
Action Languages and the Mitigation of Malware

Marcello Balduccini and Spiros Mancoridis

Computer Science Department
Drexel University

Philadelphia, PA 19104 USA
{mbalduccini,mancors }@drexel.edu

Abstract Automating malware mitigation requires taking into account poten-
tially intricate dependencies among the system’s components, understanding po-
tential side-effects of the possible actions, and ensuring that required system func-
tionalities are preserved. Answers still need to be found for fundamental ques-
tions: What does it mean to mitigate malware? When can one claim that malware
has been mitigated? What are the side-effects of a mitigation strategy?
This paper aims to demonstrate that techniques from reasoning about actions and
change can provide the means to create a precise characterization of the notion of
mitigation and by defining corresponding algorithms. The key observation under-
lying our work is that a computer system can be viewed as a dynamic system, i.e.,
a system whose state changes over time. Taking this perspective makes it possible
to leverage the techniques for reasoning about actions and change to model, and
reason about, system components and malware. Furthermore, efficient computa-
tion can be achieved by relying on encodings based on Answer Set Programming.

1 Introduction

Malicious software (malware) is software designed to infiltrate, damage, or otherwise
compromise computer systems and networks. Experience has demonstrated that there is
no perfect prevention mechanism from malware. Any system worth compromising will
eventually get infected. Thus, automated tools have been developed to detect malware’s
landing on a system. Of those, antiviruses are easily eluded by modern polymorphic
malware1 and are ineffective against attacks exploiting zero-day vulnerabilities2. Be-
havioral detection tools, which monitor the system against a learned behavioral model,
have better success. Once malware is detected and classified, the next logical step is mit-
igation, i.e., the task of eliminating or isolating malware on an infected system. A mit-
igation tool would receive information about family and features of detected malware
from the detection and classification tools, and compute suitable mitigation strategies.

While automated detection and classification have been extensively studied
[14,6,5,4], mitigation has, however, received far less attention. Yet, mitigation is possi-
bly the most complex of these tasks, requiring taking into account intricate dependen-

1 Polymorphic malware is such that its bytecode can change without affecting the algorithm.
This limits the effectiveness of detection techniques based on signatures of the binary.

2 Zero-day vulnerabilities are only known to the potential attackers. They are dangerous because
programmers cannot work on fixing them until after the attacks have already begun.

cies among system components, understanding the potential side-effects of the mitiga-
tion actions, and ensuring that system’s functionality is preserved.

This paper aims to advance research on mitigation by proposing a mathematically-
precise characterization of the notion and corresponding algorithms. The key observa-
tion that underlies our work is that a computer system can be viewed as a dynamic
system, i.e., a system whose state changes over time. Taking this perspective enables
leveraging the results of decades of research on action languages and on reasoning about
actions and change [9,3] to model, and to reason about, the dependencies among sys-
tem components and malware. Efficient automated computation is achieved by relying
on Answer Set Programming (ASP) techniques [8]. In line with our previous work [2],
this paper demonstrates that ASP-related techniques can be instrumental to the study of
reasoning as it occurs in everyday life and to its precise characterization.

Let us start by providing an intuition of how mitigation works and of its challenges.
Consider a simplification of theKimsuky Operation3, in which a system has been in-
fected with two malware instances: a command-and-control malware (CC) and a key-
logger (KL). CC has the purpose of enabling the remote execution of commands by
an external attacker. It periodically connects to a server to check if the attacker has
submitted any request for command execution. If a request exists, CC executes the cor-
responding commands on the local computer. KL, on the other hand, has the purpose of
stealing potentially valuable information. It collects key-presses and other user interface
interactions, and sends them to a remote server, where they will be analyzed to extract
private data such as authentication credentials. Let us assume that a malware detection
and classification component has already identified the presence of CC and KL on a
system and provided some information about them. For instance, the component may
have determined that CC connects to port 2222 of a remote host in domain “atkr.to,”
and deactivates itself if the remote host cannot be reached. The exact address of CC’s
remote host, however, is unknown. KL continuously captures user interface interactions
and forwards them to a host at a known address (we will call itkl-addr for simplicity).
The remote port used for the connection is unknown. If the remote computer is un-
reachable, KL stores the information locally and uploads it as soon as the opportunity
presents itself. How are these two malware instances to be mitigated?

Mitigation is often reduced to installing software updates that patch vulnerable ser-
vices. This simplistic solution will obviously fail in the all-too-frequent cases in which
updates are not yet available or the updates break compatibility with other system com-
ponents. Additionally, the installation of updates may require a computer reboot, which
might be unacceptable if users are actively using the computer or if the computer per-
forms critical functions that cannot be interrupted.

A more sophisticated approach relies on leveraging the available knowledge about
the malware and changing the state of the system to render the malware ineffective or
to remove it altogether. For example, one way to mitigate KL may involve modifying
the configuration of the computer’s firewall to block traffic toward addresskl-addr.
Although the malware will remain running on the computer, its key functionality –
the exfiltration of data – will be rendered inoperative. The side-effects of mitigation

3 An actual cyber attack described in http://securelist.com/analysis/57915/the-kimsuky-
operation-a-north-korean-apt and part of a cyber espionage campaign against South Korea.

strategies must be carefully considered, though. In the case of KL, since the port on
the remote server to which the malware connects is not known, the firewall will have to
be configured to block all traffic towardkl-addr. This may be acceptable if the remote
computer is known to have only a malicious purpose. Nowadays, however, computers
used in attacks are often legitimate systems that have been infected with malware. Many
of the functions they perform are still perfectly legitimate. Thus, blocking all traffic
toward it may be an unacceptable side-effect of the mitigation strategy. Imagine what
would happen if the computer we are trying to defend were part of the network of a
service provider, and the mitigation strategy caused it to block all traffic toward paying
customers.

Thus, a successful mitigation strategy needs to act on other aspects of the system.
For instance, it may be possible to kill the process(es) owned by the malware in order to
disable it. Suppose the detection and classification system determined that KL belongs
to a malware family whose main process respawns automatically when killed. Clearly,
killing the malware’s processes will not help. However, suppose that KL’s operations
rely on the existence of a certain file,kl-file, on the file system of the local computer. For
example,kl-file could be a library needed by KL. Once KL is running,kl-file is locked
by KL’s main process and cannot be deleted. However, one could disable KL by killing
its main process and immediately deletingkl-file, before KL has time to respawn and
lock the file again.

As we hope this example has demonstrated, mitigation is indeed a challenging task.
So far, little research has been conducted on automating it. In [7], the authors propose
an ontology of information security knowledge. The ontology is at a rather high level of
abstraction and does not address the automation of the mitigation process. In [10], fairly
detailed models are described by means of impact dependency graphs and applied to
the problem of situation assessment, but not to mitigation. [13] also focuses on situation
assessment and covers tools and applications that can be (manually) used to mitigate
malware. Finally, [11] presents interesting preliminary results on applying knowledge
representation to cyber security, but does not address the problem of mitigation. In
conclusion, answers still need to be found for fundamental questions: What does it mean
to mitigate malware? When can one claim that malware has been mitigated? What are
the side-effects of a mitigation strategy?

In this paper, we (1) present a framework that enables answering these questions
by reducing the task of mitigation to the study of the properties of a declarative model
of computer system and malware; (2) show that the computations can be automated by
translation to ASP; (3) provide an empirical evaluation of the approach on a collection
of non-trivial scenarios. Because our work is the first attempt of its kind, it is focused
on abstract models of systems and malware. Based on previous experience with ASP-
based reasoning, transition to actual systems and use within actual defense systems
is achievable and will be addressed in the coming phases of the project. It is worth
stressing that our approach yields models of computer systems and malware that are
independent of the specific reasoning task considered, and can thus be easily reused
and expanded.

The paper is organized as follows. Related background is provided next. Section 3
discusses the definition of state-based mitigation. The next sections describe our for-

malization of computer systems and malware behavior and our approach to automating
mitigation by reducing it to ASP-based reasoning. Section 6 reports on the experimental
evaluation of the implemented system. Finally, we draw conclusions and discuss future
work.

2 Answer Set Programming and Dynamic Domains

Let us begin by defining the syntax and semantics of ASP [8,12]. LetΣ be a signature
containing constant, function and predicate symbols. Terms and atoms are formed as
usual in first-order logic. A (basic) literal is an atoma or its strong negation¬a. A rule
is a statement of the form:h ← l1, . . . , lm, not lm+1, . . . , not ln whereh (the head)
and li’s (the body) are literals andnot is the so-calleddefault negation. The intuitive
meaning of the rule is that a reasoner who believes{l1, . . . , lm} and has no reason to
believe{lm+1, . . . , ln}, must believeh. Symbol← is omitted if the body is empty.
Rules of the formh← not h, l1, . . . , not ln are abbreviated into← l1, . . . , not ln, and
calledconstraints. The intuitive meaning of a constraint is that{l1, . . . , not ln} must
not be satisfied. A rule containing variables is interpreted as the shorthand for the set of
rules obtained by replacing the variables with all the possible ground terms. Aprogram
is a set of rules overΣ. A consistent setS of literals is closed under a rule ifh ∈ S
whenever{l1, . . . , lm} ⊆ S and{lm+1, . . . , ln} ∩ S = ∅. SetS is an answer set of a
not-free programΠ if S is the minimal set closed under its rules. The reduct,ΠS , of an
arbitrary programΠ w.r.t. S is obtained fromΠ by removing every rule containing an
expression notl s.t.l ∈ S and by removing every other occurrence of notl. SetS is an
answer set ofΠ if it is the answer set ofΠS . For a convenient representation of choices,
in this paper we also useconstraint literals[12], which are expressions of the form
m{l1, l2, . . . , lk}n, wherem, n are arithmetic expressions andli’s are basic literals. A
constraint literal is satisfied w.r.t.S wheneverm ≤ |{l1, . . . , lk} ∩ S| ≤ n. Constraint
literals are especially useful to reason about available choices. For example, a rule
1{p, q, r}1 intuitively states that exactly one of{p, q, r} should occur in every answer
set. Recent advances in solving technology have also allowed for an efficient support of
aggregates, i.e., arithmetic functions over sets of literals, and of optimization problems.
An aggregate that we use later, for example, is of the form#sum{1, X : p(X)},
and intuitively corresponds to the count of allX ’s such thatp(X) holds. Similarly,
later we use a statement#minimize{X@1, p : p(X)} to specify that any answer
set found should minimize the count ofX ’s such thatp(X) holds. We refer the reader
to https://www.mat.unical.it/aspcomp2013/ASPStandardization
for more information on these constructs.

For the formalization of computer systems, we use techniques from reasoning
about actions and change.Fluentsare first-order terms denoting the properties of in-
terest of the domain (whose truth value typically depends upon time). For example,
locked by(f1, p2) may represent the fact thatf1 is locked by processp2. A fluent
literal is either a fluentf or its negation¬f . Elementary actionsare also first-order
terms. For example,lock(p2, f3) may mean thatf3 is being locked by processp2.
A compound actionis a set of elementary actions, denoting their concurrent exe-
cution. A setS of fluent literals isconsistentif ∀f, {f,¬f} 6⊆ S and completeif

∀f, {f,¬f} ∩ S 6= ∅. Fluents are further distinguished ininertial, whose truth value
persists over time, andpositive(resp.,negative) defined fluents, whose truth value de-
faults to false (resp., true) in every state. The set of the possible evolutions of a do-
main is represented by atransition diagram, i.e., a directed graph whose nodes – each
labeled by a complete and consistent set of fluent literals – represent the states of
the domain, and whose arcs – labeled by sets of actions – describestate transitions.

Figure 1. A possible state transition

A state transition is identified by a triple,
〈σ0, a, σ1〉, whereσi’s are states anda is a com-
pound action (see Figure 1). Transition diagrams
can be compactly represented using an indirect
encoding based on the research on action lan-
guages [9]. In this paper, we adopt the variant
of writing such encoding in ASP – see, e.g., [1].
The encoding relies on the notion of atrajectory
〈σ0, a0, σ1, a1, . . .〉, i.e., a path in the transition di-
agram. The states in a trajectory are identified by
integers (0 is the initial state). The fact that a fluentf holds at a stepi is represented
by atomh(f, i), where relationh stands forholds. If ¬f is true, we write¬h(f, i). Oc-
currences of elementary actions are represented by an expressiono(a, i) (o stands for
occurs). ASP rules (also calledlaws in this context) describe the effects of actions. An
action descriptionAD is a collection of such rules, together with rules formalizing the
default behavior of inertial and defined fluents. The transition diagram,T (AD), cor-
responding to an action descriptionAD is characterized unambiguously by the answer
sets ofAD ∪ gen. Setgen contains the rules1{h(F, 0),¬h(F, 0) : inertial(F)}1 and
{o(A,S) : action(A)} ← step(S), where relationsaction andstep define ranges for
actions and steps. Intuitively, the first rule “generates” all possible initial states and the
second rule “generates” all possible occurrences of actions.

3 State-Based Mitigation

In this section, we provide a precise characterization of possible definitions of mitiga-
tion. The aim is to enable answering the fundamental questions: What does it mean
to mitigate malware? When can one claim that malware has been mitigated? What are
the side-effects of a mitigation strategy? To our knowledge, this is the first such char-
acterization, and is made possible by our choice to view mitigation as reasoning over
dynamic domains.

Below, we make the simplifying assumption that, while information about the fea-
tures of malware may be incomplete (e.g., we may not know which remote port KL
connects to), the current state of the system and the effects of the available actions are
fully known.

Let Ac be a set of rules describing the behavior of the components of a computer
system, e.g., the effect of the firewall’s configuration on network traffic or the effect of
the actions for manipulating the file system. For the scenario from Section 1,Ac might
contain a rule:

h(locked by(F, P), S + 1)← h(active(P), S), o(lock(P, F), S).

The rule intuitively describes the effect of a process locking a file. Let setAm describe
the behavior of malware and its relation to the computer system. For example, the fact
that KL from Section 1 locks filekl-file when it respawns may be represented inAm

by:

h(locked by(kl-file, P), S + 1)← h(exists(kl-file), S), o(respawn(M), S).

Finally, letΓ denote a sequence ofobserved states〈γ−n, . . . , γ−2, γ−1, γ0〉, intuitively
denoting past observed states of the system, of whichγ−n is the oldest andγ0 is the
current state. GivenΓ , Γ (i) denotes elementγi. Note thatΓ is not required to be a
complete history, that is, the system may have evolved through other states between
Γ (i) andΓ (i + 1). A system descriptionis then defined as the tuple〈Ac, Am, Γ 〉. At
the core of our approach is the following definition of the notion of mitigation strategy:

Definition 1. Given a system description〈Ac, Am, Γ 〉, a mitigation strategyis a tra-
jectory〈σ0, a0, σ1, . . . , an−1, σn〉 in the transition diagramT (Ac ∪Am) whose initial
state isΓ (0) and whose end state,σn, is asafe state.

This definition provides a precise answer to the question “What does it mean to
mitigate malware?” However, how should the notion of a safe state be defined? Next,
we provide an answer to this second question, which also helps answer the fundamental
question: When can one claim that malware has been mitigated? As part of the descrip-
tion of the behavior of malware, we assume thatAm defines the (known) conditions
under which a malware becomes inactive, i.e., fluentactive(m) becomes false. In prac-
tice, these conditions will be provided by the classification tool. Thus, we state that:

Definition 2. A stateσ is astrict safe stateif, for every malwarem, ¬active(m) ∈ σ.4

Although appealingly simple, this definition is in some cases too restrictive. Recall
that, in the scenario from Section 1, CC could be rendered ineffective (but not inactive!)
by disabling outbound traffic toward domain “atkr.to” and port 2222. Suppose that is
the only way to mitigate the malware. Certainly, it is not reasonable to conclude that no
safe state can be reached. Thus, we introduce inAm a fluenteffective(m), intuitively
meaning thatm is effective (i.e., can perform its essential functions), and assume that
Am includes rules stating the conditions under which malware is rendered ineffective.
We can now define:

Definition 3. A relaxed safe stateσ is a state in which, for every malwarem,
{¬active(m),¬effective(m)} ∩ σ 6= ∅.

A further elaboration of the notion of safe state is obtained by observing that the two
definitions given above neglect to consider the side-effects of the mitigation strategy:
for example, a strategy that blocks all traffic to a certain host, as discussed in Section
1, may well lead to a strict or relaxed safe state, but may be unacceptable in practice
if the computer system is expected to provide (legitimate) services to remote users. So,
here we turn our attention to the question “What are the side-effects of a mitigation
strategy?” To model this notion, we begin by explicitly modeling the services that the
computer system is required to provide. Fluentsactive andeffective are extended in
a natural way. Thus, we have:

4 For simplicity, this definition does not consider malware that may infect the computer during
the execution of the mitigation strategy.

Definition 4. A practical safe stateis a relaxed safe stateσ such that, for every service
s, {active(s), effective(s)} ⊆ σ.

Mitigation strategies that lead to end states satisfying the above definitions are
called, respectively,strict, relaxed, and practical mitigation strategies. In practice, it
is useful to find mitigation strategies that result in the best possible state, be it a strict
safe state or even a state that purposely includes disrupted computer services, if that is
the only option. In the following definition, let≺ denote some given ordering of states,
so thatσ ≺ σ′ if, intuitively, σ is more desirable thanσ′.

Definition 5. Let S be a set of states. A stateσ ∈ S is maximally safe inS w.r.t.≺ if
∀σ′ ∈ S, σ′ 6≺ σ.

Definition 6. Given a system description〈Ac, Am, Γ 〉 and an ordering≺, amaximally
safe mitigation strategy w.r.t.≺ is a trajectory〈σ0, a0, σ1, . . . , an−1, σn〉 in T (Ac ∪
Am) whose initial state isΓ (0) and whose end state,σn, is maximally safe among the
end states of the trajectories with initial stateΓ (0).

The actual specification of the ordering depends on one’s purpose, but what is im-
portant is that this definition allows one to impose arbitrary constraints on the side-
effects of the mitigation strategies. For example, one can define≺ in order to limit
the disruptions on the legitimate services offered by the system (see Section 5 for an
example). In other cases, one may want to consider file content, as a strict mitigation
strategy that formats the computer and reinstalls everything from scratch – albeit com-
pletely successful in removing the malware – is likely unacceptable from a practical
perspective.

One potential issue with maximally safe mitigation is the lack of constraints on what
the end state will be like. In practice, it is desirable for the end state to be one users are
familiar with. Thus, our final refinement attempts to “roll back” the system to a familiar
state.

Definition 7. Given a system description〈Ac, Am, Γ 〉 and an ordering≺, a roll-back
mitigation strategyis a a trajectory〈σ0, a0, σ1, . . . , an−1, σn〉 in T (Ac ∪ Am) whose
initial state isΓ (0) and whose end state,σn, is maximally safe inΓ w.r.t.≺.

It is important to note that, while in traditional roll-back mechanisms there exists
a predefined sequence of actions (typically, removal of software) that takes the sys-
tem back to a previous state, our definition of roll-back mitigation strategy enables the
search over arbitrary sequences of actions and is thus more flexible in responding to the
changes operated by malware. Restricting the search to observed states has the practical
advantage of reducing the mitigation strategies to be evaluated, while ensuring that the
resulting state is likely familiar to a user, given that the computer system was in that
state earlier.

4 Formalization of Computer Systems and Malware

TheTheory of Computer Systems and Malwareis a collection of modules, called the-
ories, describing the behavior of the various components. The theories and their con-
nections are illustrated in Figure 2. The main features of each theory are discussed

next. At the current stage, we have focused on a rather high-level formalization of the
components, but still sufficient for solving challenging mitigation problems such as the
one described in Section 1. TheTheory of Firewallsformalizes the behavior of a sim-

Figure 2. The Theory of Computer Systems and Malware

ple computer firewall capable of blocking various kinds of outbound traffic (IP/port
pair, all ports of an IP address, all traffic to a port, all traffic to an internet domain)
and inbound traffic for a given port. The firewall is formalized as a dynamic domain,
whose state is characterized by inertial fluentblocked(D,O), which states that traffic
is blocked in directionD (i.e., in or out) to/from network objectO (whereO may be,
for example, an IP address or an IP/port pair). The actions of the domain are of the
form block(D,O), whereO andD are as above. The direct effects of the actions are
formalized by dynamic laws. For example, thedynamic law[9] stating that the effect
of actionblock(Dom, out) is to block traffic toward domainDom is (here and below,
domain predicates are omitted whenever appropriate):

h(blocked(out, Dom), S + 1)← domain(Dom), o(block(out, Dom), S).

State constraints[9] are used to propagate the effect of traffic blocks to any related
network object. For example, the following state constraint says that traffic toward a
host is blocked if traffic toward a domain the host belongs to is blocked:

h(blocked(out, H), S)← host(H), in domain(H, Dom), h(blocked(out, Dom), S).

Relationin domain, assumed to be part of the problem specification, formalizes mem-
bership of hosts to domains.

TheTheory of Network Connectivitybuilds upon the Theory of Firewalls to capture
network connectivity as the combined effect of the computer’s firewall and of external
devices. The state of network connectivity is characterized by negative defined fluent
reachable(D,O), whereO andD are as above, and by fluents defining the physical
state of the network, such asplugged(lan cable) andon(gateway), which state, re-
spectively, that the network (LAN) cable is plugged into the computer and that the gate-
way connecting the computer to the internet is turned on. Dynamic laws define the effect
of actions that change the physical state of the network, such asunplug(lan cable) and
turn off(gateway). State constraints determine under which conditions network ob-
jects are unreachable. The following rules state that an internet object is unreachable if

related traffic is blocked at the firewall level, and that all network objects are unreach-
able if the cable is not plugged in:

¬h(reachable(D, O), S)← h(blocked(D, O), S).
¬h(reachable(D, O), S)← direction(D), network object(O),¬h(plugged(lan cable), S).

It is worth noting the flexibility afforded by the use of a negative defined fluent, allow-
ing one to focus on the description of cases under which reachability is disrupted and
relying on the fact that all other network objects will be assumed to be reachable by
default.

The Theory of Filesystem describes how the properties of the files in a filesystem
change over time in response to typical filesystem-related actions. Files are identified
by atoms of the formfile(F), intuitively stating thatF is a file. For every fileF ,
the theory defines inertial fluentsexists(F), readable(F) andwritable(F), with the
obvious meanings. At this stage, we do not consider read/write access rights that depend
on the identity of the user (e.g., allowing a file to be readable by its owner and nobody
else), but it would not be difficult to extend the theory accordingly. Additionally, we use
fluentlocked by(F, P) to denote the fact that fileF is locked by a processP (processes
are discussed later). The state of the domain is affected by two actions:protect(F,A),
which protects fileF from reading (A = read) or writing (A = write), anddelete(F),
which causesF to be deleted. The latter action is formalized by the rules:

¬h(exists(F), S + 1)← o(delete(F), S). ← o(delete(F), S), ¬h(exists(F), S).
← o(delete(F), S), h(locked by(F, P), S). ← o(delete(F), S), is a(F, system file).

The last twoexecutability conditions[9] ensure that files that are locked by a process
and system files cannot be deleted.

TheTheory of Processesdescribes general characteristics common to all processes
(i.e., running programs) of a computer system. The characterization includes inertial
fluent active(P), which states that processP is active (i.e., running), and negative
defined fluenteffective(P), which states that the process is able to perform its key
functions (see Section 3). The determination of when processes become active/inactive
and effective/ineffective is for the most part process-dependent, and is delegated to the
process-specific theories described later. The main exception is the formalization of the
direct and indirect effects of killing a process, captured by the rules:

¬h(locked by(F, P), S)← file(F), o(kill(P), S), ¬h(active(P), S).
¬h(active(P), S + 1)← o(kill(P), S).
← o(kill(P), S),¬h(active(P), S).

The next component of the formalization is theTheory of Services, which provides a
representation of the services offered by a computer system. The theory is geared to-
wards the features needed for reasoning about malware mitigation, and thus abstracts
from details such as the computation performed, and memory or processor usage.
Rather, a service is modeled as a process that receives requests on a specified port and
becomes ineffective if network traffic to that port is blocked. The corresponding rule is:

¬h(effective(Serv), S)← on port(Serv, Port), ¬h(reachable(in, Port), S).
Atom on port(Serv, Port) indicates the port on which requests are received by a ser-
vice. It is worth noting how the Theory of Services builds upon the network connectivity
state provided by the Theory of Network Connectivity. The theory also defines a pos-
itive defined fluentdisrupted(Serv), which determines when a service is disrupted:

h(disrupted(Serv), S)← ¬h(active(Serv), S).
h(disrupted(Serv), S)← ¬h(effective(Serv), S).

This fluent is used during the computation of mitigation strategies to determine possible
disruptions to the services as side-effects of the strategies.

Finally, theTheory of Malwareformalizes the available knowledge about the behav-
ior of malware. As we discussed earlier, this is the first attempt at automating mitigation
that we are aware of; thus, we restrict the scope of our work slightly and focus specifi-
cally on CC and KL malware. The choice of CC and KL is due to their diffusion and to
the potentially significant consequences. Although the theory of malware would have
to be extended in order to deal with other kinds of malware (e.g., malware that does not
use network communications), the framework itself is general enough to accommodate
other kinds of malware.

In our approach, a malware instance is formalized as a process with certain spe-
cific properties. It is conceivable that, in practice, this theory will eventually consist of
a collection of modules corresponding to the various malware families and provided
by malware detection and classification tools present on the computer. The theory in-
cludes two positive defined fluents:mitigated(M), which states that malwareM is
currently mitigated, andrespawning(M), stating that the malware is in the process
of respawning (see Section 3). A malware is declared mitigated if it is ineffective (flu-
ent literal¬effective(M)), or inactive (¬active(M)) and not currently respawning
(¬respawning(M)). Changes to fluentsactive(M) andeffective(M) depend on the
specific malware family and malware instance. For example, in the fictitious (but not un-
realistic) scenario described earlier, a command-and-control malware becomes inactive
if it is unable to reach the host that controls it. This is captured by the state constraint:

¬h(active(CC), S)← is a(CC, cc), commanded by(CC, O),¬h(reachable(out, O), S).

Atom is a(CC, cc) specifies thatCC is a command-and-control malware. Relation
is a, defined as part of the problem description, constitutes a simple ontology of mal-
ware. Atomcommanded by(CC,O), also provided by the problem description, in-
dicates the network object that controls the malware. Using a network object enables
the theory to deal with incompleteness of information about the commanding host. For
example, if all that is known is that the malware contacts some unidentified host on
port 2222, this information can be modeled by a network object corresponding to port
2222. The definition of fluentreachable(D,O) in the Theory of Network Connectivity
ensures that the effect of traffic blocks and of physical network conditions is properly
reflected even in the absence of complete information.

Additionally, the theory prescribes that any kind of malware becomes inactive if any
of the files essential to its functioning are removed:

¬h(active(M), S)← is a(M, malware), essential file(M, F, exist), ¬h(exists(F), S).

Atom essential file(M,F, exist), defined in the problem description, indicates that
it is essential for fileF to exist. Similar atoms indicate that a file must be readable or
writable.

To model respawning malware, the theory defines two special triggered actions (ac-
tions that are only executed when triggered by some other action):init(M), indicating
that the malware is initializing, andrespawn(M), which states that the malware is
completing the respawning process. The first action is triggered by akill action, as
defined by the trigger:

o(init(M), S + 1)← respawns(M), can respawn(M, S), o(kill(M), S).

Atom respawns(M), assumed to be defined in the problem description, determines
whether the malware is a respawning one. Auxiliary relationcan respawn(M,S) is
used to check whether the malware can actually respawn – for example, malware can-
not respawn if files essential to its functioning are missing. Actionrespawn(M) is
triggered by the execution ofinit(M). This sequence of two triggered actions is used
to model the fact that, typically, processes take a non-negligible amount of time to
respawn. Oncerespawn(M) is executed, the malware’s process is considered fully
running, with all the corresponding ramifications. For example, all essential files are
locked, if they exist:

h(locked by(F, M), S + 1)← essential file(M, F,), h(exists(F), S),
can respawn(M, S), o(respawn(M), S).

The usual domain-independent rules formalize the inertial axiom, the default behavior
of defined fluents and the transitive closure of relationis a. This concludes the presen-
tation of the Theory of Computer Systems and Malware. Although the formalization
is relatively simple, it is remarkably effective at capturing the elements essential for
reasoning about rather challenging mitigation problems.

5 Mitigation Module

The reasoning algorithm responsible for finding mitigation strategies given a specific
problem description relies on the generate-and-test approach typical of ASP reasoning
modules. The following choice rule states that a mitigation strategy consists of a se-
quence of at least one action per time step, until the mitigation goal has been achieved:
1{o(A,S) : action(A)} ← step(S), not goal(S). The mitigation strategies discussed
in Section 3 can be implemented in ASP in a rather straightforward manner. For exam-
ple, consider the mitigation module,Mr, consisting of the previous rule together with:

¬goal(S)← is a(M, malware), ¬h(mitigated(M), S).
¬goal(S)← is a(M, service), h(disrupted(M), S).
goal(S)← step(S), not ¬goal(S). goal ← goal(S). ← not goal.

Upon inspection ofMr, it can be seen that our approach enables reducing mitigation to
the well-studied task of ASP planning. Hence, it is not difficult to prove the following
result:

Theorem 1. let S = 〈Ac, Am, Γ 〉. The answer sets ofAc ∪ Am ∪ Γ (0) ∪Mr are in
1-to-1 correspondence with the relaxed mitigation strategies forS.
Proof. (Sketch)The thesis can be proven by observing the similarity betweenMr and
ASP planning modules and then applying the proving techniques used for planning.2

For the story from Section 1,Mr is capable of producing the mitigation
o(kill(cc1), 0), o(block(kl-addr, out), 1): CC is killed, while KL is made ineffective
by blocking all traffic to the remote host. This mitigation has the drawback of leaving
KL active. To improve on this, we refineMr to find maximally safe mitigation strate-
gies. Let≺a be defined so thatσ ≺a σ′ iff: |{m | ¬mitigated(m) ∈ σ′}| > 0, or
|{s | disrupted(s) ∈ σ′}| > 0, or |{m | active(m) ∈ σ}| < |{m | active(m) ∈ σ′}|.
Intuitively, ≺a aims at mitigating all malware, while no service is disrupted, and as
many malware instances as possible are made inactive (as opposed to only ineffective).

Consider the mitigation module,Mm, containingMr and the rules (ls(S) denotes the
upper bound of the range ofS):

active(T)← T = #sum{1, M : h(active(M), LS), is a(M, malware), ls(LS)}.
#minimize{A@1, active : active(A)}.

Proposition 1. LetS = 〈Ac, Am, Γ 〉. The answer sets ofAc ∪ Am ∪ Γ (0) ∪Mm are
in 1-to-1 correspondence with the maximally safe mitigation strategies forS w.r.t.≺a.

Mm finds a more desirable strategy5 than the previous one:o(kill(kl1), 0),
o(delete(kl-file), 1), o(block(“atkr.to”, out), 2). The strategy blocks traffic to the do-
main of CC’s remote host, forcing CC to deactivate itself. To deactivate KL, the strategy
takes advantage of KL’s dependence onkl-file. File kl-file is locked by KL, though. So,
KL is killed, removing the lock, and then the file is immediately removed, preventing
KL’s respawning.

6 Experimental Evaluation

The goal of the experimental evaluation was to determine performance sensitivity to
problem size. The experiments were conducted on a computer with an Intel i7 processor
at2.6 GHz and Fedora Core19. The solver was restricted to one core,8 GB RAM and
no virtual memory. The solver used wasCLINGO-4.4.0 with no custom options.

We randomly generated1, 000 problems representing infected systems. Problem
parameters were the number of malware instances (1 to5) and that of legitimate services
(1 to 39 in increments of2). The ranges were selected to be representative of a medium-
sized system.10 instances were generated for each pair of problem parameters. Every
malware instance was, with equal probability, a command-and-control or a keylogger.
To ensure some interdependency among malware instances and system, each problem
used a pool of no more than5 essential files, remote hosts, and ports. Files could be
regular or system files with equal probability.

For the experimental setup, the Theory of Computer Systems was as described ear-
lier. The Mitigation Module was designed to find, for every problem, a maximally safe
mitigation strategy w.r.t.≺a, with the additional constraint that, in case of ties, the strat-
egy involving the smallest number of actions was selected. Mitigation strategies were
allowed to be no more than3 steps long, with an arbitrary number of concurrent actions
per time step. We evaluated the execution time of the solver (grounding and solving
combined), whether or not a solution was found, therelaxation index(i.e., how many
malware instances were made ineffective but not inactive), and the number of actions.

A summary of the analysis of the experimental results is shown in Figure 3. Detailed
results for the experiments with4 and5 malware instances are provided in Figure 4. The
analysis shows that the average execution time for a given pair of problem parameters
was always under or near1 second. The average across the1, 000 problems was0.2
seconds.863 instances were successfully solved: a success rate close to90%. In 585
instances out of the863 solved, all malware was rendered inactive; in221, the relaxation

5 In fact,Mm returns multiple solutions, because nothing prevents the generation of irrelevant
actions. See next section for an improvement on this.

Malware

1
2

3
4

5

Services 5101520253035

Ti
m

e
(s

ec
)

0.0

1.0

Malware

1
2

3
4

5

Services 5101520253035

#
 A

ct
io

ns

1

2

3

4

5

6

Figure 3. Execution time(top); number of actions(bottom)

index was1; in 55, it was2; and only in2 cases3 malware instances were left active
but ineffective (these cases were for problems with5 malware instances). Figure 3 also
reports the average number of actions for a given pair of parameters; the average number
across the spectrum was3.2 and the absolute maximum9.

7 Conclusions

This paper aimed at taking a first concrete step toward the precise characterization and
automation of malware mitigation, and answering fundamental questions about mitiga-
tion. The approach is based on a formalization that views computer system and malware
as a dynamic domain, represented using techniques from reasoning about actions and
change, action languages, and ASP. This yields reasoning-task-agnostic models that nat-
urally capture the ramifications of the mitigation actions. We also demonstrated that the
mitigation process can be automated by means of ASP-based reasoning, and stated the
correspondence between two mitigation modules and the corresponding definitions of
mitigation. Remarkably, our approach makes it possible to reduce the task of mitigation
to the well-studied task of planning. Finally, we reported on the empirical evaluation of
our approach on a collection of non-trivial mitigation scenarios. Although experiments
on actual systems are needed before strong claims can be made, the results, including
execution times consistently1 second or less, can indeed be considered encouraging.

Simplifying assumptions were made, including the completeness of the information
about the system’s state (with the exception of information about malware characteris-
tics). Future work will aim at lifting them. Additionally, the Theory of Computer Sys-
tems should be made more detailed, e.g., by modeling realistic file access rights and file
content. Experiments on actual systems are also needed, as well as integration of our
techniques with information from actual malware classification tools.

Param. Pair # Malwar e # Services Time(sec.) #Actions Relax.Index

61 4 1 0.034 5.3 0.6
62 4 3 0.043 4.3 0.6
63 4 5 0.040 3.7 0.6
64 4 7 0.083 4.3 0.2
65 4 9 0.067 4.3 0.0
66 4 11 0.081 4.3 0.7
67 4 13 0.125 4.2 0.4
68 4 15 0.094 4.0 0.5
69 4 17 0.114 4.6 0.1
70 4 19 0.283 4.3 0.1
71 4 21 0.218 4.3 0.7
72 4 23 0.204 4.6 0.9
73 4 25 0.214 3.7 0.2
74 4 27 0.506 4.3 0.1
75 4 29 0.593 4.6 0.2
76 4 31 0.891 4.7 0.3
77 4 33 0.742 4.2 0.4
78 4 35 1.076 4.8 0.4
79 4 37 0.528 4.3 0.4
80 4 39 0.610 4.3 0.3
81 5 1 0.041 5.8 0.6
82 5 3 0.052 5.0 0.6
83 5 5 0.104 5.1 0.8
84 5 7 0.070 4.9 0.8
85 5 9 0.095 4.9 0.5
86 5 11 0.117 5.5 0.9
87 5 13 0.576 5.1 1.0
88 5 15 0.200 5.0 0.6
89 5 17 0.252 5.3 0.3
90 5 19 0.454 4.9 1.1
91 5 21 0.344 6.0 0.6
92 5 23 0.412 5.6 1.0
93 5 25 0.295 5.0 0.2
94 5 27 0.772 4.9 0.4
95 5 29 0.688 4.9 1.1
96 5 31 0.410 5.3 0.8
97 5 33 0.905 5.4 0.4
98 5 35 1.333 5.2 1.3
99 5 37 1.300 5.3 0.6

100 5 39 1.128 5.1 0.9

Figure 4. Experimental results for 4 and 5 malware instances (averages over 10 instances)

References

1. Balduccini, M., Gelfond, M., Nogueira, M.: A-Prolog as a tool for declarative programming.
In: Proceedings of the 12th International Conference on Software Engineering and Knowl-
edge Engineering (SEKE’2000). pp. 63–72 (2000)

2. Balduccini, M., Girotto, S.: Formalization of Psychological Knowledge in Answer Set Pro-
gramming and its Application. Journal of Theory and Practice of Logic Programming (TPLP)
10(4–6), 725–740 (Jul 2010)

3. Baral, C., Son, T.C.: Formalizing sensing actions – a transition function based approach.
Artificial Intelligence Journal 125(1–2), 19–91 (Jan 2001)

4. Canzanese, R., Kam, M., Mancoridis, S.: Toward an automatic, online behavioral malware
classification system. In: Seventh IEEE International Conference on Self-Adaptive and Self-
Organizing Systems (SASO) (2013)

5. Cesare, S., Xiang, Y., Zhou, W.: Malwise: An effective and efficient classification system
for packed and polymorphic malware. IEEE Transactions on Computers 62(6), 1193–1206
(2013)

6. Christodorescu, M., Jha, S., Kruegel, C.: Mining specifications of malicious behav-
ior. In: Proceedings of the the 6th joint meeting of the European software engi-
neering conference and the ACM SIGSOFT symposium on The foundations of soft-
ware engineering. pp. 5–14. ESEC-FSE ’07, ACM, New York, NY, USA (2007),
http://doi.acm.org/10.1145/1287624.1287628

7. Fenz, S., Ekelhart, A.: Formalizing Information Security Knowledge. In: Proceedings of
the 4th International Symposium on Information, Computer, and Communications Security
(ASIACCS’09). pp. 183–194 (2009)

8. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.
New Generation Computing 9, 365–385 (1991)

9. Gelfond, M., Lifschitz, V.: Action languages. Electronic Transactions on AI 3(16), 193–210
(1998)

10. Jakobson, G.: Mission Cyber Security Situation Assessment Using Impact Dependency
Graphs. In: Proceedings of the 14th International Conference on Information Fusion (FU-
SION). pp. 1–8 (2011)

11. Kandefer, M., Shapiro, S.C., Stotz, A., Sudit, M.: Symbolic Reasoning in the Cyber Security
Domain. In: Proceedings of MSS 2007 National Symposium on Sensor and Data Fusion
(2007)

12. Niemel̈a, I., Simons, P.: Logic-Based Artificial Intelligence, chap. Extending the Smodels
System with Cardinality and Weight Constraints, pp. 491–521. Kluwer Academic Publishers
(2000)

13. Ruspini, E.H., Corkill, D.D., Powell, G.M., Das, S., Kokar, M.M., Salerno, J., Kadar, I.,
Blasch, E.: Issues and Challenges of Knowledge Representation and Reasoning Methods
in Situation Assessment (Level 2 Fusion). In: Proc. SPIE 6235, Signal Processing, Sensor
Fusion, and Target Recognition XV (2006)

14. Ye, N., Li, X., Chen, Q., Emran, S.M., Xu, M.: Probabilistic techniques for intrusion detec-
tion based on computer audit data. IEEE Transactions on Systems, Man and Cybernetics,
Part A: Systems and Humans 31(4), 266–274 (2001)

