
in a set of rules, a component that generates candidate so-
lutions, one that defines what an acceptable solution is, and
one that eliminates the non-solutions. In this paper, the gen-
eration of candidate plans is achieved by the single rule:

1{o(A,S) : action(A)}µ← step(S), not goal(S).

intuitively stating that between 1 and µ actions can be se-
lected at each step, until the goal is reached. Parameter µ
is specified as part of the problem. In the scenarios con-
sidered, the goal is achieved when the player-controlled
marines reach the enemy base and the enemy marines are
dead, formalized as:4

← not goal.
goal← reached(enemy base, S),¬enemy alive(S).
reached(enemy base, S)←

at(U, enemy base node, S), is a(U,marine),
affiliation(U, player), alive(U, S).

The first rule says that the goal must be achieved. The sec-
ond states under which conditions the goal is achieved, and
the third says that the enemy base must be reached by (at
least) a unit of alive blue marines.

Formalization Methodology
In this paper we address the problem of formalizing quali-
tative, possibly incomplete domain knowledge in a way that
allows an agent to effectively use it for solving game scenar-
ios and to seamlessly expand it as new information becomes
available, similarly to how a human might do. Our aim is
to provide a demonstration that this can be accomplished by
means of a combination of techniques from non-monotonic
reasoning and from reasoning about actions and change. The
challenge is that English descriptions are inherently vague
and internally inconsistent. To capture them appropriately,

3The version for fluents that are false is omitted to save space.
4We omit the definition of enemy alive to save space.



we rely on defeasible formalizations and on the solid theo-
retical foundations of the underlying formalisms.

Consider a representative subset of the statements used,
in a preliminary experiment, by a human player to describe
the scenarios used in our experiments to a fellow player:

1. If troops from different sides are in the same region or
in two connected regions, they will fight each other until
either group is killed.

2. Marines cannot fight while on a transport.
3. The larger group typically wins in a fight.
4. A group that is concentrated in a narrow region will lose

even if it is larger than the enemy, since the marines can
be easily picked out one by one.

5. The goal of the mission is for the marines to kill the en-
emy marines and reach the enemy base.

Notice that most of these statements are described in rather
qualitative terms. Additionally, some of them appear to
clash with each other (e.g., (1-2) and (3-4)). Yet, our choice
of representation methodology allows for an effective repre-
sentation of these challenging statements.

Let us consider (1-2). The first statement can be repre-
sented by an ASP rule:

o(fight(X,Y ), S)←
is a(X,marine), is a(Y,marine),
affiliation(X,AX), affiliation(Y,AY ), AX 6= AY,
h(alive(X), S), h(alive(Y ), S),
near(X,Y, S), not ab(fight(X,Y ), S).

The rule relies on the definition of the notion of near, omit-
ted to save space. Relation ab (“abnormal”), used at the end
of the rule, ensures its defeasibility, intuitively stating that
the conclusion will be drawn “unless there is reason to be-
lieve this to be an abnormal fight.” Statement (2) can then
be specified as an exception to a default:

ab(fight(Y,X), S)← is a(X,marine), is a(Y,marine),
h(in(Y, T ), S), is a(T, transport).

In the presence of these two rules, a reasoning agent will
tend to apply the first rule unless the second rule applies.
Other special cases can be incrementally added by encoding
further exceptions.

A generalization of this methodology is applied to state-
ments (3-4). Given a suitable definition of a relation
total fighting against, which counts the number of units
fighting against an enemy from the same and connected lo-
cations, the first statement can be formalized by the rules:

appl(d(1, o(kills(X,Y ), S)))←
o(fight(X,Y ), S),
total fighting against(Y, T against Y, S),
total fighting against(X,T against X, S),
T against Y > T against X,
not ab(d(1, o(kills(X,Y ), S))).

o(kills(X,Y ), S)← appl(d(1, o(kills(X,Y ), S))).

Relation appl stands for “applied,” i.e., the default is ap-
plied. Relation ab stands for “abnormal”, i.e., the default
is defeated/blocked. Intuitively, the first rule encodes (3) as

a default, called d(1, o(kills(X,Y ), S)), and states that the
default is applied under the conditions stated in (3) unless
the default is defeated. The second rule states that, if the de-
fault is applied, then the corresponding unit kills the other.

Statement (4) is encoded by a default named
d(2, o(kills(X,Y ), S)), shown below, and by another
rule (omitted) triggering a kills action:

appl(d(2, o(kills(X,Y ), S)))←
o(fight(X,Y ), S),
not spread out(Y, S),
h(at(X,LX), S), h(at(Y,LY ), S),
is a(LY, constrained site),
not is a(LX, constrained site),
not ab(d(2, o(kills(X,Y ), S))).

The intuition that the second default takes precedence over
the first is captured by a statement:

pref(d(2, o(kills(X,Y ), S)), d(1, o(kills(Y,X), S))).

The formalization is completed by specifying that, if a more
preferred default is applied, the least preferred is blocked:

ab(D2)← pref(D1, D2), appl(D1).

Experimental Evaluation
To evaluate our approach, we designed a collection of sce-
narios of increasing complexity, where one player needs to
find a plan that can grant victory. The following two subsec-
tions describe first our experimental setup, including the sce-
narios used, and then the results obtained by our approach.

Experimental Setup
In order to assess the performance of our ASP system, we
employed the following methodology:
• Each scenario consists of a StarCraft map m, where the

blue player needs to devise a plan to destroy the base of
the red player. Maps are set in a way that the red player
has all of her defenses set up in advance, and will just wait
for an attack from the blue player. The blue player is the
one that will be controlled by our planner.

• We authored two versions of each scenario, one as a full-
fledged StarCraft map, and one that is an automatic re-
representation of such map using the ASP representation
described above. Figure 1 shows an example map used in
our evaluation, with its corresponding ASP version.

• Our system was then used to play each of the scenarios,
and come up with a winning plan. Our planner is not yet
connected to an actual StarCraft playing bot, and thus the
resulting plans are not evaluated in the actual game. How-
ever, the feasibility of the generated plans was analyzed
by hand by the authors. As part of our future work, we
want to incorporate our ASP planner into a StarCraft bot.

• As a baseline, we employed NOVA (Uriarte and Ontañón
2012), one of the bots participating in the StarCraft AI
competition (Ontañón et al. 2013). NOVA played using
the actual StarCraft maps. Since comparison between
NOVA and our planner cannot be done in a direct way
(it would be unfair to penalize NOVA for losing a map



node(l0).
node(l1).
node(l2).
node(l3).
node(l4).
node(l5).

is_a(l2,bridge).
impassable(l5).

h(at(u0,l0),0).
h(at(u1,l1),0).
h(at(u2,l3),0).
h(at(u3,l3),0).
h(at(u4,l4),0).

h(count(u1,8),0).
h(count(u2,10),0).

M
M

T
BB

l0 l1

l2

l3 l4

l5

u0 u1

u2

u3

u4

connected(l0,l1).
connected(l1,l2).
connected(l1,l5).
connected(l2,l3).
connected(l3,l5).
connected(l3,l4).

is_a(u0,base).
is_a(u1,marine).
is_a(u2,marine).
is_a(u3,transport).
is_a(u4,base).

affiliation(u0,red).
affiliation(u1,red).
affiliation(u2,blue).
affiliation(u3,blue).
affiliation(u4,blue).

a) b)

c)

Figure 1: An example map used in our evaluation: a) shows the StarCraft version, b) shows a visualization of the ASP repre-
sentation, and c) shows the ASP representation itself.

just because NOVA has to deal with the actual low-level
complexity of StarCraft), we analyzed the high-level plan
that NOVA attempts to execute in order to win each sce-
nario, and compare such plan against the plan generated
by our planner.

In order to evaluate our approach, we used two sets of sce-
narios. Each set corresponds to a different type of map. For
each set of scenario, we generated several specific scenarios
of varying sizes (more or less units, smaller or larger maps).

• scenario-A-k: in these scenarios, the player and the en-
emy each occupy one side of a map that are connected
by a narrow bridge. The enemy has one large group of
marines blocking the bridge, and the player has k groups
of marines spread over k regions. The player also has
k transports available, each of which can carry a small
group of marines directly to the enemy side, without go-
ing through the bridge (flying over an unwalkable area).
Figure 1 shows an example of this scenarios (specifically,
this is scenario-A-1), Figure 2.a) shows scenario-A-2 as
an example. We evaluated scenarios with values of k
ranging from 1 to 8. The key in these scenarios is that
the number of enemy marines is slightly smaller than the
number of friendly marines, but the friendly marines need
to cross the narrow bridge in order to attack the enemy,
and in the bridge, the enemy can pick the friendly marines
one by one, thus neutralizing the numeric advantage. In
order to win in this scenario, the player needs to load as
many marines as possible into transports, and then drop
them all at once on the left-hand side of the map, at the
same time as the remaining marines attack via the bridge.
In this way, the numeric advantage of the friendly marines
is exerted, and the player can win the game.

• scenario-B-k: in these scenarios, the map consists of a
series of islands connected by narrow bridges. In the k

left-most islands, the enemy has groups of marines. The
player marines are also distributed over a set of islands.
The player has one more group of marines than the enemy,
but again the bridges help the enemy cancel the numeric
disadvantage. To win this scenario, the player must co-
ordinate the attacks of its groups, and always attack the
enemy from two bridges at a time. Figure 2.b) shows
scenario-B-2, where we can see that the enemy has two
groups of marines, and if the player wants to win, it must
first attack u2 with u5 and u4 simultaneously, and then the
surviving marines must attack u1 together with u3. Al-
most any other combination of attacks makes the player
lose the game. We evaluated scenarios with values of k
ranging from 1 to 8.
All the groups of friendly marines in all scenarios con-

sisted of 8 marines. The key idea behind the design of these
scenarios was to find maps in which there was only one or
a small number of winning plans, and see whether the pro-
posed planner was able to generate those plans, based on
the encoded domain knowledge. Moreover, although we
converted the scenarios to StarCraft by hand given the ASP
representation, the opposite process (given a StarCraft map,
generate the ASP representation) could in principle be auto-
matically done with an algorithm to divide a map in regions,
such as Perkin’s (Perkins 2010), in order to incorporate our
system in an actual StarCraft playing bot.

Experimental Results
The first experiment we performed is to determine whether
the proposed ASP system could generate plans for the sce-
narios above, and what is the scalability of the system. Fig-
ure 3 shows the time in seconds the ASP system took to find
winning plans for scenarios A and B for values of k ranging
from 1 to 8. Notice that scenarios with k = 8 are rather
large, since they involve 8 groups of marines with 8 marines



M M

T
BB

l0 l1
l2

l3 l5

l5

u0 u1 u2

u3

u6

M

T l4

u4

u5
MB

l0 l1
l4u0 u1

M
l3

u3

M M B
l5

l8
l9 l10

u2 u5 u6

M
l7

u4

a) scenario-A-2 b) scenario-B-2

l2 l6

Figure 2: An example of each of the two types of scenarios used in our evaluation: a) scenario-A-2 (two regions, with two
groups of marines and transports), and b) scenario-B-2 (two bridges).

Figure 3: Time to find a winning plan in scenarios scenario-
A-k, and scenario-B-k. The horizontal axis represents K,
and the vertical axis the time in seconds (log scale).

each (64 friendly marines total). The resulting plans re-
flected the expected plan for each scenario, described above.

As the figure shows, the ASP system was able to solve
all scenarios, but solution time grows exponentially with
scenario size (as expected). Scenario-A-k maps take sig-
nificantly more time than Scenario-B-k maps for the same
value of k since the former involves transports in addition to
marines, with the possibility of loading marines on to them,
which increases the branching factor significantly. Consid-
ering the dynamics of a game like StarCraft, and the level of
granularity at which our system is dealing with, we believe
that solution times smaller than 1 second are acceptable for
game play (the planner can run on the background until a
plan is found). This means that in maps of the type of sce-
nario A, our system would scale up to size k = 4, and on
maps of the type of scenario B, we could go up to k = 7.

Moreover, in order to assess the performance of a Star-
Craft bot in these scenarios, we encoded scenario-A-1,
scenario-A-2, scenario-B-1 and scenario-A-2 in StarCraft,
and had the StarCraft bot NOVA play them with the follow-
ing results:

• scenario-A-1 and scenario-A-2: NOVA blocks since the
bridge is too narrow for the formation it desires its troops
to have, and never attacks.

• scenario-B-1: NOVA wins this scenario using the right
strategy by attacking the enemy marines simultaneously
with two friendly marine groups. However, this strategy
emerges by chance, since NOVA was in fact just trying to

merge its two marine groups into one larger group, and
the enemy happened to be in the middle.

• scenario-B-2 (Figure 2.b): NOVA loses this scenario,
since when the combat between groups u5 and u4 versus
u2 starts, it tries to bring u3 to help, by walking through
u1, but without attacking. This results in heavy losses.

Although direct comparison between NOVA and our ap-
proach is not possible from these experiments, the interest-
ing observation here is that, most bots participating in the
StarCraft competition, like NOVA, excel in low-level com-
bat situations, but have very limited high-level and long-
term planning capabilities. As can be seen, the plans de-
vised by NOVA to solve these scenarios are not adequate.
Thus, the potential of our planning approach for increasing
the planing strength of StarCraft bots is significant. More-
over, we’d like to recall that these plans were generated us-
ing only an approximate forward model.

Conclusions
This paper presented a technique for the implementation of
forward models in RTS games that relies on the Answer Set
Programming paradigm. Our approach aims at alleviating
the complexities of defining forward models by providing
a higher-level language with good representation features.
We evaluated the resulting representation methodology on a
collection of StarCraft scenarios, with promising results.

Our experimental results show that the resulting forward
models can be used effectively to solve non-trivial scenar-
ios. Furthermore, a simple planner built using ASP was able
to satisfactorily find plans for a collection of increasingly
complex StarCraft scenarios, where a state-of-the-art Star-
Craft bot could not. The scenarios were designed so that a
plan would be hard to find and that a standard rush strategy
would result in a loss.

The long term goal of our work is to design systems that
can play a wide range of RTS games in the absence of a
detailed model of the game dynamics, as humans seem to
do. We plan to incorporate our planner into an actual Star-
Craft playing bot and fully assess its efficiency. We would
also like to generalize our approach to other RTS games,
and study how the amount of domain knowledge affects the
quality of the plans. Additionally, our evaluation method-
ology did not consider an adversarial planner. Thus, in our
future work, we want to experiment with the performance
achievable with adversarial planners.



References
Balduccini, M.; Gelfond, M.; and Nogueira, M. 2000. A-
Prolog as a tool for declarative programming. In Proceed-
ings of the 12th International Conference on Software Engi-
neering and Knowledge Engineering (SEKE’2000), 63–72.
Balla, R.-K., and Fern, A. 2009. UCT for tactical assault
planning in real-time strategy games. In International Joint
Conference of Artificial Intelligence, IJCAI, 40–45. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
Chung, M.; Buro, M.; and Schaeffer, J. 2005. Monte carlo
planning in RTS games. In IEEE Symposium on Computa-
tional Intelligence and Games (CIG).
Churchill, D.; Saffidine, A.; and Buro, M. 2012. Fast heuris-
tic search for RTS game combat scenarios. In Artificial In-
telligence and Interactive Digital Entertainment Conference
(AIIDE). The AAAI Press.
Churchill, D. 2013. Sparcraft: open source starcraft combat
simulation.
Gelfond, M., and Lifschitz, V. 1991. Classical Negation in
Logic Programs and Disjunctive Databases. New Genera-
tion Computing 9:365–385.
Gelfond, M., and Lifschitz, V. 1998. Action languages.
Electronic Transactions on AI 3(16):193–210.
Gelfond, M. 2002. Representing Knowledge in A-
Prolog. In Kakas, A. C., and Sadri, F., eds., Computational
Logic: Logic Programming and Beyond, Essays in Hon-
our of Robert A. Kowalski, Part II, volume 2408, 413–451.
Springer Verlag, Berlin.
Jaidee, U., and Muñoz-Avila, H. 2012. CLASSQ-L: A q-
learning algorithm for adversarial real-time strategy games.
In Artificial Intelligence and Interactive Digital Entertain-
ment Conference (AIIDE).
Lifschitz, V. 2002. Answer set programming and plan gen-
eration. Artificial Intelligence 138:39–54.
Niemelä, I., and Simons, P. 2000. Extending the Smod-
els System with Cardinality and Weight Constraints. In
Minker, J., ed., Logic-Based Artificial Intelligence. Kluwer
Academic Publishers. 491–521.
Ontañón, S.; Synnaeve, G.; Uriarte, A.; Richoux, F.;
Churchill, D.; and Preuss, M. 2013. A survey of real-
time strategy game ai research and competition in StarCraft.
IEEE Transactions on Computational Intelligence and AI in
Games (TCIAIG) 5:1–19.
Ontañón, S. 2013. The combinatorial multi-armed bandit
problem and its application to real-time strategy games. In
Artificial Intelligence and Interactive Digital Entertainment
Conference (AIIDE), 58–64.
Ontañón, S., and Buro, M. 2015. Adversarial hierarchical-
task network planning for complex real-time games. In Pro-
ceedings of IJCAI 2015, to appear.
Perkins, L. 2010. Terrain analysis in real-time strategy
games: An integrated approach to choke point detection and
region decomposition. In Artificial Intelligence and Interac-
tive Digital Entertainment Conference (AIIDE), 168–173.

Smith, A. M., and Mateas, M. 2011. Answer set program-
ming for procedural content generation: A design space ap-
proach. Computational Intelligence and AI in Games, IEEE
Transactions on 3(3):187–200.
Stanescu, M., and Certicky, M. 2014. Predicting oppo-
nents production in real-time strategy games with answer set
programming. IEEE Transactions on Computational Intel-
ligence and AI in Games (TCIAIG).
Stanescu, M.; Barriga, N. A.; and Buro, M. 2014. Hierarchi-
cal adversarial search applied to real-time strategy games. In
Artificial Intelligence and Interactive Digital Entertainment
Conference (AIIDE).
Thielscher, M. 2009. Answer set programming for single-
player games in general game playing. In Logic Program-
ming. Springer. 327–341.
Uriarte, A., and Ontañón, S. 2012. Kiting in RTS games us-
ing influence maps. In Artificial Intelligence and Interactive
Digital Entertainment Conference (AIIDE).


