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Abstract

CASP is an extension of ASP that allows for numerical constraints to be added in the rules. PDDL+ is an extension
of the PDDL standard language of automated planning for modeling mixed discrete-continuous dynamics.

In this paper, we present CASP solutions for dealing with PDDL+ problems, i.e., encoding from PDDL+ to CASP,
and extensions to the algorithm of the ezcsp CASP solver in order to solve CASP programs arising from PDDL+
domains. An experimental analysis, performed on well-known linear and non-linear variants of PDDL+ domains,
involving various configurations of the ezcsp solver, other CASP solvers, and PDDL+ planners, shows the viability
of our solution.
Under consideration in Theory and Practice of Logic Programming (TPLP).

1 Introduction

Constraint Answer Set Programming (CASP) (Baselice et al. 2005) is an extension of ASP (Gelfond and
Lifschitz 1988; Gelfond and Lifschitz 1991; Niemelä 1999; Baral 2003; Marek and Truszczynski 1999) that
makes it possible to add numerical constraints to the rules of ASP programs, thus allowing to represent and
reason on infinite state systems. In the automated planning community, the PDDL standard language for
domain representation has been extended with constructs for modeling mixed discrete-continuous dynamics,
thus with a similar objective of CASP development. The improved language of the planning community is
called PDDL+ (Fox and Long 2006). Current CASP algorithms and solvers are either based on an eager
approach to CASP solving (Mellarkod et al. 2008; Ostrowski and Schaub 2012), where the numerical con-
straints are processed within the ASP search, or are based on a lazy approach (Balduccini 2009), where first
an ASP solution is found, and then the numerical constraints involved in the ASP solution are checked for
consistency by a Constraint Satisfaction Problem (CSP) solver. Independently from the approach used, in
order to be able to solve PDDL+ problems with CASP technology, there is the need to both define a suitable
encoding from PDDL+ to CASP, and to extend the architecture of current CASP solvers.

In this paper, we present an approach for using CASP solving techniques to find plans for PDDL+
problems. In particular, first we design an encoding from PDDL+ to CASP, where we show how the various
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constructs and the overall planning problems can be expressed in CASP by building on work on reasoning
about action and change, and previous work on ASP encoding of planning problems. Given that there is
still no standard language for CASP, we will mainly rely on the language constructs of the ezcsp solver.
This is not a severe limitation: variants of our encoding for other CASP languages, e.g., clingon, can be
obtained by syntactic modifications. Second, we present an architecture suitable for finding PDDL+ plans
for a PDDL+ problem via its translation to CASP and the use of a CASP solver.

The proposed encoding and solving techniques follow a discretize-and-validate approach (Della Penna et al.
2009) in which a discretization is applied during the generation of the CASP encoding. In order to select only
those CASP solutions that correspond to valid plans, the basic CASP solving algorithm is extended with
a further check that uses the plan validator VAL (Howey et al. 2004) to verify the validity of the solution
found. If the test fails, another CASP solution is found, until a valid plan has been found. Although the
architecture is given for the ezcsp solver, it can be extended to other CASP solvers.

The paper contains an extensive experimental analysis on well-known PDDL+ domains. The analysis
includes (i) various configurations of the ezcsp solver, (ii) variants of the proposed encoding, exploiting
both domain-specific and domain-independent heuristics, (iii) variants of the encoding for use with the
clingon CASP solver, studying the ramifications of the added language expressivity of the solver, ( iv) state-
of-the-art PDDL+ planners dReal and UPMurphi, and (v) two planning tasks, i.e., finding a plan at fixed
(optimal) time step, and by progressively increasing the maximum time step. The experimental evaluation
provides interesting results regarding the performance of CASP-based solutions vs. other PDDL+ planning
approaches. It also demonstrates that PDDL+ planning is an excellent source of CASP benchmarks, with
results that are sometimes surprising. Overall, the results show that our solution employing ezcsp performs
well across all domains and reasoning tasks, at the same time being the only solution able to deal with all
cases presented.

The paper is structured as follows. Section 2 introduces needed preliminaries about PDDL+, ASP, and
CASP. Section 3 presents the proposed architecture for planning in hybrid domains and discusses our en-
coding from PDDL+ to CASP, which is exemplified in Section 4 by means of a concrete PDDL+ problem.
The experimental analysis is provided in Section 5. Section 6 presents a more sophisticated extension of the
solving architecture. The paper ends by discussing related work in Section 7, and by drawing conclusions in
Section 8.

2 Preliminaries

In this section, we provide background knowledge on the main topics covered by the paper. We first introduce
the domain of hybrid systems, followed by a brief introduction on AI planning and its application to hybrid
domains. Finally, we briefly describe ASP, CSP, and CASP.

Hybrid systems can be described as hybrid automata (Henzinger 1996), which are finite state automata
extended with continuous variables that evolve over time.

Definition 1 (Hybrid Automaton)
A hybrid automaton is a tuple H = (Loc,Var , Init ,Flow ,Trans , I ), where

• Loc is a finite set of locations, Var = {x1, . . . , xn} is a finite set of real-valued variables, Init(`) ⊆ Rn

is the set of initial values for x1, . . . , xn for all locations `.
• For each location `, Flow(`) is a relation over the variables in Var and their derivatives of the form

ẋ(t) = Ax(t) + u(t), u(t) ∈ U ,

where x(t) ∈ Rn, A is a real-valued n x n matrix, and U ⊆ Rn is a closed and bounded convex set.
• Trans is a set of discrete transitions, a discrete transition tr ∈ Trans being a tuple (`, g, ξ, `′) where

` and `′ are the source and the target locations, respectively, g is the guard of tr (given as a linear
constraint), and ξ is the update of tr (given by an affine mapping).

• I (`) ⊆ Rn is an invariant for all locations `.
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An illustrative example is given by the hybrid automaton for a thermostat depicted in Figure 1. Here,
the temperature is represented by the continuous variable x. In the discrete location corresponding to the
heater being off, the temperature falls according to the flow condition ẋ = −0.1x, while when the heater is
on, the temperature increases according to the flow condition ẋ = 5 − 0.1x. The discrete transitions state
that the heater may be switched on when the temperature falls below 19 degrees, and switched off when the
temperature is greater than 21 degrees. Finally, the invariants state that the heater can be on (off) only if
the temperature is not greater than 22 degrees (not less than 18 degrees).

Off

ẋ = −0.1x

x ≥ 18

On

ẋ = 5 − 0.1x

x ≤ 22
x > 21

x < 19

x = 20

Fig. 1. Thermostat hybrid automaton.

2.1 PDDL+ Planning

Planning is an AI technology that aims at selecting and organizing activities in order to achieve specific
goals (Nau et al. 2004). A planner uses a domain model, describing the actions through their pre- and post-
conditions, and an initial state together with a goal condition. It then searches for a trajectory through the
induced state space, starting at the initial state and ending in a state satisfying the goal condition. In richer
models, such as hybrid systems, the induced state space can be given a formal semantics as a timed hybrid
automaton, which means that a plan can synchronise activities between controlled devices and external
events. PDDL+ is the planning formalism used to model hybrid system planning domains.

In the rest of this subsection, we introduce the concepts of planning instance and plan in the context of
PDDL+ planning.

Definition 2 (Planning Instance)
A planning instance is a pair I = (Dom,Prob), where Dom = (Fs ,Rs ,As , Es ,Ps , arity) is a tuple consisting
of a finite set of function symbols Fs , a finite set of relation symbols Rs , a finite set of (durative) actions As ,
a finite set of events Es , a finite set of processes Ps , and a function arity mapping all symbols in Fs ∪ Rs
to their respective arities. The triple Prob = (Os , Init , G) consists of a finite set of domain objects Os , the
initial state Init , and the goal specification G.

Following (Bogomolov et al. 2014), given a planning instance I, a state of I consists of a discrete component,
described as a set of propositions P (the Boolean fluents), and a numerical component, described as a set of
real variables v (the numerical fluents). Instantaneous actions are described through preconditions (which
are conjunctions of propositions in P and/or numerical constraints over v, and define when an action can
be applied) and effects (which specify how the action modifies the current state). The term “instantaneous”
refers to the fact that instantaneous actions begin and end at the same timepoint. Events have preconditions
as for actions, but they are used to model exogenous change in the world; therefore they are triggered as
soon as the preconditions are true. A process is responsible for the continuous change of variables, and is
active as long as its preconditions are true. Durative actions have three sets of preconditions, representing,
respectively, the conditions that must hold when an action starts, the invariants that must hold throughout
its execution, and the conditions that must hold at the end of the action. Similarly, a durative action has
three sets of effects: effects that are applied when the action starts, effects that are applied when the action
ends, and a set of continuous numeric effects which are applied continuously while the action is executing.

Formally, the semantics of a PDDL+ planning instance (Definition 2) is given by hybrid automata (Defi-
nition 1).
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The full syntax and semantics of PDDL+ can be found in the seminal paper (Fox and Long 2006). However,
in the following we provide a concrete example for the thermostat automaton in Figure 1, that also shows
the main constructs of PDDL+.

(:process off

:parameters (?t - thermostat ?r - room )

:condition (and (overall (>= (x ?r) 18)) (isOff ?t))

:effect

(and

(decrease (x ?r) (* #t (* (x ?r) (-0.1)))))

)

Fig. 2. Structure of a PDDL+ process

Figure 2 shows the PDDL+ process representing the continuous change of the temperature when the
thermostat is off (that corresponds to the Off mode in the hybrid automaton in Figure 1. Here, the parameters
are the thermostat (variable ?t) and the room (variable ?r). The condition field specifies when the process
is active, that is while the thermostat is off and the temperature of the room (x ?r) is greater than or equal
to 18. The effect field specifies the continuous change that takes place while the process is active, and
actually models the differential equation described in the hybrid automaton of Figure 1. A similar process
can be defined for when the thermostat is on. Note that PDDL+ processes follow a must semantics, meaning
that they are triggered as soon as the preconditions are true, and then become inactive as soon as they
become false.

The other key element of a planning domain is the set of actions. Figure 3 shows an example of action for
switching the thermostat off.

(:action switchOff

:parameters (?t - thermostat ?r - room )

:precondition (and (isOn ?t) (> (x ?r) 21)))

:effect

(and (isOff ?t) (not (isOn ?t)))

)

Fig. 3. Structure of a PDDL+ action

Here, the preconditions specify that the thermostat can be switched off only if it is currently on and if
the temperature of the room is greater than 21. The action has two discrete effects that specify that the
thermostat is now off and is no longer on. A similar action can be defined for switching the thermostat on.
Note that, as opposed to processes, actions follow a may semantics, meaning that the planner may (or may
not) decide to apply that action. Clearly, each action can only be applied if the precondition is satisfied.

For completeness, we also provide an example of durative action in Figure 4, from the mars rover, a typical
domain in the AI planning comunity.

This durative action refers to the rover moving between two waypoints. The duration field specifies how
long the action takes to complete, and in this case is function of the length of the path to be traversed.
The condition field can specify conditions that must hold at start (i.e., before the action can actually start),
at end (i.e., when the action terminates) and overall (i.e., throughout the duration of the action). In this
example, it is required that at start the rover is in the initial waypoint, and for the whole action the two
waypoints are visible and there is enough battery charge. Similarly, the effects of the action can be applied
when the action starts, when it terminates, or they can be continuous while the action is being applied. In
this example, when the action starts the rover is no longer at waypoint wp1, it will be at waypoint wp2 when
the action terminates, and while the action is being executed the battery level decreases continuously.

Once the planning instance has been defined, a planner can be used to find a plan, whose formal definition
is given in the following.
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(:durative-action move

:parameters (?r - rover ?wp1 ?wp2 - waypoint)

:duration (= ?duration (* 2 (distance ?wp1 ?wp2))

:condition (and (at start (at ?r ?wp1))

(overall (> (batteryLevel ?r) 5)) (overall (visible ?wp1 ?wp2))

:effect (and (at start (not (at ?r ?wp1)))

(at end (at ?r ?wp2))

(decrease (batteryLevel ?r) (* #t 0.4))

)

)

Fig. 4. Structure of a PDDL+ durative action

Definition 3 (Plan)
A plan for a planning instance I = ((Fs ,Rs ,As ,Es ,Ps , arity), (Os , Init , G)) is a finite set of triples (t, a, d) ∈
R × As × R, where t is a timepoint, a is an action, and d is the action duration.

Note that processes and events do not appear in a plan, as they are not under the direct control of the
planner.

2.2 Answer Set Programming

Let Σ be a signature containing constant, function and relation symbols. Terms and atoms are formed as in
first-order logic. A literal is an atom a or its classical negation ¬a. A rule is a statement of the form:

h← l1, . . . , lm, not lm+1, . . . , not ln (1)

where h and li’s are literals and not is the so-called default negation. The intuitive meaning of the rule is
that a reasoner who believes {l1, . . . , lm} and has no reason to believe {lm+1, . . . , ln}, has to believe h. We
call h the head of the rule, and {l1, . . . , lm, not lm+1, . . . , not ln} the body of the rule. Given a rule r, we
denote its head and body by head(r) and body(r), respectively. A rule with an empty body is called a fact,
and indicates that the head is always true. In that case, the connective ← is often dropped.

A program is a pair 〈Σ, Π〉, where Σ is a signature and Π is a set of rules over Σ. Often we denote programs
by just the second element of the pair, and let the signature be defined implicitly.

A set A of literals is consistent if no two complementary literals, a and ¬a, belong to A. A literal l is
satisfied by a consistent set of literals A (denoted by A |= l) if l ∈ A. If l is not satisfied by A, we write
A 6|= l. A set {l1, . . . , lk} of literals is satisfied by a set of literals A (A |= {l1, . . . , lk}) if each li is satisfied
by A.

Programs not containing default negation are called definite. A consistent set of literals A is closed under
a definite program Π if, for every rule of the form (1) such that the body of the rule is satisfied by A, the
head is satisfied by A. This allows us to state the semantics of definite programs.

Definition 4
A consistent set of literals A is an answer set of definite program Π if A is closed under all the rules of Π
and A is set-theoretically minimal among the sets closed under all the rules of Π.

To define answer sets of arbitrary programs, we introduce the reduct of a program Π with respect to a set
of literals A, denoted by ΠA. The reduct is obtained from Π by: (1) deleting every rule r such that l ∈ A

for some expression of the form not l from the body of r, and (2) removing all expressions of the form not l

from the bodies of the remaining rules. The semantics of arbitrary ASP programs can thus be defined as
follows.
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Definition 5

A consistent set of literals A is an answer set of program Π if it is an answer set of ΠA.

To simplify the programming task, variables (identifiers with an uppercase initial) are allowed in ASP
programs. A rule containing variables (a non-ground rule) is viewed as a shorthand for the set of its ground
instances, obtained by replacing the variables by all possible ground terms. Similarly, a non-ground program
is viewed as a shorthand for the program consisting of the ground instances of its rules.

There is also a set of useful constructs, introduced informally in the following. A rule whose head is empty
is called denial, and states that its body must not be satisfied. A choice rule has a head of the form

cl {m( ~X) : Γ( ~X)} cu

where m is a relation symbol, ~X is a list of variables, Γ( ~X) is a set of literals that include variables from
~X, and cl, cu are non-negative integers. A choice rule intuitively states that, whenever the body is satisfied,
the number of literals of the form m( ~X) where Γ( ~X) is satisfied must be between cl and cu. If not specified,
the values of cl and cu are 0 and ∞, respectively. For example, given a relation q defined by {q(a), q(b)}, the
rule:

1{p(X) : q(X)}2.

intuitively identifies three possible sets of conclusions: {p(a)}, {p(b)}, and {p(a), p(b)}.

2.3 Constraint Satisfaction Problems

A Constraint Satisfaction Problem (CSP) (Smith 2006) is a triple 〈X,D,C〉, where X = {x1, . . . , xn} is a
set of variables, D = {D1, . . . , Dn} is a set of domains such that Di is the domain of variable xi (i.e., the set
of possible values that the variable can be assigned), and C is a set of constraints.1 Each constraint c ∈ C is
a pair c = 〈σ, ρ〉, where σ is a vector of variables and ρ is a subset of the Cartesian product of the domains
of such variables.

An assignment is a pair 〈xi, a〉, where a ∈ Di, whose intuitive meaning is that variable xi is assigned value
a. A compound assignment is a set of assignments to distinct variables from X. A complete assignment is a
compound assignment to all the variables in X. A constraint 〈σ, ρ〉 specifies the acceptable assignments for
the variables from σ. We say that such assignments satisfy the constraint.

Definition 6

A solution to a CSP 〈X,D,C〉 is a complete assignment satisfying every constraint from C.

Constraints can be represented either extensionally, by specifying the pair 〈σ, ρ〉, or intensionally, by
specifying an expression involving variables, such as x < y. In this paper, we focus on constraints represented
intensionally. A global constraint is a constraint that captures a relation between a non-fixed number of
variables (Katriel and van Hoeve 2006), such as sum(x, y, z) < w and all different(x1, . . . , xk).

One should notice that the mapping of an intensional constraint specification into a pair 〈σ, ρ〉 depends
on the constraint domain. For example, the expression 1 ≤ x < 2 corresponds to the constraint 〈〈x〉, {〈1〉}〉
if the finite domain is considered, while it corresponds to 〈〈x〉, {〈v〉 | v ∈ [1, 2)}〉 in a continuous domain. For
this reason, and in line with the CLP Schema (Jaffar and Lassez 1987; Marriott et al. 2006), in this paper
we assume that a CSP includes the specification of the intended constraint domain.

1 Strictly speaking, the use of the same index i across sets X and D in the above definition of the set of domains would require
X and D to be ordered. However, as the definition of CSP is insensitive to the particular ordering chosen, we follow the
approach, common in the literature on constraint satisfaction, of simply considering X and D as sets and abusing notation
slightly in the definition of CSP.
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2.4 Constraint ASP

CASP integrates ASP and CSP in order to deal with continuous dynamics. There is currently no standard-
ized definition of CASP, and no stardard language. Multiple definitions have been given in the literature
(Ostrowski and Schaub 2012; Mellarkod et al. 2008; Baselice et al. 2005; Balduccini 2009). Although largely
overlapping, these definitions and syntax differ from each other in some details.

To ensure generality of our results, in this paper we introduce a simplified definition of CASP, which
captures the common traits of the above approaches. The main results will be given using this simplified
definition. Later (Section 4), we will introduce a specific CASP language and use it to describe a practical
example.

Syntax. In order to accommodate CSP constructs, the language of CASP extends ASP by allowing numerical
constraints of the form x ./ y, where ./∈ {<,≤, =, 6=,≥, >}, and x and y are numerical variables2 or standard
arithmetic terms possibly containing numerical variables, numerical constants, and ASP variables. Numerical
constraints are only allowed in the head of rules.

Semantics. Given a numerical constraint c, let τ(c) be a function that maps c to a syntactically legal ASP
atom and τ−1 be its inverse. We say that an ASP atom a denotes a constraint c if a = τ(c). Function τ is
extended in a natural way to CASP rules and programs. Note that, for every CASP program Π, τ(Π) is an
ASP program.

Finally, given a set A of ASP literals, let γ(A) be the set of ASP atoms from A that denote numerical
constraints. The semantics of a CASP program can thus be given by defining the notion of CASP solution,
as follows.

Definition 7
A pair 〈A,α〉 is a CASP solution of a CASP program Π if-and-only-if A is an answer set of τ(Π) and α is a
solution to τ−1(γ(A)).

ezcsp language. In ezcsp, a program is a set of ASP rules written in such a way that their answer sets
encode the desired CSPs. This is accomplished by using three types of special atoms:

1. a constraint domain declaration, i.e., a statement of the form cspdomain(D), where D is a constraint
domain such as fd, q, or r; informally, the statement says that the CSP is over the specified constraint
domain (finite domains, rational numbers, real numbers), thereby fixing an interpretation for the in-
tensionally specified constraints of the CSP. A program can contain only one cspdomain declaration;

2. a constraint variable declaration, i.e., a statement of the form cspvar(x), where x is a ground term
denoting a variable of the CSP;

3. a constraint statement, i.e. a statement of the form required(γ), where γ is an expression that intension-
ally represents a constraint on (some of) the variables specified by the cspvar statements; intuitively,
the statement says that the constraint represented by γ is required to be satisfied by any solution to
the CSP.

For example, suppose that we are given integer variables v(1), v(2), v(3) and we need to find values for
them so that (i) each variable has a distinct value, and (ii) v(1) + v(2) + v(3) ≤ 6 unless the constraint is
blocked (atom blocked), in which case the constraint has no effect. A possible ezcsp encoding is:

d(1). d(2). d(3). cspdomain(fd). cspvar(v(X))← d(X).
required(v(X) 6= v(Y ))← d(X), d(Y ), X 6= Y. required(v(1) + v(2) + v(3) ≤ 6)← not blocked.

2 Numerical variables are distinct from ASP variables.
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where X and Y are ASP variables used to describe compactly the uniqueness of values of v(1), v(2), v(3).3

The grounding of the program is:

d(1). d(2). d(3). cspdomain(fd).
cspvar(v(1))← d(1). cspvar(v(2))← d(2). cspvar(v(3))← d(3).
required(v(1) 6= v(2))← d(1), d(2), 1 6= 2. required(v(1) 6= v(3))← d(1), d(3), 1 6= 3. . . .

required(v(1) + v(2) + v(3) ≤ 6)← not blocked.

The answer set of the program is {d(1), d(2), cspdomain(fd), cspvar(v(1)), cspvar(v(2)), cspvar(v(3)),
required(v(1) 6= v(2)), required(v(1) 6= v(3), . . ., required(v(1) + v(2) + v(3) ≤ 6)}, which intuitively
describes the numerical constraints given earlier. Note that constraint v(1) + v(2) + v(3) ≤ 6 is included in
the answer set due to the fact that blocked does not hold.

3 A CASP-based Solution for Planning in Hydrid Domains

In this section we first present a CASP-based architecture for solving PDDL+ problems. Then, we focus on
the CASP encoding of PDDL+ problems.

3.1 Architecture

Our approach is centered around the architecture outlined in Figure 5. A PDDL+ model is first translated

Solutions

CSP

Ground
program

EZCSP Solver

CASP
Solution

Grounding 
Tool

Integration
Module

ASP Solver
CSP

Translator
CSP Solver

Plan
Extractor

Validation Module

PDDL+
plan

VAL

PDDL+
Plan

EZCSP
Program

Indication of 
failed validation

PDDL+
Model

PDDL+ - CASP 
Translation

Fig. 5. CASP-based solution architecture.

to a CASP program Π. Then, the CASP solutions of Π are computed by a CASP solver. The architecture
is independent of the CASP solver used, but, for presentation purposes, we focus on CASP solver ezcsp.
In ezcsp, the Grounding Tool maps Π to its syntactically legal ASP counterpart, τ(Π), and grounds it,
obtaining program Πg. Next, the Integration Module carries out an iterative process in which:

3 For the interested reader, we note that such a constraint can be even more efficiently represented by a global constraint
all different, which is supported by ezcsp.
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1. an ASP solver is used to find an answer set A of Πg;

2. a CSP C is obtained from A by finding all numerical constraints that are denoted by some atom of A,
i.e., C = {τ−1(a) | a ∈ γ(A)};

3. a CSP solver is used to find a solution, α, of C;

4. if C has no solution, the ASP solver is used to find a new answer set of Πg and the process is iterated;
otherwise, the CASP solution 〈A,α〉 is returned.

More details on the ezcsp algorithm can be found in (Balduccini 2009). Details on other CASP solvers can
be found in Section 7; Section 5 includes experiments that we conducted using CASP solver clingcon.

At this point, the Validation Module is executed. The module ensures that the CASP solution found
represents a valid PDDL+ plan. As we will see later, in our encoding invariants are enforced at the beginning
and at the end of every state in which durative actions and processes are in execution. In this sense, the
continuous timeline is discretized. This may cause some plans found by the planner to be invalid: in fact, it
is possible for an invariant to be satisfied at the boundaries of each state, and yet be violated within that
interval. An example of this behavior is discussed in Section 6. To handle these situations, we follow the
discretize-and-validate approach first proposed in (Della Penna et al. 2009). In that approach, a plan found
in the discretized setting is validated using the plan validator VAL (Howey et al. 2004), which is capable
of carrying out the calculations needed to check the satisfaction of invariants within state boundaries. The
Validation Module consists of two components, the Plan Extractor and VAL. The Plan Extractor component
applies syntactic transformations to translate the CASP solution to a PDDL+ plan in the input language
of VAL. The plan is then passed to VAL. If VAL finds it to be valid, the plan is returned and the process
terminates. Otherwise, ezcsp is invoked again. Suitable constraints are added to the ezcsp program to rule
out previously-found CASP solutions and the process is iterated.

3.2 Encoding

This section is dedicated to discussing our encoding of PDDL+ problems in CASP. Our approach is based
on research on reasoning about actions and change, and action languages (Gelfond and Lifschitz 1993; Reiter
2001; Chintabathina et al. 2005). It builds upon the existing SAT-based (Kautz and Selman 1992) and
ASP-based planning approaches and extends them to hybrid domains.

In reasoning about actions and change, the evolution of a domain over time is often represented by a
transition diagram (or, transition system) that represents states and transitions between states through
actions. Traditionally, in transition diagrams, actions are instantaneous, and states have no duration and
are described by sets of Boolean fluents. Sequences of states characterizing the evolutions of the domain are
represented as a sequence of discrete time steps, identified by integer numbers, so that step 0 corresponds to
the initial state in the sequence. We extend this view to hybrid domains according to the following principles:

• Similarly to PDDL+, a state is characterized by Boolean fluents and numerical fluents.

• The flow of actual time is captured by the notion of global time (Chintabathina et al. 2005). States
have a duration, given by the global time at which a state begins and ends. Intuitively, this conveys
the intuition that time flows “within” the state.

• The truth value of Boolean fluents only changes upon state transitions, that is, it is unaffected by the
flow of time “within” a state. On the other hand, the value of a numerical fluent may change within a
state.

• The global time at which an action occurs is identified with the end time of the state in which the
action occurs.

Next, we describe the CASP formalization of PDDL+ models. We begin by discussing the correspondence
between global time and states; then, we present domain, problems and planning task encodings.
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3.2.1 Time, States, Fluents

The global time at which the state at step i begins is represented by the numerical variable tstart(i).
Similarly, the end time is represented by tend(i). A fluent literal is a fluent f or its negation ¬f . By l we
denote Boolean complement over fluent literals, i.e., f = ¬f and ¬f = f . If f holds at discrete time step i, in
the encoding we write holds(f, i); if ¬f holds, i.e., f is false, we write ¬holds(f, i). We also often use χ(l, i)
as an abbreviation, corresponding to holds(f, i) if l = f and to ¬holds(f, i) if l = ¬f . For every numerical

fluent n, we introduce two numerical variables representing its value at the beginning and at the end of time
step i. The variables are v initial(n, i) and v final(n, i), respectively. The occurrence of an action a at time
step i is represented by an atom occurs(a, i).

Additive fluents, whose value is affected by increase and decrease statements of PDDL+, are represented
by introducing numerical variables of the form v(contrib(n, s), i), where n is a numerical fluent, s is a constant
denoting a source (e.g., the action that causes the increase or decrease), and i is a time step. The expression
denotes the amount of the contribution to fluent n from source s at step i. Intuitively, the value of n at the
end of step i (encoded by numerical variable v final(n, i)) is calculated from the values of the individual
contributions. Next, we discuss the encoding of the domain portion of a PDDL+ problem.

3.2.2 Domain Encoding

In the following discussion, ASP variables I, I1, I2 denote time steps.

Istantaneous Actions. As we have seen, instantaneous actions are characterized by a set of preconditions
and a set of effects. A Boolean precondition is a fluent literal l, representing a condition on the truth value
of l. A numerical precondition is an inequality between mathematical expressions involving combinations of
numerical fluents and numerical constants. The encoding of a precondition depends on its type. Thus, every
Boolean precondition l of an action a is encoded by a denial:

← χ(l, I), occurs(a, I). (2)

Notice that a separate denial is used for every precondition. To illustrate the encoding, consider an example
in which an action refuel with(tk1), representing the refueling of some machine using refuel tank tk1, has a
precondition that tank tk1 must be available, represented by avail(tk1). The precondition is thus represented
by:

← ¬holds(avail(tk1), I), occurs(refuel with(tk1), I).

A numerical precondition γ is encoded by means of a numerical constraint γf obtained from γ by replacing
every occurrence of a numerical fluent n by an expression v final(n, I). The latter represents the value of n

at the end of time step I. Thus, for every precondition γ of an action a, the encoding includes a rule:

γf ← occurs(a, I). (3)

Continuing on the previous example, if action refuel with(tk1) has a precondition level(tk1) > 0, intuitively
meaning that the tank must not be empty, the precondition is encoded by a rule:

v final(level(tk1), I) > 0← occurs(refuel with(tk1), I).

Similarly to Boolean preconditions, Boolean effects are represented in PDDL+ by fluent literals. For every
Boolean effect l of an action a, the encoding includes a rule:

χ(l, I + 1)← occurs(a, I). (4)

The rule states that l is true at the next time step I + 1 if the action occurs at (the end of) step I. For
the effects of actions on numerical fluents, we focus our presentation on the assignment of a value to a
numerical fluent4, corresponding to PDDL+ expression (assign n e) where n is a numerical fluent and e

4 The handling of additive fluents is discussed in the context of durative actions.



CASP Solutions for Planning in Hybrid Domains 11

is a mathematical expression possibly including numerical fluents. An effect of this form for an action a is
represented by a rule:

v initial(n, I + 1) = e′ ← occurs(a, I). (5)

where e′ is obtained from e by replacing every occurrence of a numerical fluent n′ by v initial(n′, I + 1).

Durative actions. Recall that a durative action is characterized by two sets of conditions: the start con-
ditions, which are analogous to the preconditions of instantaneous actions, and the invariants, i.e. conditions
that must be true throughout the execution of the action. Syntactically, start conditions and invariants are
represented like the preconditions of instantaneous actions, i.e. with fluent literals and numerical inequal-
ities. The effects of a durative action are divided in at-start effects, at-end effects, and continuous effects.
The at-start and at-end effects take place at the beginning and at the end of the action and are treated
analogously to the effects of instantaneous actions. The continuous effects only apply to numerical fluents
and describe a change of value that is a function of the time elapsed since the start of the action. That is,
the continuous effects of durative action d can be viewed as a partial function associating to every numerical
fluent n affected by d a mathematical expression en(t) that is a function of time (and, possibly, of the value
of other numerical fluents). This representation makes it possible to capture the behavior of additive fluents.
Additionally, the duration of the action is specified by an inequality δ ./ e where δ represents the duration
and e is an mathematical expression possibly including numerical fluents.

In our formalization, a durative action d is encoded by means of two instantaneous actions, start(d) and
end(d). The start conditions of d are mapped to preconditions of start(d) and encoded using (2) and (3).
Note that a durative action typically affects multiple consecutive states. Our encoding introduces a special
Boolean fluent inprogr(d) to denote the states during which a durative action d is in progress. How this
fluent is made true/false is discussed later. A Boolean invariant, l, of a durative action d is encoded by a
denial:

← χ(l, I), holds(inprogr(d), I). (6)

It is worth noticing the similarity with (2). A numerical invariant γ is encoded by means of two rules:

γi ← holds(inprogr(d), I). (7)

γf ← holds(inprogr(d), I). (8)

where γf is defined as for (3) and γi is obtained from γ by replacing every occurrence of a numerical fluent
n by an expression v initial(n, I). Note that these rules enforce the invariants only at the beginning and
at the end of every state affected by the action. The task of checking whether the conditions hold at other
timepoints is discussed later.

The start and end effects of a durative action d can be easily viewed as the effects of the start(d) and
end(d) actions and encoded using (4) and (5). To account for the special Boolean fluent inprogr(d), in our
encoding the start and end effects of d are expanded to include, respectively, inprogr(d) and ¬inprogr(d).

To account for the effects of concurrent actions on additive fluents, our encoding considers separately
the contributions from each action by introducing a special numerical variable v(contrib(n, d), i) for every
durative action d, numerical fluent n affected by d, and time step i. Recall that the continuous effect of d on
n is described by a mathematical expression en(t). This is encoded in CASP by means of a rule:

v(contrib(n, d), I) = ei
n ← holds(inprogr(d), I). (9)

where ei
n is obtained from en(t) by replacing every occurrence of a numerical fluent n′ by v initial(n′, I) and

every occurrence of t by the expression tend(I)− tstart(I). For example, if a refuel action causes the level
of fuel in a tank to increase linearly with time, its effect is encoded by:

v(contrib(fuel level, refuel), I) = 1 ∙ (tend(I)− tstart(I))← holds(inprogr(d), I).

The cumulative effects of durative actions are calculated by means of the following rule of the encoding:

v final(N, I) = v initial(N, I) +
∑

d∈D v(contrib(N, d), I). (10)
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where N ranges over additive fluents and D over durative actions. Intuitively, for every numerical fluent n,
the rule accumulates the effects of all durative actions on it and updates the value of n by the net result
of such effects. For instance, in a domain in which fuel level is affected, possibly concurrently, by actions
refuel and consume, their cumulative effects are modeled by:

v final(fuel level, I) = v initial(fuel level, I) +
∑

d∈{consume,refuel} v(contrib(fuel level, d), I).

Note that implementing the summation from (10) in an actual CASP language may require the introduction
of additional numerical variables and rules because of syntax restrictions of the implemented languages. In
the next section, we show how (10) is implemented in the case of ezcsp.

The encoding also includes a rule:

v final(N, I) = v initial(N, I)← not ab(N, I). (11)

i.e., a default stating that every additive fluent maintains its value unless explicitly changed. Intuitively,
atom ab(n, i) states that fluent n is an exception to the default at time step i. Default (11) must be blocked
in every state in which actions affect the fluent. This is accomplished by including in the encoding, for every
action d affecting a fluent n, a rule:

ab(n, I)← holds(inprogr(d), I). (12)

Following the semantics of PDDL+, action end(d) is automatically triggered after start(d). For every durative
action d, the task of finding a time step at which the end action occurs is accomplished by a choice rule:

1{occurs(end(d), I2) : I2 > I1}1← occurs(start(d), I1). (13)

If time step i is selected for the occurrence of end(d), the timepoint at which the action occurs is given by
the value of tend(i). Notice that, unlike the selection of a time step for end(d), there is no need to state
explicitly that a value must be selected for tend(d). The semantics of CASP ensures that a value is selected
for every numerical variable in the constraint problem.

Finally, the inequality δ ./ e on the duration of a durative action d is encoded by a rule:

(tend(I2)− tend(I1)) ./ ef ← occurs(end(d), I2), occurs(start(d), I1). (14)

where ef is obtained from e by replacing every occurrence of a numerical fluent n by v final(n, I1).
It is worth noting that the encoding extends to supporting multiple occurrences of the same durative

action in a natural way. This is accomplished by adding an argument to the name of the action, i.e., instead
of writing d we write d(i). The argument represents the time step at which the action starts. For example,
(14) becomes:

(tend(I2)− tend(I1)) ./ ef ← occurs(end(d(I)), I2), occurs(start(d(I)), I1).

Intuitively, this approach yields multiple, and completely independent, “copies” of the durative action, whose
effects and termination can be handled accordingly by the encoding presented. For simplicity of presentation,
throughout the paper we make the assumption that durative actions occur only once and thus adopt the
simpler writing d.

Processes and Events. The encoding of processes and events builds upon the approach outlined above,
respectively, for durative and instantaneous actions. That is, an event is encoded using (2–5), while a process
is encoded using (6–14). However, recall that their triggering is defined by PDDL+’s must semantics (see
Section 2). In our encoding, this is captured by a choice rule combined with numerical constraints. Let
l1, . . . , lk be the Boolean preconditions of an event v and γ1, . . . , γm be its numerical preconditions. The
encoding includes a choice rule5:

1{occurs(v, I), is false(γ1, I), . . . , is false(γm, I)}1← χ(l1, I), . . . , χ(lk, I). (15)

5 Due to the syntactic restrictions of CASP solvers, in practice γ1, . . . γm are replaced by syntactically correct symbols that
are in one-to-one correspondence with them.
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Intuitively, when the Boolean conditions of the event are satisfied, the choice rule states that the event
will be triggered unless it is inhibited by unsatisfied numerical conditions. Given a numerical condition γi,
let γi denote its complement, e.g., > is replaced by ≤ and = by 6=. This part of the encoding is completed
by introducing, for every γi, a rule:

γi
f ← is false(γi, I). (16)

where operator f is defined as for (3). The rule intuitively states that, if a numerical condition is hypothesized
to be unsatisfied, then the corresponding numerical fluents must have values that falsify the condition. It is
worth observing how the must semantics is obtained: as soon as all numerical conditions are satisfied by the
current state i, then (16) ensures that is false(γi, i) must be false for each of them. If all Boolean conditions
are also satisfied, then (15) is forced to make occurs(v, i) true, thus triggering the occurrence of the event.
The triggering of a process p is handled in an analogous way, except that start(p) is the event triggered by
(15) rather than v. Also note that, while one may be tempted to add a rule complementary to (16) such as:

γf
i ← not is false(γi, I), occurs(v, I).

this is made unnecessary by the presence of (3). To illustrate our approach, consider an example in which a
process generate has start preconditions enabled and fuel level > 0. The corresponding encoding is:

1{occurs(start(generate), I), is false(fuel level > 0, I)}1← holds(enabled, I).
v final(fuel level, I) ≤ 0← is false(fuel level > 0, I).

(17)

The encoding is completed by the domain-independent rules:

tstart(I + 1) = tend(I).

v initial(N, I + 1) = v final(N, I).

holds(F, I + 1)← holds(F, I), not ¬holds(F, I + 1).
¬holds(F, I + 1)← ¬holds(F, I), not holds(F, I + 1).

(18)

The first rule ensures that there are no gaps between the time intervals associated with consecutive states.
The other rules handle propagation of fluent values from one state to the next.

3.2.3 Problem Encoding

The problem portion of the PDDL+ problem is encoded as follows.
Initial state. The encoding of the initial state consists of a set of rules specifying the values of fluents in

P ∪ v at step 0, where P and v are the sets of Boolean and numerical fluents, respectively.
Goals. The encoding of a goal consists of a set of denials on Boolean fluents and of constraints on numer-

ical fluents, obtained similarly to the encoding of preconditions of actions, discussed earlier.

Given a PDDL+ planning instance I, by Π(I) we denote the CASP encoding of I. Next, we turn our
attention to the planning task.

3.2.4 Planning Task

Our approach to planning leverages techniques from ASP-based planning (Lifschitz 2002; Balduccini et al.
2006). The planning task is specified by the planning module, M , which includes a choice rule of the form:

λ{occurs(a1, I), occurs(a2, I), . . . , occurs(ak, I)}μ.

where a1 . . . ak are actions as defined by the PDDL+ specification and bounds λ, μ allow for control on
concurrency of the actions. In practice, planning modules often also include heuristics for the purpose of
increasing performance, also in terms of plan quality.
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It can be shown that the plans for a given maximum time step for a PDDL+ planning instance I are in
one-to-one correspondence with the CASP solutions of Π(I)∪M that pass the validation test by VAL. The
plan encoded by a CASP solution A can be obtained from the atoms of the form occurs(a, i) and from the
value assignments to numerical variables tstart(i) and tend(i).

It is also worth noting the level of modularity of our approach. In particular, it is straightforward to
perform other reasoning tasks besides planning (e.g, a hybrid of planning and diagnostics is often useful for
applications) by replacing the planning module by a different one, as demonstrated for example in (Balduccini
and Gelfond 2003).

4 An Example of our Encoding

In this section, we provide an encoding of a PDDL+ instance (a domain and one problem instance that will
be used also in the experimental analysis) into a CASP program.

The specific domain is described in the first subsection, then its PDDL model is given, while the third
subsection is devoted to the encoding into CASP.

4.1 The generator domain

The generator domain is well-known across the planning community and has been a testbed for many
planners. The problem revolves around refuelling a diesel powered generator which has to run for a given
duration without overflowing or running dry. This problem is interesting because the time at which the refuel
action must be applied within the generate action is critical: the fuel level in the tank must not exceed the
capacity of the tank so the planner must realize that the refuel action must be delayed at least X time units
after the start of the generate action, but must also occur at least Y time units before the end of the generate
action to prevent the fuel level falling below zero, where X and Y depend on the instance.

4.2 PDDL+ model

The PDDL+ domain of the generator is shown, in slightly simplified form, in Figure 6. The generate process
models the generator running. Its invariant, specified by the overall condition, requires the fuel level in
the generator to be no less than 0 at all times during the execution of the process. The process has two
continuous effects: it decreases the fuel level (the expression (* #t 1) states that the change is continuous
and linear with respect to time) and increases the value of variable generator time, which keeps track of
how long the generator ran.

Durative action refuel formalizes the use of a tank for refueling the generator. The action has an invariant
stating that the fuel level in the generator must not exceed the capacity of the tank, and is required to have a
duration of 10 time units. The action has the effect of continuously increasing the fuel level of the generator’s
tank. Note that the rate at which the generator’s tank is refilled is twice as high as the rate at which fuel
is consumed. When both actions are being executed, their effects are combined. Given that the duration of
the refuel action is fixed, the total contribution of a refuel tank is 20 units of fuel.

The PDDL+ problem models the instance, as shown in Figure 7. In this example, we have one tank, the
initial fuel level in the generator is 990, and the capacity of the generator is 1000 units. The goal for generator
is to run for 1000 time units.

4.3 The ezcsp encoding

The encoding assumes the existence of a relation step(∙) defining the (finite) range of integers that represent
the discrete steps in the evolution of the domain. Constant last step is set to the largest such integer, and
determines the maximum number of steps in the plan, provided as an external parameter to the planner.
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(define (domain linear_generator)

(:requirements :fluents :durative-actions :duration-inequalities :adl :typing)

(:types generator)

(:predicates (generator-ran) (refueling ?g - generator))

(:functions (fuelLevel ?g - generator) (capacity ?g - generator))

(:process generate

:parameters (?g - generator)

:condition (overall (>= (fuelLevel ?g) 0))

:effect

(and

(decrease (fuelLevel ?g) (* #t 1))

(increase (generator_time ?g) (* #t 1))

)

)

(:durative-action refuel

:parameters (?g - generator ?t - tank)

:duration (= ?duration 10)

:condition (overall (< (fuelLevel ?g) (capacity ?g)))

:effect (increase (fuelLevel ?g) (* #t 2))

)

)

Fig. 6. PDDL+ domain of the linear generator

(define (problem linear-generator-prob)

(:domain generator)

(:objects gen - generator tank1 - tank)

(:init

(= (fuelLevel gen) 990)

(= (capacity gen) 1000)

(available tank1))

(:goal (= generator_time 1000))

)

Fig. 7. PDDL+ problem of the linear generator

Domain-independent component. We begin the description of the encoding from its domain-independent
portion. Note that ezcsp requires the explicit declaration of all numerical variables. Thus, the first rules
we show capture the declarations of the variables that encode the start and end times of states, accompa-
nied by constraints specifying their domain, i.e. they must be non-negative and have values such that the
corresponding states have non-negative duration.

cspvar(tstart(I))← step(I). required(tstart(I) ≥ 0)← step(I).
cspvar(tend(I))← step(I). required(tend(I) ≥ 0)← step(I).
required(tend(I) ≥ tstart(I))← step(I).

The next axioms encode the first and last set of rules from (18), namely stating that every state ends at
the same time in which the next state begins, and that a Boolean fluent maintains its value unless forced to
change. For convenience of representation, the remaining rule from (18) is written in a domain-dependent
way, and thus introduced in the next paragraph.

required(tstart(I2) = tend(I1))← step(I1), step(I2), I2 = I1 + 1.

holds(F, I2)← fluent(F ), step(I1), step(I2), I2 = I1 + 1, holds(F, I1), not ¬holds(F, I2).
¬holds(F, I2)← fluent(F ), step(I1), step(I2), I2 = I1 + 1,¬holds(F, I1), not holds(F, I2).
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Domain-dependent component. At the core of the domain encoding is the formalization of process
generate, durative action refuel, and of how they affect the fuel level in the generator’s tank. Let us start
with generate.

The generator’s fuel level is modeled by additive numerical fluent fuel level. The next set of rules declares
the numerical variables representing the value of the fluent at the beginning and at the end of each state,
and sets limits on their values (tankcap(∙) is part of CASP encoding of the problem instance, and indicates
the capacity of the tank):

cspvar(v initial(fuel level, I))← step(I).
required(v initial(fuel level, I) ≥ 0)← step(I).
required(v initial(fuel level, I) ≤ TC)← step(I), tankcap(TC).

cspvar(v final(fuel level, I))← step(I).
required(v final(fuel level, I) ≥ 0)← step(I).
required(v final(fuel level, I) ≤ TC)← step(I), tankcap(TC).

The next axiom is an instantiation, to numerical fluent fuel level, of the second rule from (18) and states
that the value of fuel level at the end of a state coincides with its value at the beginning of the next.

required(v initial(fuel level, I2) = v final(fuel level, I1))← step(I1), step(I2), I2 = I1 + 1.

Next, we turn our attention modeling how the fluent changes over time, beginning with (10). As men-
tioned earlier, contributions to additive fluents are represented by means of numerical variables of the form
v(contrib(∙), ∙). Because the sum operator from (10) is not supported directly by the syntax of ezcsp, the
ezcsp encoding includes auxiliary rules and variables, which calculate, separately, the total positive and
negative contributions from the sum of the relevant contributions. The positive and negative contributions
are distinguished by an extra argument (incr or decr) in the name of variable v(contrib(∙), ∙).

cspvar(v(contrib(fuel level, decr), I))← step(I).
required(v(contrib(fuel level, decr), I) ≤ 0)← step(I).

decr(I, v(contrib(fuel level, decr,D), I))← step(I), cspvar(v(contrib(fuel level, decr,D), I)).
required(sum([decr(I)/2], =, v(contrib(fuel level, decr), I)))← step(I).

cspvar(v(contrib(fuel level, incr), I))← step(I).
required(v(contrib(fuel level, incr), I) ≥ 0)← step(I).

incr(I, v(contrib(fuel level, incr,D), I))← step(I), cspvar(v(contrib(fuel level, incr,D), I)).
required(sum([incr(I)/2], =, v(contrib(fuel level, incr), I)))← step(I).

Above, ASP variable D ranges over all possible durative actions that may cause a contribution. Numerical
variables v(contrib(fuel level, decr), I) and v(contrib(fuel level, incr), I) capture the negative and posi-
tive contributions at a given step. Relations decr(∙, ∙) and incr(∙, ∙) are used to link group the contribu-
tions at each time step. For example, a fact decr(1, v(contrib(fuel level, decr, generate), 1)) states that
v(contrib(fuel level, decr, generate), 1)) is one of the (negative) contributions to the fuel level at step 1.
The constraint required(sum([decr(I)/2], =, v(contrib(fuel level, decr), I))) sums all of the negative con-
tributions for time step I and assigns the total to numerical variable v(contrib(fuel level, decr), I). The
summation of the positive contributions works in a similar way. The ezcsp counterpart of (10) is a rule
stating that the value of fuel level is the sum of the total positive and negative contributions:

required(v final(fuel level, I) = v initial(fuel level, I) + v(contrib(fuel level, incr), I) −
v(contrib(fuel level, decr), I))← step(I).

Next, we focus on the generate process. The next rule defines Boolean fluent inprogr(generate), which
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indicates whether the process is in progress:

fluent(inprogr(generate)).

Next, we define a numerical variable formalizing generate’s contribution to the fuel level of the generator’s
tank:

cspvar(v(contrib(fuel level, decr, generate), I))← step(I).
required(v(contrib(fuel level, decr, generate), I) ≥ 0)← step(I).

The contribution provided by generate while the process is in progress is calculated as per (9):

required(v(contrib(fuel level, decr, generate), I) = 1 ∗ (tend(I)− tstart(I)))←
step(I),
holds(inprogr(generate), I).

The next set of rules follows (11) and (12), expressing the fact that, by default, the contribution by generate

is 0. This is elegantly represented by means of default negation:

ab(contrib(fuel level, decr, generate), I)← step(I), holds(inprogr(generate), I).

required(v(contrib(fuel level, decr, generate), I) = 0)←
step(I),
not ab(contrib(fuel level, decr, generate), I).

Next, we model the two (instantaneous) actions that trigger the start and the end of the process. The actions
are defined by:

action(start(generate)). action(end(generate)).

The following rule is the counterpart of (13) and ensures that action end(generate) is triggered at some time
step following start(generate):

1{occurs(end(generate), I2) : step(I2) : I2 > I1 : I2 < last step}1← step(I), occurs(start(generate), I1).

The next set of rules formalizes the effect of starting and stopping the process.

holds(inprogr(generate), I2)← step(I1), step(I2), I2 = I1 + 1, occurs(start(generate), I1).

¬holds(inprogr(generate), I2)← step(I1), step(I2), I2 = I1 + 1, occurs(end(generate), I1).

The preconditions and the triggering of action start(generate), which follows the must semantics, are encoded
according to (3), (15), and (16):

required(v final(fuel level, I) ≥ 0)← step(I), occurs(start(generate), I).

1{occurs(start(generate), I), is false(fuel level ≥ 0, I) }1← step(I), I < last step,

¬holds(inprogr(generate), I).
required(v final(fuel level, I) < 0)← step(I), is false(fuel level ≥ 0, I).

Durative action refuel (instantiated for each refuel tank) is modeled along the same lines. First of all,
fluents and numerical variables are defined to represent whether the action is in progress and the action’s
contribution to the generator’s fuel level (variable TK ranges over the refuel tanks from the problem).

fluent(inprogr(refuel(TK)))← refuel tank(TK).

cspvar(v(contrib(fuel level, incr, refuel(TK)), I))← step(I), refuel tank(TK).
required(v(contrib(fuel level, incr, refuel(TK)), I) ≥ 0)← step(I), refuel tank(TK).
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The contribution to fuel level while refuel is in progress is defined similarly to that of generate:

required(v(contrib(fuel level, incr, refuel(TK)), I) = 2 ∗ (tend(I)− tstart(I)))←
step(I), refuel tank(TK),
holds(inprogr(refuel(TK)), I).

ab(contrib(fuel level, incr, refuel(TK)), I)← step(I), refuel tank(TK), holds(inprogr(refuel(TK)), I).

required(v(contrib(fuel level, incr, refuel(TK)), I) = 0)←
step(I), refuel tank(TK),
not ab(contrib(fuel level, incr, refuel(TK)), I).

Next, the instantaneous actions that correspond to the start and to the end of the durative action are
introduced, and their effects defined:

action(start(refuel(TK)))← refuel tank(TK).
action(end(refuel(TK)))← refuel tank(TK).

1{occurs(end(refuel(TK)), I2) : step(I2) : I2 > I1 : I2 < last step}1←
step(I), refuel tank(TK),
occurs(start(refuel(TK)), I1).

holds(inprogr(refuel(TK)), I2)← step(I1), step(I2), I2 = I1 + 1, refuel tank(TK),
occurs(start(refuel(TK)), I1).

¬holds(inprogr(refuel(TK)), I2)← step(I1), step(I2), I2 = I1 + 1, refuel tank(TK),
occurs(end(refuel(TK)), I1).

Finally, the requirement on the duration of refuel from the PDDL+ specification is captured according to
(14), i.e. a rule stating that, whenever refuel ends, the time elapsed between its start and its end must
equal the duration specified (variable RT represents the duration of the refuel action; for convenience of
representation, the duration is parametrized by relation duration(∙, ∙) rather than being expressed directly
by a constant):

required(tend(I2)− tend(I1)) = RT )← step(I1), step(I2), refuel tank(TK),
duration(refuel(TK), RT ),
occurs(end(refuel(TK)), I2), occurs(start(refuel(TK)), I1).

Planning module. Action selection is achieved by a choice rule stating that refuel actions are allowed
to occur at any time:

0{occurs(start(refuel(TK)), I) : step(I)}1← refuel tank(TK).

In order to improve performance, the planning module includes a heuristic saying that at least an action
must be executed at every time step:

some action(I)← occurs(A, I).
← step(I), I < last step, not some action(I).

Problem encoding. Relation step(∙) is thus defined by:

step(0..last step).

The capacity of the generator’s tank is given by:

tankcap(1000).
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The set of available fuel tanks and the duration of the refuel action are specified by:

refuel tank(tank1).
duration(refuel(TK), 10)← refuel tank(TK).

The initial state is specified in the following, with a set of rules that specifies the initial fuel level, states that
no process or durative action is initially in progress, and sets the clock to 0:

required(v initial(fuel level, 0) = 990).
¬holds(inprogr(generate), 0).
¬holds(inprogr(refuel(TK)), 0)← refuel tank(TK).
required(tstart(0) = 0).

Finally, the PDDL+ goal (= generator time 1000) is formalized by:

duration(generate, 1000).

required(tend(I2)− tend(I1) = D)← step(I1), step(I2), duration(generate,D),
occurs(end(generate), I2), occurs(start(generate), I1).

ezcsp solution. A CASP solution produced by ezcsp for the above encoding of domain and problem
is shown next. For clarity, we focus on the restriction of the solution to relation occurs and to numerical
variable tend(∙):

occurs(start(generate), 0)
occurs(start(refuel(tank1)), 0)
tend(0) = 0.000

occurs(end(refuel(tank1)), 1)
tend(1) = 10.000

occurs(end(generate), 2)
tend(2) = 1000.000

This solution corresponds to the PDDL+ plan in which generate begins immediately (time 0.000) and lasts
for 1000.000 time units, and refuel begins immediately and lasts for 10.0 time units:

0.000 : generate [1000.000]
0.000 : refuel(tank1) [10.000]

5 Experiments on PDDL+ planning domains

We performed an empirical evaluation of the run-time performance of our approach. The comparison was
with the state-of-the-art PDDL+ planners dReal (Bryce et al. 2015) and UPMurphi. Although SpaceEx
(Bogomolov et al. 2014) is indeed a related approach, it was not included in the comparison because it is
focused on proving only plan non-existence.

The experimental setup used a virtual machine running in VMWare Workstation 12 on a computer with
an i7-4790K CPU at 4.00GHz. The virtual machine was assigned a single core and 4GB RAM. The operating
system was Fedora 22 64 bit. The version of ezcsp used was 1.7.46, with gringo 3.0.57 and clasp 3.1.38 as
grounding tool and ASP solver, and B-Prolog 7.59 and GAMS 24.5.710 as constraint solvers. The former

6 http://mbal.tk/ezcsp/
7 http://sourceforge.net/projects/potassco/files/gringo/
8 https://sourceforge.net/projects/potassco/files/clasp/
9 http://www.picat-lang.org/bprolog/

10 http://www.gams.com/
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Domain Solver 1 2 3 4 5 6 7 8

Car linear ezcsp (B-Prolog) 0.32 0.31 0.32 0.32 0.32 0.30 0.31 0.31

clingcon 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

dReal 1.11 1.11 1.15 1.14 1.19 1.13 1.14 1.19

Car non-linear ezcsp (GAMS/couenne) 1.41 0.38 0.49 1.1 0.42 0.52 0.43 2.62

ezcsp (GAMS/knitro) 0.71 0.68 0.29 0.39 0.25 0.25 0.26 0.84

dReal 58.21 162.60 - - - - - -

Table 1. Car domain with fixed time step. Results in seconds. Problem instances refer to max acceleration.

Encoding Solver 1 2 3 4 5 6 7 8

Basic ezcsp (B-Prolog) 5.82 2.19 41.77 74.51 114.86 424.80 164.95 -

clingcon 16.88 62.62 - - - - - 52.43

clingcon/Opt 17.15 62.47 51.76 - - - - -

Heuristic ezcsp (B-Prolog) 0.28 1.03 4.21 7.25 27.08 43.42 54.83 261.89

clingcon 16.89 61.39 49.40 - - - - -

clingcon/Opt 16.72 61.28 50.91 - - - - -

Estimator ezcsp (B-Prolog) 0.27 0.73 1.64 25.64 77.38 303.75 - -

clingcon 25.10 4.87 82.78 - - - - -

clingcon/Opt - - - - - - - -

dReal 3.73 - - - - - - -

Table 2. Linear variant of generator with fixed time step. Results in seconds. Problem instances refer to
number of tanks.

was used for all linear problems and the latter for the non-linear ones. It should be noted that GAMS acts
as a front-end to a large set of constraint solvers. The underlying constraint solver to be used by GAMS
is selected at run-time. We performed a thorough evaluation of the underlying solvers on the domains they
support.

In an attempt to evaluate the role of the encoding and of the solver in the resulting performance, we also
created variants of our encodings, discussed later, suitable for clingcon, and studied their performance. For
this part of the experiments, we used clingcon 2.0.311. Note that clingcon supports only integer variables

11 https://sourceforge.net/projects/potassco/files/clingcon/
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and linear constraints, and was thus applied only to the linear variants of the domains considered. The other
systems used were dReal 2.15.11.12, configured as suggested by its authors, and UPMurphi 3.0.213.

The experiments were conducted on the linear and non-linear versions of the generator and car domains.
The CASP encodings were created manually as described earlier. Because of the different ways in which
dReal and UPMurphi operate, the comparison with dReal was based on finding a single plan with a given
maximum time step (called here fixed-time step experiments), as discussed in (Bryce et al. 2015). The
results are summarized in Tables 1-3. On the other hand, the comparison with UPMurphi was based on the
cumulative times for finding a single plan by progressively increasing the maximum time step (referred to as
cumulative-time experiments). The results are reported in Tables 4-6.

In the tables, entries marked “-” indicate a timeout (threshold 600 sec). Entries marked “*” indicate
missing entries due to licensing limitations (see below). Remarkably, we found that, in all instances, VAL
determined that the CASP solutions returned represented valid PDDL+ plans. More information on the
topic of validation, as well as an example in which validation fails, can be found in Section 6. Next, we
discuss the experimental results obtained for each domain.

Car. The version of the car domain we used is the same that was adopted in (Bryce et al. 2015). In this
domain, a vehicle needs to travel a certain goal distance from its start position. The vehicle is initially at
rest. Two actions allow the vehicle to accelerate and to decelerate. The goal is achieved when the vehicle
reaches the desired distance and its speed is 0. In the linear variant, accelerating increases the velocity by
1 and decelerating decreases it by 1. In the non-linear variant, accelerating increases the acceleration by 1,
and similarly for decelerating. The velocity is influenced by the acceleration according to the usual laws of
physics. The calculation also takes into account a drag factor equal to 0.1 ∙ v2. The instances were obtained
by progressively increasing the range of allowed accelerations (velocities in the linear version) from [−1, 1]
to [−8, 8].

ezcsp was run on the encoding described earlier. The clingcon encoding was obtained by a straightfor-
ward syntactic transformation. As illustrated by Tables 1 and 4, both CASP encodings solved all instances in
approximately constant time – even in the non-linear case – demonstrating excellent scalability. The experi-
mental evaluation yielded a number of other interesting results, discussed next. We begin from the outcomes
of the fixed-time step experiments (Table 1), and later address the cumulative-time experiments.

ezcsp vs clingcon. clingcon outperformed ezcsp in all experiments on the linear variant of car, al-
though the small magnitude of both sets of run-times (negligible time for clingcon and about 0.30 sec for
ezcsp) prevents general claims.

GAMS solvers. Given the GAMS limitations in terms of sizes of the formulas that can be analyzed with
the free license, only two GAMS solvers can be employed in this domain. Of those, knitro, which imple-
ments state-of-the-art interior-point and active-set methods for dealing with non-linear problems, is the best
performer.

ezcsp vs dReal. ezcsp substantially outperformed dReal: ezcsp solved all non-linear instances in less
than one second, while dReal only solved the two smallest instances, with times that peaked at 3 orders of
magnitude larger than the ezcsp times.

Cumulative times (Table 4). As one might expect, given previous results, clingcon outperformed ezcsp on
the cumulative-time experiments as well. The absolute times were still rather small – negligible for clingcon

and between 0.83 sec and 1.04 sec for ezcsp. Once again, GAMS’s knitro solver had the best performance
among the GAMS solvers. Finally, the comparison with UPMurphi shows some interesting results. In the

12 http://dreal.github.io/
13 https://github.com/gdellapenna/UPMurphi/
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linear case, ezcsp is, in fact, about 2-3 times slower than UPMurphi, although the absolute times are small
in both cases. On the other hand, ezcsp outperformed UPMurphi by a much larger margin in the non-linear
case, with all instances solved in times between 1.78 sec and 3.96 sec, while UPMurphi only solved the first
instance, and with a time of 184.88 sec, i.e., nearly 2 orders of magnitude slower than ezcsp. Reasons for
the performance of UPMurphi seem to be (i) the unoptimized implementation of the discretize-and-validate
approach, and (ii) the fact that it performs blind search.

Generator. Our encoding models the transfer of liquid according to Torricelli’s law:

v =
√

2gh.

It should be noted that this is different from the approach used in (Bryce et al. 2015), where a simpler, but
less physically accurate model was used. For a fair comparison with (Bryce et al. 2015), the simpler model
was used in reproducing the results for dReal. The instances were generated by increasing the number of
refuel tanks from 1 to 8.

The complexity of this domain makes it amenable to studying various optimizations of the CASP encod-
ings, mostly aimed at improving performance of the encoding with respect to the treatment of the must
semantics.14

In the following, the CASP encoding presented throughout this paper is referred to as “Basic.” The en-
coding referred to as “Heuristic” leverages the observation, based on straightforward considerations on this
domain, that the generate process must start at timepoint 0. Thus, “Heuristic” extends “Basic” by a single
heuristic stating that action start(generate) must occur immediately. The expectation is that “Heuristic”
will outperform “Basic” in most cases. We are also interested in contrasting the effects of this domain-specific,
encoding-level heuristic with those of the sophisticated, algorithm-level, and yet domain-independent, heuris-
tics used in dReal.

The encoding labeled “Estimator” takes the observation about the generate process one step further,
replacing the domain-specific heuristic with rules that, in some conditions, can be used to estimate the
value of numerical fluents without calling the constraint solver. This is expected to enable earlier pruning of
candidate plans directly within the ASP solver, and result in performance potentially comparable with that
of “Heuristic.” The encoding is based on the following idea. As we have seen, the conditions that trigger a
process can be divided in Boolean and numerical. In the CASP encoding, the former are directly listed in
the body of choice rule (15), while the latter are captured by numerical constraints, such as (16). Because
these constraints are checked by the constraint solver, from an algorithmic perspective, a candidate plan
that violates (16) is detected only after it has been fully computed by the ASP solver and passed to the
constraint solver. This may obviously lead to unnecessary computations. A more economical approach seems
to be that of checking as many numerical conditions as possible during the ASP computation. To accomplish
that, we maintain extra Boolean fluents that capture the value of numerical fluents, i.e., has val(f, v) states
that numerical fluent f has value v. Keeping track of all changes to numerical fluents is obviously unfeasible
on the ASP side, but it is indeed possible to keep track of direct assignments of values to them. For example,
for every rule of the form

v initial(f, I) = v ← Γ.

where I is as above and v is an integer constant15, we introduce a rule:

holds(has val(f, v), I)← Γ.

The value of such fluents is propagated by a rule:

holds(has val(F, V ), I + 1)← holds(has val(F, V ), I), not ab(F, I + 1).

14 It is not difficult to see, from our presentation of the CASP encoding, that the must semantics may significantly affect
performance.

15 The approach can be extended to non-integer constants.
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The last element in the body of the rule enables blocking the propagation when needed. Specifically, for
every rule h(I) ← Γ of the original encoding whose head is a numerical constraint over the value of f (at
step I) that is not in the form of the assignment considered above, we add to the encoding a rule:

ab(f, I)← Γ.

It is worth noting that, compared to dReal and to “Heuristic,” the “Estimator” encoding is both encoding-
level and domain-independent. Furthermore, while dReal’s heuristics are specific to the PDDL+ planning
task, this approach is task-independent.

We also studied the performance of clingcon. To do so, we created translations of all of the three
encodings, “Basic,” “Heuristic,” and “Estimator.” These translations are labeled “clingcon” in the tables.
Note that, due to clingcon’s limitations, the “clingcon/Opt” translations are applicable only to linear
instances. Another clingcon variant that we considered, labeled “clingcon/Opt,” is specifically aimed
at leveraging additional features of clingcon. Differently from ezcsp, the language of clingcon allows
for numerical constraints in both the head and body of rules. We attempted to take advantage of this and
achieve a more compact encoding of the must semantics. We replaced rules (15) and (16) by a single rule, in
which numerical constraints occur in the body and can directly trigger the process, as long as the Boolean
conditions are satisfied. For example, (17) becomes:

occurs(generate, I)← holds(enabled, I), v final(fuel level, I) > 0. (19)

In order to understand our interest in “clingcon/Opt”, note that (19) is a regular rule, rather than a choice
rule. With (15) and (16), the ASP solver will tend to generate multiple CSPs in an uninformed way, so that
each can be checked by the constraint solver. With the adoption of (19), it is conceivable that the triggering
of the process may be achieved earlier in the computation and improve performance, thanks to the tighter
integration of the ASP and constraint solver in clingcon, whose algorithm is capable of interleaving the
processes of solving the qualitative part of the problem and the numerical one.

Next, we discuss the experimental results. As for the car domain, we begin by addressing the outcomes of
the fixed-time step experiments (Tables 2 and 3), and later analyze the cumulative-time experiments.

ezcsp vs clingcon. ezcsp outperformed clingcon in all experiments on the linear variant of generator,
except for a single outlier (instance 8 of the “Basic” encoding). This is a remarkable result, given that in
all previous analyses that the authors are aware of, the tighter coupling between ASP solver and constraint
solver featured by clingcon led to better performance, see, e.g., (Balduccini and Lierler 2013). The result is
surprising in particular because the seemingly strong interdependency between the qualitative and numerical
components of generator would have been expected to advantage tight coupled solvers.

“clingcon” vs “clingcon/Opt.” Another surprising result comes from the comparison of the “clingcon”
and “clingcon/Opt” translations. Recall that the latter is designed specifically to take advantage of cling-

con’s language features and solving algorithm. Yet, “clingcon/Opt” did not yield the performance im-
provements one might have expected. In the case of “Heuristic”, “clingcon/Opt” and “clingcon” had
similar performance; for the “Basic” encoding, “clingcon/Opt” was able to find a solution for an instance
(instance 3) in which “clingcon” timed out, but at the same time the former failed to yield a solution for in-
stance 8, which the latter was able to solve; finally, in the case of the “Estimator” encoding, “clingcon/Opt”
timed out on every instance, yielding substantially worse performance than “clingcon.”

GAMS solvers. GAMS’s conopt solver, which implements a fast method for finding a first feasible solu-
tion, and thus can be efficient also on constraint problems without an objective function like ours, exhibited
better scalability than all other GAMS solvers.

Advanced encodings. Focusing on ezcsp, and on the GAMS conopt solver for the non-linear cases, there
was no absolute winner among the “Basic”, “Heuristic” and “Estimator” encodings. As one might expect,
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“Heuristic” yielded the best performance in many cases. On the other hand, “Estimator” was able to tie
or beat “Heuristic” in a number of situations – most notably, non-linear instance 6. In the linear instances,
“Basic” had worse performance than “Estimator” in most cases, but scaled better, solving instance 7 while
the latter encoding timed out, suggesting a possible negative impact on scalability due to a somewhat larger
encoding for “Estimator”. It is also worth noting that “Estimator” surprisingly exhibited worse scalability
in the linear case, where 6 instances were solved, than in the non-linear case, where 7 instances were solved,
with the 8th giving a GAMS’s license error rather than a timeout.

ezcsp vs dReal. Overall, ezcsp substantially outperformed dReal. Particularly interesting is the compar-
ison between “Estimator” and dReal, since the former uses declarative, task-independent heuristics, while
the latter employs algorithm-level, task-dependent ones. The execution times for ezcsp for this case (Tables
2 and 3) ranged between 0.27 sec and 303.75 sec for the linear variant, with 6 instances solved, and between
0.72 sec and 256.59 sec for the non-linear one (with GAMS’s conopt solver), with 7 instances solved. On
the other hand, dReal was only able to solve the first instance in both cases (3.73 sec for the linear one and
8.18 sec for the non-linear one).

Cumulative times (Tables 5 and 6). If we contrast the results based on solvers used, clingcon beat
ezcsp in absolute performance on the largest instance (110.70 sec vs 279.81 sec in instance 8), but lost
when overall scalability is considered: the ezcsp versions of “Basic” and “Estimator” solve all instances
while the clingcon translations solve 3 instances at best. “clingcon/Opt” yielded mixed performance
results: while the “clingcon” and “clingcon/Opt” translations solved the same number of instances
overall, the latter often had worse performance – up to one order of magnitude for instance 2 when using the
“Estimator” encoding, but typically 20%-30% worse. On the other hand, the “clingcon/Opt” translation
of the “Estimator” encoding was able to solve instance 8. Interestingly, both clingcon translations of the
“Heuristic” encoding timed out, while the clingcon translations of the “Basic” encoding found solutions.
This is surprising given that “Heuristic”, when compared to “Basic”, introduces heuristic knowledge that
simplifies the problem.

Looking at the non-linear variant of the domain, we see that, once again, GAMS’s conopt solver was the
one with best performance among the GAMS solvers. Focusing on ezcsp (and GAMS’s conopt), “Basic”
was slightly better than “Heuristic” and “Estimator” in some cases (e.g., linear instance 8), but overall lost
to both – especially in the non-linear instances, where “Basic” solves 3 and 2 fewer instances respectively.
Remarkably, “Estimator” featured marginally better performance than “Heuristic” on most easy instances
(instances 1-3), but did not scale equally well. Finally, UPMurphi had substantially worse performance than
ezcsp in all cases: it solved only 3 linear instances (vs 8 for ezcsp) and no non-linear instances (vs 7 for
ezcsp16). The speedup yielded by ezcsp reached about one order of magnitude before UPMurphi began to
time out.

Summary. Considering the entire set of experiments, we can draw a number of important conclusions. First
of all, the experiments demonstrate that our CASP-based solution substantially outperforms both dReal and
UPMurphi, showing better scalability. ezcsp is also more scalable than clingcon on challenging problems
from the generator domain. This is a remarkable result, which goes against previous comparisons (see, e.g.,
(Balduccini and Lierler 2013)) of the performance of tightly coupled hybrid solving algorithms vs their
loosely coupled counterparts. Note that such comparisons were conducted on sets of benchmarks different
from the ones considered here. This indicates that PDDL+ planning problems may be a new and useful class
of valuable benchmarks for the CASP community.

Looking specifically at encoding variants and the corresponding techniques, the “Heuristic” variant of
the encoding was overall the best, while ”Estimator” worked well in a number of cases, but did not equal

16 It should be noted that the experiments on cumulative times do not result in GAMS licensing errors, because the corresponding
instances time out before reaching the point where the error would be generated.
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its performance. These results corroborate the considerations that led to creation of these variants. Also,
“clingcon/Opt” failed to yield consistent performance improvements in spite of its leveraging the more
advanced features of the clingcon language and solver, which are not available in ezcsp.

Overall, we believe the empirical results demonstrate the promise of our approach.

6 Extended Architecture

As we mentioned, validation through VAL always succeeds in the previous experiments. In this section, we
discuss how the architecture from Section 3 can be extended to handle more efficiently cases in which the
validation does not succeed. Specifically, we present a variant of the architecture from Figure 5 aimed at
making better use of the information provided by VAL in case of a failed validation.

The extended architecture is shown in Figure 8. While the figure refers to ezcsp, the approach is not
difficult to extend to clingcon and other CASP solvers.
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Fig. 8. Extended ezcsp solver architecture.

Our approach leverages the fact that, when VAL finds a plan not to be valid, it returns information about
which invariants were violated and in which timepoint intervals. Consider a variant of instance 1 of the
non-linear generator from Section 5, modified so that the capacity and initial level of the generator’s tank
are 100 units. A possible plan for this instance is:

0.000 : generate [100.000]
12.500 : refuel(tank1) [12.500]

When validating this plan, VAL detects that the invariant

(< (fuelLevel ?g) (capacity ?g))

is violated during the execution of refuel(tank1) – specifically, starting at 6.25 time units into the execution
of the action, corresponding to timepoint range [18.75, 25]. See Figure 9 for an illustration. Such feedback is
leveraged by the Expander Tool from Figure 8. The intuition behind the process is to select suitable timepoints
in the offending interval, and introduce in the encoding (i) new numerical variables that capture the value of
the relevant numerical fluents at those timepoints, and (ii) corresponding numerical constraints that enforce
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Fig. 9. Fuel level during refuel(tank1). Capacity 100.00. Spill @ 6.25 sec from the start of the action.

the invariants on those variables. The idea is made precise by Algorithm 1 and Algorithm 2. Function expand

(Algorithm 1) takes in input the CASP encoding and a set of pairs 〈inv, range〉, where inv is a violated
invariant and range is the timepoint range in which it is violated. For each such pair, the algorithm selects a
set of timepoints within the range (step 4) via user-supplied function Select Timepoints and stores them
in Δ. These are the timepoints on which the invariant will be enforced by means of additional constraints. In
simple cases, Select Timepoints may select the timepoints so that they are uniformly distributed within
the range, but more complex options are possible. Next (step 5), the algorithm identifies the time step, s, at
which the violation of the invariant occurred. For simplicity of presentation, we assume that a single time
step corresponds to each range. (If the range extends over multiple time steps, one can always pre-process the
output of VAL, splitting each violation into violations whose range corresponds to a single step.) The loop
that begins at step 6 iterates over every timepoint δ from Δ and (step 7) considers each numerical fluent,
n, that occurs in the invariant. For each of them, Expand Fluent (Algorithm 2) is called. The function,
which will be described in more detail next, expands the encoding with constraints that calculate the value
of n at timepoint δ. Next, steps 10-13 insert in the encoding a final constraint that instantiates the offending
invariant for timepoint δ. At the core of the process is the instantiation of the constraint from the head of
the rule of the form (8) for inv, which occurs at step 12. In the first part of the process, every occurrence of
ASP variable I is replaced by the time step, s, identified earlier, at which the invariant was violated. Next,
for every numerical fluent n, the occurrences of v final(n, s) are replaced by v finalδ(n, s). This ensures
that the constraint considers the values of the fluents at timepoint δ, as calculated by the constraints added
by Expand Fluent, as opposed to the end of the time step.

Function Expand Fluent is given in input the program Π, a numerical fluent n, a timepoint δ and time
step s. First of all, the function expands the encoding by creating a rule of the form (10) in which v final(∙, ∙)
and v(contrib(∙), ∙) are replaced by new variables v finalδ(∙, ∙) and vδ(contrib(∙), ∙). These variables capture
the value of n at timepoint δ and the contributions to such value. Next, (steps 3-7) variants of the rules of the
form (9) are introduced. The new rules calculate the contributions to the value of n at timepoint δ for each
durative action and process, d. Note that, in rule (9), such calculation depends on the duration of the action.
However, in calculating the contribution of d from its start and up to timepoint δ, the time components of the
calculation must be scaled accordingly. This is accomplished by Offset (Algorithm 2), which normalizes,
w.r.t. [0, 1], the position of δ within the interval of execution of d, and by step 6 of Expand Fluent, which
scales the time component accordingly. Recall that ei

n from (9) represents the value of the contribution to
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Algorithm 1 Expansion step
1: function Expand(Π, V )

input: Π: CASP encoding; V : set of pairs 〈inv, range〉
2: Π′ := ∅
3: for 〈inv, range〉 ∈ V do
4: Δ := Select Timepoints(range)
5: s := time step at which inv is violated
6: for δ ∈ Δ do
7: for n ∈ inv do
8: Π′ := Π′ ∪ Expand Fluent(Π, n, s, δ)
9: end for

10: d := durative action or process for which inv is specified
11: γf := constraint from the head of the rule of form (8) for inv

12: γf (s, δ) := replace in γf :

{
1. I by s

2. v final(n, s) by v finalδ(n, s) for every numerical fluent n

13: Π′ := Π′ ∪ {γf (s, δ)← holds(inprogr(d), s).}
14: end for
15: end for
16: return Π′

17: end function

n from a particular source. Thus, at the core of step 6 is the construction of a new expression, e′, which
represents the contribution up to timepoint δ. Such expression is obtained by instantiating I to the time
step at which the invariant was violated and by scaling down, by a factor δd, the duration of the interval
under consideration.

Algorithm 2 Expansion of a numerical fluent
1: function Expand Fluent(Π, n, s, δ)

input: Π: CASP encoding; n: numerical fluent; s: time step; δ: timepoint
2: Π′ := {v finalδ(n, s) = v initial(n, s) +

∑
d∈D vδ(contrib(n, d), s).}

3: for durative action or process d do
4: for every rule of Π of the form v(contrib(n, d), I) = ei

n ← holds(inprogr(d), I) do
5: δd := Offset(δ, d)

6: e′ := replace in ei
n:

{
1. I by s

2. tend(s)− tstart(s) by δd ∙ (tend(s)− tstart(s))
7: Π′ := Π′ ∪ {vδ(contrib(n, d), I) = e′ ← holds(inprogr(d), s).}
8: end for
9: end for

10: return Π′

11: end function

12: function Offset(δ, d)
input: δ: timepoint; d: durative action or process

13: 〈s, e〉 := start, end timepoints of d in the plan
14: if δ > e then return 1
15: if δ < s then return 0
16: return δ−s

e−s

17: end function
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Next, we illustrate the algorithms with an example, which we carry out using the language of ezcsp.
Continuing with the output of VAL described earlier, Expand begins by selecting timepoints at which the
invariant should be further checked. For sake of illustration, let us select 3 uniformly distributed timepoints,
18.75, 21.875, and 25. The expansion of the encoding for the negative contribution and timepoint 18 .75 is
(below, ι(t) is the formula that calculates fuel transferred for a duration of time t; the actual calculation is
omitted for space considerations):

required(v18.75(contrib(fuel level, incr, refuel(TK)), 2) = ι( 18.75−12.5
25−12.5 ∗ (tend(2)− tstart(2))))←

holds(inprog(refuel(TK)), 2).

required(v final18.75(fuel level, 2) = v initial(fuel level, 2)
+v18.75(contrib(fuel level, incr), 2)
−v18.75(contrib(fuel level, decr), 2))← step(I).

required(v final18.75(fuel level, 2) ≤ TC)← tankcap(TC), holds(inprog(refuel(TK)), 2).

The expansion for the positive contributions to the fuel level and for timepoints 21 .875 and 25 is similar. Once
the encoding has been expanded, ezcsp is executed again. The added constraints ensure that any solution
that is returned does not violate the invariants at those timepoints. The process is iterated as needed until
the validation succeeds. In our example, for the expanded encoding described above, the planner returns the
plan:

0.000 : generate [100.000]
14.063 : refuel(tank1) [12.500]

This plan is successfully validated by VAL, and the search terminates.
The approach has been implemented in prototypical form. When applied to the problem above, the pro-

totype correctly detects that the original plan is not validated by VAL. Then, using VAL’s output, the
expanded encoding is generated as above, and ezcsp is used to find a new solution. Using the “Heuristic”
encoding, ezcsp, and GAMS’s conopt solver, the computation of the first plan takes 0.37 sec and that of
the second plan takes 0.40 sec, for a total of 0.77 sec. The time taken for the validation by VAL is negligible.
For “Basic” and “Estimator,” the total times are 1.08 sec and 0.84 sec, respectively.

7 Related Work

In this section, we analyze related approaches and solvers. We start with PDDL+, then we move to CASP.
Last, we relate our approach to research on planning in hybrid domains based on action languages.

PDDL+ algorithms and solvers. Various techniques and tools have been proposed to deal with hybrid
domains (Penberthy and Weld 1994; McDermott 2003; Li and Williams 2008; Coles et al. 2012; Shin and
Davis 2005). Nevertheless, none of these approaches are able to handle the full set of PDDL+ features,
namely, non-linear domains with processes and events.

More recent works include (Bryce et al. 2015), which presents an approach based on SMT for handling
hybrid domains. However, dReach does not use PDDL+, and cannot handle exogenous events.

From the model checking and control communities, a number of works based on timed and hybrid automata
have been proposed to handle hybrid systems. Some examples include (Cimatti et al. 2015; Cavada et al.
2014; Tabuada et al. 2002; Maly et al. 2013; Bae et al. 2016; Liu and Ozay 2014; Henzinger and Otop 2014),
sampling-based planners (Karaman et al. 2011; Lahijanian et al. 2014). Similarly, falsification of hybrid
systems tries to guide the search towards the error states, that can be easily cast as a planning problem,
(Plaku et al. 2013; Cimatti et al. 1997). However, while all these works aim to address hybrid systems, they
cannot be used to handle PDDL+ models. Some recent works (Bogomolov et al. 2014; Bogomolov et al. 2015)
are trying to define a formal translation between PDDL+ and standard hybrid automata, but so far only an
over-approximation has been defined, that allows the use of those tools only for proving plan non-existence.
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UPMurphi (Della Penna et al. 2009; Della Penna et al. 2012) is the only tool able to handle the full set of
PDDL+ features, although it is very limited in scalability as it performs blind search.

PDDL+ has been used to model a number of planning applications (Vallati et al. 2016; Della Penna et al.
2010; Fox et al. 2011) but then specific domain dependent heuristics or tools have been used to find plans
(Piacentini et al. ; Fox et al. 2012).

The approach proposed in this paper is similar to the encoding used in TM-LPSAT (Shin and Davis
2005). However, TM-LPSAT assumes linear continuous change, given it uses a linear solver to manage
the continuous constraints, while we are solving problems with non-linear dynamics. TM-LPSAT exploits
the linearity by checking conditions only at the end-points of intervals of continuous change. Moreover, as
reported by Shin and Davies, the experiments showed that TM-LPSAT was not performant and finally the
code is not available, hence TM-LPSAT remains a largely theoretical (though valuable) contribution.

Finally, some very recent works on PDDL+ planning have been proposed (Cashmore et al. 2016; Piotrowski
et al. 2016), but a proper comparison with them will be addressed in future work.17

CASP algorithms and solvers. For what concerns CASP solvers, although other CASP solvers exist,
ezcsp is, to the best of our knowledge, the only one supporting both real numbers and non-linear constraints,
required for modeling non-linear continuous change.

ACsolver (Mellarkod et al. 2008) implements an eager approach to CASP solving, where (in contrast to
the lazy approach of ezcsp) ASP and CSP solving are tightly coupled and interleaved. It does not support
non-linear or global constraints, but allows for real numbers.

clingon (Ostrowski and Schaub 2012) is another tightly coupled CASP solver. The available implemen-
tation, however, is not broadly applicable to the kinds of problems considered in this paper. In fact, clingon

does not support non-linear constraints and real numbers. On the other hand, unlike ezcsp, it allows for
numerical constraints both in the head of rules and in their bodies, and is characterized by a tighter coupling
of ASP and CSP solvers.

A high level view of the languages and solving techniques employed by these solvers can be found in (Lierler
2014). There, by relying on the framework of abstract solvers, i.e., a graph-based representation of solving
algorithms, similarities and differences among these solvers are formally stated by means of comparison of
the related graphs.

Hybrid domains and action languages. Action language H was introduced in (Chintabathina et al.
2005) as an extension to previous well-known action languages for modeling hybrid domains. Then, in
(Chintabathina 2013), H has been used specifically to model planning and scheduling tasks in hybrid do-
mains, and reasoning is done via CASP language and solver ezcsp as in our paper. However, that approach
suffers from some shortcomings, which our work overcomes, e.g., it (i) does not take into account PDDL+
as target language, despite it being the standard language for planning in hybrid domains, ( ii) does not
consider additive fluents, non-linear numerical constraints, and the triggering of processes and events via
the must semantics, and (iii) does not include an experimental evaluation of the approach. Another action
language ADP (Baral et al. 2002) was introduced earlier to allow for the specification of, e.g., actions with
duration and continuous effects.

Other lines of research that have dealt with extensions involving primitives for dealing with continuous
change, processes, and (macro-)events include the Event Calculus in, e.g., (Evans 1990; Shanahan 1990;
Miller and Shanahan 1996; Cervesato and Montanari 2000).

17 At the time of submission, these papers were not published yet, and the corresponding planners not released.
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8 Conclusions

PDDL+ and CASP languages extend PDDL and ASP to reason with mixed discrete-continuous dynamics.
PDDL+ is the standard language for the automated planning community, with a number of interesting
domains being represented as PDDL+ models. In this paper, we have presented a new approach for solving
PDDL+ problems by means of an encoding into CASP problems, and extension to the ezcsp solving archi-
tecture for planning in hybrid domains. Our solution can deal with both linear and non-linear variants of
the domains. An experimental analysis, performed on well-known PDDL+ domains, involving some variants
of our approach, other CASP solvers and PDDL+ planners on two reasoning tasks, showed the viability of
our approach.
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Encoding Solver 1 2 3 4 5 6 7 8

Basic ezcsp (GAMS/conopt) 1.24 3.25 18.49 - 147.94 - - *

ezcsp (GAMS/couenne) 0.99 4.4 24.7 - 192.71 - - *

ezcsp (GAMS/ipopt) 1.18 6.2 37.54 - 218.8 - - *

ezcsp (GAMS/ipopth) 1.1 5.37 30.55 - - - - *

ezcsp (GAMS/knitro) 0.82 3.62 20.2 - 166.64 - - *

ezcsp (GAMS/lindo) 0.78 3.55 19.2 - 150.89 - - *

ezcsp (GAMS/lindoglobal) 0.81 3.42 19.14 - 148.08 - - *

ezcsp (GAMS/minos) 0.78 3.3 18.27 - 143.19 - - *

ezcsp (GAMS/snopt) 0.8 3.41 18.78 - 148.43 - - *

Heuristic ezcsp (GAMS/conopt) 0.72 1.62 0.68 1.05 87.95 256.59 238.93 *

ezcsp (GAMS/couenne) 0.32 2.47 1.48 2.05 120.88 329.82 309.68 *

ezcsp (GAMS/ipopt) 0.33 2.88 1.68 1.93 131.95 - - *

ezcsp (GAMS/ipopth) 0.33 2.44 1.07 1.59 123.97 - - *

ezcsp (GAMS/knitro) 0.31 1.84 0.79 1.13 126.80 449.79 566.50 *

ezcsp (GAMS/lindo) 0.34 1.73 0.81 1.07 127.09 470.66 314.35 *

ezcsp (GAMS/lindoglobal) 0.33 3.67 0.69 1.15 121.79 329.97 280.94 *

ezcsp (GAMS/minos) 0.31 1.71 0.74 1.05 121.27 296.70 294.98 *

ezcsp (GAMS/snopt) 0.29 1.64 0.66 0.98 104.46 - - *

Estimator EZCSP (GAMS/conopt) 0.81 1.25 0.49 1.19 93.10 50.50 - *

EZCSP (GAMS/couenne) 0.33 1.84 0.76 2.65 132.22 73.10 - *

EZCSP (GAMS/ipopt) 0.38 1.98 0.79 2.20 145.62 - - *

EZCSP (GAMS/ipopth) 0.30 1.73 0.65 1.70 134.29 - - *

EZCSP (GAMS/knitro) 0.31 1.37 0.55 1.46 112.19 59.41 - *

EZCSP (GAMS/lindo) 0.30 1.22 0.50 1.12 97.75 53.66 - *

EZCSP (GAMS/lindoglobal) 0.28 1.14 0.51 1.12 96.20 52.71 - *

EZCSP (GAMS/minos) 0.34 1.16 0.52 1.16 94.26 51.12 - *

EZCSP (GAMS/snopt) 0.35 1.21 0.57 1.19 99.59 51.34 - *

dReal 8.18 - - - - - - -

Table 3. Non-linear variant of generator with fixed time step. Results in seconds. Problem instances refer to
number of tanks.
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Domain Solver 1 2 3 4 5 6 7 8

Car linear ezcsp (B-Prolog) 1.01 0.98 1.04 0.99 0.91 0.85 0.88 0.83

clingcon 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

UPMurphi 0.40 0.38 0.38 0.38 0.41 0.39 0.40 0.41

Car non-linear ezcsp (GAMS/couenne) 2.59 1.78 1.90 2.50 1.91 2.00 1.84 3.96

ezcsp (GAMS/knitro) 2.32 1.49 1.14 1.85 1.14 1.18 1.06 2.13

UPMurphi 184.88 - - - - - - -

Table 4. Car domain with cumulative times. Results in seconds. Problem instances refer to max
acceleration.

Encoding Solver 1 2 3 4 5 6 7 8

Basic ezcsp (B-Prolog) 1.14 2.71 8.56 12.79 25.90 151.94 96.40 279.81

clingcon 17.71 63.75 - - - - - 117.91

clingcon/Opt 21.41 83.23 - - - - - 143.95

Heuristic ezcsp (B-Prolog) 0.89 1.92 5.46 9.93 30.79 50.25 67.97 292.22

clingcon 17.30 62.60 50.58 - - - - -

clingcon/Opt 17.34 62.80 51.43 - - - - -

Estimator ezcsp (B-Prolog) 0.83 1.55 3.19 26.27 82.32 318.98 - -

clingcon 31.44 6.51 103.79 - - - - -

clingcon/Opt 22.83 71.26 - - - - - 110.70

UPMurphi 2.02 12.75 91.80 - - - - -

Table 5. Linear variant of generator with cumulative times. Results in seconds. Problem instances refer to
number of refuel tanks.
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Encoding Solver 1 2 3 4 5 6 7 8

Basic ezcsp (GAMS/conopt) 2.30 4.36 42.11 - 152.53 - - -

ezcsp (GAMS/couenne) 2.79 10.08 81.56 - 387.30 - - -

ezcsp (GAMS/ipopt) 2.00 7.58 80.99 - 226.92 - - -

ezcsp (GAMS/ipopth) 1.84 6.77 67.04 - - - - -

ezcsp (GAMS/knitro) 1.52 4.75 46.69 - 175.50 - - -

ezcsp (GAMS/lindo) 1.46 4.57 44.07 - 157.69 - - -

ezcsp (GAMS/lindoglobal) 1.46 4.50 43.62 - 155.14 - - -

ezcsp (GAMS/minos) 1.49 4.50 46.98 - 153.10 - - -

ezcsp (GAMS/snopt) 1.49 4.40 41.15 - 156.87 - - -

Heuristic ezcsp (GAMS/conopt) 1.44 2.44 13.10 53.70 88.58 267.11 250.03 -

ezcsp (GAMS/couenne) 1.39 5.72 21.07 77.78 244.31 - - -

ezcsp (GAMS/ipopt) 0.97 3.77 24.43 78.26 136.53 - - -

ezcsp (GAMS/ipopth) 0.93 3.30 20.31 78.17 126.66 - - -

ezcsp (GAMS/knitro) 0.89 2.64 15.06 64.25 109.14 318.25 299.07 -

ezcsp (GAMS/lindo) 0.84 2.45 13.20 54.29 89.98 265.14 254.92 -

ezcsp (GAMS/lindoglobal) 0.91 2.74 14.57 58.92 99.72 278.55 266.06 -

ezcsp (GAMS/minos) 0.87 2.36 14.55 56.95 93.78 285.23 259.65 -

ezcsp (GAMS/snopt) 0.92 2.64 14.87 56.22 92.22 271.60 258.83 -

Estimator ezcsp (GAMS/conopt) 0.88 1.89 12.66 54.95 96.47 55.28 - -

ezcsp (GAMS/couenne) 1.46 5.29 20.99 81.85 261.31 413.99 - -

ezcsp (GAMS/ipopt) 1.02 2.89 24.96 82.59 153.27 - - -

ezcsp (GAMS/ipopth) 1.04 2.68 20.82 82.26 141.18 - - -

ezcsp (GAMS/knitro) 0.96 2.17 15.82 72.33 118.26 69.32 - -

ezcsp (GAMS/lindo) 0.90 2.03 13.94 58.64 101.62 60.48 - -

ezcsp (GAMS/lindoglobal) 0.89 2.04 13.47 58.65 101.43 59.94 - -

ezcsp (GAMS/minos) 0.98 2.04 13.54 56.20 97.59 58.03 - -

ezcsp (GAMS/snopt) 0.85 1.91 13.15 55.46 95.75 57.28 - -

UPMurphi - - - - - - - -

Table 6. Non-linear variant of generator with cumulative times. Results in seconds. Problem instances refer
to number of refuel tanks.


