A-Prolog with CR-Rules and Ordered Disjunction

Marcello Balduccini and Veena Mellarkod
Computer Science Department
Texas Tech University
Lubbock, TX 79409 USA
{balduccini, mellarko }@cs.ttu.edu

Abstract of the preference relation in CR-Prolog such that meta-
We present CR-Prolag an extension of A-Prolog with cr- preferences from LPOD [5] can be encoded in CR-Prolog
rules and ordered disjunction. CR-rules can be used to for- using directly its preference relation, rather than requiring
malize various types of common-sense knowledge and reathe definition of a new type of preference. We show how
soning, that, to the best of our knowledge, have no formaliza- CR-Prolog can be used to represent preferences intended
tion in A-Prolog. The use of ordered disjunction often allows both as strict preferences (like in CR-Prolog), and as desires
for a very concise, easy to read, representation of knowl- (like in LPOD).

edge. We also show how CR-Projogan be used to repre- g naner is structured as follows. We start with the syntax
sent preferences intended both as strict preferences, and a$nd semantics of CR-Prolgg Next, we compare the new
desires. language with CR-Prolog and LPOD, and show how the new
language can be used to represent complex knowledge and
INTRODUCTION to perform fairly sophisticated reasoning tasks. Finally, we

In recent years, A-Prolog — the language of logic programs summarize the paper and draw conclusions.
with the answer set semantics [10] — was shown to be a use-
ful tool for knowledge representation and reasoning [9]. The SYNTAX AND SEMANTICS
language is expressive and has a well understood method-€t & be a signature containing symbols for constants, vari-
ology of representing defaults, causal properties of actionsables, functions, and predicates (denotecthst (X), var(X),
and fluents, various types of incompleteness, etc. The devel-func() andpred(X), respectively). Terms, atoms, and lit-
opment of efficient computational systems [7, 17, 6, 13, 16] erals are defined as usual. Literals and terms not containing
has allowed the use of A-Prolog for a diverse collection of Vvariables are calleground The sets of ground terms, atoms
applications. Some of the applications include: and literals oveE will be denoted byerms(X), atoms(%),
e adecision support system for space shuttle flight con- andlit(%).
trollers. The system is planned to be used by flight Definition 1 A head expressiors either an epistemic dis-
controllers to find plans for the operation of the Re- junction of literals ., or ko or ... or hy, with k > 0) or
active Control System of the space shuttle, as well as an ordered disjunction of literalshg x ha x ... X hy, with
checking correctness of existing plans [15, 14]; k> 1).
. detection of deadlocks using a reduction of the problem Definition 2 A regularrule of CR-Prolog is a statement of
to the computation of stable models of logic programs the form:
[11].
Other important applications are in planning, product config-

@)
uration, bounded model checking, wire routing and modeling .]])
in hybrid systems etc. where? is a head expressioly, . . ., I,, are literals, andr is

a term representing the name of the ruleHlfs an epistemic
It seems however that A-Prolog lacks the ability to grace- disjunction, the intuitive reading of the rule is as usualHIf
fully perform the reasoning needed for certain types of con- is an ordered disjunction, the intuitive meaning of the rule is
flict resolution, e.g. for finding the best explanations of [5]: if the body of the rule is satisfied by the agent’s beliefs,
unexpected observations. To solve the problem, in [2] the then the agent must believe the first (leftmost) elemeht, of
authors introduced CR-Prolog — an extension of A-Prolog by if possible; otherwise it must believe the second element, if
consistency-restoring rulgsr-rules) with preferences. possible;. . . otherwise, it must believe the last elemerit{of

r:e He li,..., 0,
not l,,,+1,...,N0t I,

In this paper we present CR-Prolg@ variant of CR-Prolog For example, program

with an improved semantics, and allowing ordered disjunc- r1: pOrq < notr.
tion [4_, 5] in the head of both regullar rL_JIes a_nd c_:(_3n3|stency— yields two possible conclusiongp} and{g}. On the other
restoring rules. The new semantics yields intuitive conclu- hand, program
sions in cases when CR-Prolog would give unintuitive results. 71 p X g notr.
The use of ordered disjunction, when the preference orderforces the agent to belieye and program
on a set of alternatives is total, allows for a more concise,)
. . r1: pXqg<« notr.
easier to read, representation of knowledge. The flexibility ro: s« not s, p,not r.

forces the agent to believg(since believing is made im-
possible by the second rule).

Definition 3 A cr-rule is a statement of the form:

HE 1, s
not 41, - -

T
.,hot [, 2)
wherer is the name of the rule}{ is a head expression,
andly,...,l, are literals. The rule says thatif,...,[,,
belong to a set of agent’s beliefs and non€.f 1, ...,I,
belongs to it then the agent “may possibly” believe one of the
elements of the head expression. This possibility is used onl
if the agent has no way to obtain a consistent set of beliefs
using regular rules only. 1#{ is an ordered disjunction, the

predicate symbols fron?. (Whenever possible we drop the
first argument and simply writetoms(P)). The set of rules
of ITis denoted byules(II). If pis arule ofll thenhead(p) =
H, andbody(p) = {l1,...,lm, N0t lyyy1,...,N0t I, }.

Programs of CR-Prolggare closely related to abductive
logic programs [12, 8] — pairdl, .A) wherell is a program
of A-Prolog andA is a set of atoms, calleabducible$. The
semantics of the language is based on a transforméti@m)

)pf its programs into abductive programs.

Definition 6 Thehard reduchr(IT) = (Hyy, atoms(Hi, {appl}))

preference order that the agent uses to select an element fronds defined as follows:

the head expression goes from left to right, as for regular
rules. IfH is an epistemic disjunction, then all the elements
are equally preferable.

For example, program

Tt p0rq<—+notr

9 I S.
only forces the agent to believe(the cr-rule need not be
applied, since the program containing only the second rule
is consistent). On the other hand, program

1 porqi not r

ro i S.

r3 : < not p, not q.
forces the agent to believe eithgsr, p} or {s, ¢}. If finally
we want the agent to prefer conclusiprto conclusiong
when possible, we write

L pXq & not r

T2 I S.

r3 : < not p,not q.
which yields a unique set of beliefés, p}. Notice though
that adding new information to the above program, for exam-
ple a new rule— p, forces the agent to retract the previous
conclusions, and believis, ¢}.
We will use the ternmule to denote both regular rules and cr-

rules. As usual, non-ground rules are intended as schemata

for their ground counterparts.

Definition 4 Preferences between cr-rulae expressed by
atoms of the formprefer(ri,re). If all preferences in a
program are expressed as facts, we say that the program
employsstatic preferencesOtherwise, preferences ady-
namic

Definition 5 A CR-Prolog program II, is a pair (X, R)
consisting of signatur& and a setR of rules of form (1)
or (2). We require thatfunc(X) does not contairchoice,
and thatpred(X) containsprefer and does not contain
appl, fired, andis_preferred. SignatureX is denoted
by sig(11); const(Il), func(Il), pred(Il), atoms(IT) and
lit(IT) are shorthands foronst(sig(Il)), func(sig(Il)),
pred(sig(Il)), atoms(sig(IT)) andlit(sig(IT)), respectively.
Let P be a set of predicate symbols frain By atoms(I1, P)
we denote the set of all atoms framoms(II) formed by

1. let NV be a set of new constant symbols, such that every
element ofV is uniquely associated with an atom from
sig(II). We will denote the constant associated with
atoma byn,;

. sig(Hyr) extendssig(IT) so that:const(Hrr) = const(IT)U
N, func(Hy) = func(IT)U{choice}, andpred(Hy) =
pred(I) U {appl, fired,is_preferred}.

. let Ry be set of rules obtained froid by replacing
every cr-rule,p, with a rule:

r : head(p) < body(p), appl(r)

wherer is the name op. Notice thatR; contains only

regular rules;

. the set of rules affi1; is obtained fromRy; by replacing
every rulep, such thatiead(p) = hy X ha X ... X hy,
with the following rules: { is the name of rule)

(@) h; < body(p), appl(choice(r,ny;)) for1 <i < k;
(b) fired(r) « appl(choice(r,ny;)) forl <i < k;
(c) prefer(choice(r,ny,), choice(r, nh,;+1)) forl <i<k;
(d) — body(p),not fired(r).
. gn also contains the following set of rules, denoted by
p:

% transitive closure of predicate prefer

miq : tispreferred(R1,R2) « prefer(R1, R2).

myp @ ispreferred(R1,R2) «— prefer(R1,R3),
is_preferred(R3, R2).

% no circular preferences

ma: « is_preferred(R, R).

% prohibit application ofR1 and R2 if

% R1 is preferred toR2

mz: « appl(R1),appl(R2),is_preferred(R1, R2).

Let us compute the hard reduct of the following program:

ri: p <« notg. s - b
ro r <« nots.

h T3 q <« ¢t r6 qgXs pu
T4 s «— t. t s)

IRecall that the semantics of an abductive program is given by the notion
of generalized answer setan answer st/ (A) of IT U A where

A C A, M(A1) < M(A3)if Ay C As. We refer to an answer set as
minimalif it Is minimal with respect to this ordering.

Hp, = Hyy, UL, whereHy is:

r1 p <« notgq.

ro : r <« nots.

r3 q <« t.

T4 : s <« t.

5 — p,T.
réa : q — appl(choz:ce(r(;,nq)),appl(r(,-).
rqa : A s appl(choz‘ce(m,ns)),appl(re).
Tgb : fz‘red(rﬁ) — appl(choz'ce(ms7 ng)), appl(re).
ré, - fired(rg) <« appl(choice(rs,ns)), appl(rs)-
rec 1 prefer(choice(re, ng), choice(re,ns)).
T6d : «— appl(re),not fired(rs).

rho: t «— appl(r?).

The generalized answer sets/of(Il;) are: (we omit the
atoms formed bys_preferred and fired):

C1 = {prefer(choice(rs, nq), choice(rs, ns)),
appl(re), appl(choice(rs, ng)), ¢, 7}

Co = {prefer(choice(rs, nq), choice(rs, ns)),
appl(re), appl(choice(re,ns)), s, p}

C3 = {prefer(choice(rs, nq), choice(rs, ns)),
appl(r7),t, q, s}

Cy = {prefer(choice(rs, nq), choice(rs, ns)),
appl(rs), appl(choice(rs, ng)), q, T,
appl(r7),t, s}

Cs = {prefer(choice(rs, nq), choice(rs, ns)),
appl(re), appl(choice(rs, ns)), q,
appl(rr),t, s}

Intuitively, not all the generalized answer sets appear equally
appealing w.r.t the preferences expressed in the program.

The following definition formalizes this idea.

Definition 7 LetII be a CR-Prolog program, and”, C’ be
generalized answer sets bf (IT). We say that” dominates
C’ (and writeC' = ") if:

Jappl(r1) € C,appl(re) € C' s 1.

is_preferred(ri,re) € CNC'. 3)

To see how this definition works, let us apply it to the
generalized answer sets of progrdhn above. According
to Equation (3),C1 > Ca,. In fact appl(choice(rs, ng))
belongs toC4, appl(choice(rg,ns)) belongs toCs, and
prefer(choice(rg,ng), choice(rg,ns)) belongs toC'1 and
C2. In a similar wayCy = Cs.

less acceptable that,. We discard belief sets such &g

by applying a minimality criterion based on set-theoretic in-
clusion on the abducibles present in each set. The remaining
sets are the answer sets of the program.

Definition 9 Let IT be a CR-Prolog program, andC' be a
candidate answer set df. We say thaCC' N [:¢(II) is an
answer set ofl if there exists no candidate answer séf,
of IT such that®’ N atoms({appl}) C C.

SinceC N atoms({appl}) C Cy, Cy N lit(I1;) is not an
answer set ofl;. In conclusion, the answer setsldf are

i N llt(Hl) and03 n th(Hl)

As the reader may have noticed, the names of rules can be
safely omitted when they are not used to specify preferences.
In the rest of the paper, we will omit them when possible.

CR-PROLOG; AND CR-PROLOG

CR-Prolog has two main advantages over CR-Prolog: the
major conciseness, due to ordered disjunction (see Example
2), and the improved semantics, which allows to derive the
correct conclusions in cases when CR-Prolog returns unintu-
itive conclusions. To understand when CR-Prolog may give
unintuitive results, consider the following situation:

“We need to take full-body exercise. Full-body exercise is achieved
either by combining swimming and ball playing, or by combining
weight lifting and running. We prefer running to swimming and ball
playing to weight lifting, but we are willing to ignore our preferences,
if that is the only way to obtain a solution to the problem.”

4)
According to the intuition, the problem has no solution unless
preferences are ignored. In fact, we can either combine
weight lifting and running, or combine swimming and ball
playing, but each option is at the same time better and worse
than the other according to different points of viewlf
preferences are ignored, both combinations are acceptable.

Statement (4) can be encoded by the following progidm,

If a generalized answer set is dominated by another, it means

that it is not as “good” as the other w.r.t. some preference

contained in the program. Considegs, for example: since it
is dominated by, the intuition suggests that, should be

excluded from the belief sets of the agent. Generalized an-
swer sets that are equally acceptable w.r.t. the preferences are
called candidate answer sets, as stated by the next definition.
Definition 8 LetII be a CR-Prolog program, andC' be a
generalized answer set &f-(IT). We say that” is a can-
didate answer set df if there exists no generalized answer
set,C’, of hr(IT) such that”’ > C.

Hence,Cy and C5 above are not candidate answer sets of
IT;, while Cy, C3, andC, are. Now let us compar€’;
and Cy. Set(; is obtained by abducingppl(rs) and
appl(choice(rg, ns)). SetCy is obtained by abducingppi(rs),

+
Tl TUN — .

. swim <
rs @ swim «— .
rp : play_ball sy

r ¢l ft_weights &£

full_body_exercise «— lift_weights, run.
full_body_exercise «— swim, play_ball.
«— not full_body_exercise.

prefer(ry,rs) < Not ignore_prefs.
prefer(rp,Tw) < NOt ignore_prefs.

. +
T, :ignore_prefs «— .

The generalized answer sets/of(Il,) are: (we show only
the atoms formed byun, swim, play_ball, li ft_weights,

appl(choice(rg,ns)) andappl(r7). According to the intu-
ition, appl(r7) is abduced unnecessarily, which makes

2Both alternatives are valid if we intend preferencesesires instead of
strict preferences. See the next section for a discussion on this topic.

ignore_prefs, andprefer) Definition 10 LetIT be a CR-Prolog program, andC, C’
be generalized answer sets/of(II). We say thaC' Pareto-

Gy : {liftoweights, run, prefer(ry,rs), prefer(rp, rw)} dominates” (written asC’ > C,) if
p L

Ga : {swim, play_ball,prefer(ry,rs), prefer(rp,rw)}
G3 : {ignore_prefs,lift-weights,run}

Gy : {ignore_prefs, swim, play-ball} appl(r1) € C,appl(rz) € C’ s.t.

G5 : {ignore_prefs,lift weights, run, swim} is_preferred(ri,r2) € CNC’,and

Ge : {ignore_prefs,liftweights, run, play-ball} (6)
G7 : {ignore_prefs, swim, play_ball, li ft_weights} —3appl(rs) € C,appl(rs) € C' s.t.

Gz : {ignore_prefs, swim, play_ball, run} is_preferred(ra,r3) € CNC’.

Gg : {ignore_prefs,lift.weights, run, swim, play_-ball}
Definition 11 LetII be a CR-Prolog program,C be a gen-

eralized answer set dir(II). We say thaC is a Pareto-
candidate answer set off if there exists no generalized an-

Under the semantics of CR-Prolag; andGs are the only
minimal generalized answer sets. Sii¢ge- G, andGo >~

G1, 11, has no answer sets. swer set(”, of hr(IT) such thaiC” >, C.
Under the semantics of CR-Prolgg, and G, dominate (Notice that Pareto-domination is essentially a restatement
each other, which leaves onlys, ..., G5 as candidate an- of the Pareto criterion, in the context of CR-ProjodAlso,

swer sets. Sinc€/; and G, are both minimal w.rt. the pareto-candidate answer sets essentially correspond to pre-
abducibles present in each candidate answer set, they argarred answer sets.)

both answer sets @14, like intuition suggested.
Now, to see the difference between Definitions 7 and 10, con-

sider a programi], and generalized answer set§,andCs,

such that”; dominates”; and vice-versa. Notice that they
do not Pareto-dominate each other. Under our semantics,
none of them is a candidate answer sdiiloHowever, using

The reason for this difference is that, in the semantics of CR-
Prolog, set-theoretic minimization occupgeforethe com-
parison of belief sets w.r.t. the preferences. In CR-Prglog
on the other hand, generalized answer sets are first of all

compared w.r.t. the preference relation, and only later set- Pareto-domination¢; andC, are incomparable and thus
theoretic minimization is applied. In our opinion, giving X

. . . _both are eligible as Pareto-candidate answer sets (whether
higher relevance to the preference relation is a better choice g (

. i . they really are Pareto-candidate answer sets, depends on the
(as confirmed by the previous example), since preferences

- . other generalized answer sets).

are explicitly given by the programmer.

In a sense, Definition 7 enforces a clearer representation of
COMPARISON WITH LPOD knowledge and of preferences. However, that does not rule
In [4], the author introduces logic programs with ordered out the possibility of representing desires in CR-Prelog
disjunction (LPOD). The semantics of LPOD is based on The defeasible nature of desires is represented by means of
the notion of preferred answer sets. In a later paper [5], the cr-rules. For example, the progrdi, can be rewritten as
authors introduce the notion of Pareto-preference betweenfollows, II
belief sets and show that this criterion gives more intuitive
results that the other criteria described in [4, 5]. In this

82

o + ,)
section, we compare LPOD (under Pareto-preference) and | "o’ ‘ee-eream = solid —ice-cream.
CR-Prol rip: cake < . solid «— cake.
-Frolog. + liquid < cof fee.
. r2a : coffee . liquid « tea.

Consider progranil,, from [5]: rap: tea X — not solid.

% Have ice cream, if possible; otherwise, have cake. - ice-cream, cof fee. < not liquid.

Tt ice,crear_n X ca_ke. . r3: prefer(ria,r1p) < Not —prefer(ria,rip).

% Have coffee if possible, otherwise, have tea. . @ t @

ra - cof fee x tea, rqa: prefer(raa,rap) Hfo —prefer(raa, T2p).-

% It is impossible to have iceream and cake together. rs: —prefer(ria,Tip) < -

«— dqce_cream, cof fee. re: —prefer(raaq,rap) &£

The preferred answer setsldf, in LPOD are:)))
In 11, , the desire to have iceream over cake is represented

{ice_cream,tea} and{cake, cof fee}. (5) by:
There are no answer setsldf, according to the semantics ® @ cr-rule,rs, that says that, “the agent may possibly
of CR-Prolog. The difference between the two semantics give up his preference for iceream over cake”.
depends on the fact that Pareto optimality was introduced to® @ default,r;, saying that, “the agent normally prefers
satisfy desires and it looks for a set of solutions that satisfy ice_cream over cake”.

as many desires as possible. On the other hand, our prefin @ similar way, we represent the desire for coffee over

erence criterion corresponds to a more strict reading of thetéa. The answer sets of the above program are (we show
preferences. only the atoms from cr-rules, ,-rop) {ice_cream, tea} and

, , , {cake, cof fee}, which correspond to (5).
In order to make it easy to understand the relationship be-

tween the two types of preference, we restate the ParetoThere are also some programs for which the semantics of
criterion in the context of CR-Prolag LPOD seems to yield unintuitive results, while the semantics

of CR-Prolog gives results that agree with the intuition.
Consider the following examplfe:

Example 1 “A television show conducts a game where the
first winner is offered a prize of $200,000 and the second
winner is offered a prize of $100,000. John wants to play, if
possible. Otherwise he will give up. If he plays he wants to
gain $200,000 if possible; otherwise, $100,000. He is told
that he cannot win the first prize.

% John wants to play, if possible. Otherwise, give up.
play X give_up.

% If he plays, he prefers gaining $200,000 over $100,000.
gain(200,000) x gain(100,000) « play.

% He is told that, he cannot gain $200,000.

«— gain(200,000).

the following action descriptiori]..:

% normally, a car's engine starts when the start key is turned,
% unless there is a failure in start equipment.
h(engine-on, T +1) «— o(turn_key,T),
—h(ab(start_equip),T).

% battery being down causes failure in start equipment.
h(ab(start_equip),T) <« h(battery_-down,T).

% fuse being burnt causes failure in start equipment.
h(ab(start_equip),T) <« h(fuseburnt,T).

% clutch sensor stuck causes failure in start equipment.
h(ab(start_equip),T) <+ h(sensor_stuck,T).

% belt being loose causes failure in start equipment.
h(ab(start_equip), T) <« h(beltloose,T).

% sometimes, battery is down or fuse is burnt,

% the former being more likely than the latter
Intuitively, John should play and ga$100,000. Giving up Tetee(T) : h(battery_down,T) x h(fuse_burnt,T) <= .
without even trying seems a less acceptable option. Under
the LPOD semantics, however, the above program has two
answer sets{play, gain(100,000)} and{give_up}, in con-
trast to the intuition. The same program under CR-Prplog
semantics gives only one answer $etay, gain(100, 000)},
which corresponds to the intuitive result. (The unintuitive re-
sult by LPOD, we believe, may be caused by the fact that
degree 1 is assigned to rules whose body is not satisfied.)

% sometimes, clutch sensor is stuck or belt is loose,
% the former being more likely than the latter

Tmech(T) : h(sensor_stuck,T) x h(belt_loose, T) &

% electrical failures are more likely than mechanical failures
TI?(T) : pTefer(Telec(T)v Tmech (T))

% INERTIA
h(F,T 4+ 1) < h(F,T),not =h(F,T + 1).
—h(F,T +1) « —h(F,T),not h(F,T + 1).
% REALITY CHECKS
«— obs(F,T),not h(F,T).
« obs(=F,T),not —=h(F, T).
% AUXILIARY AXIOMS
o(A,T) «— hpd(A,T).
h(F,0) < obs(F,0).
—h(F,0) « obs(—F,0).

APPLICATIONS OF CR-PROLOG ,

CR-Prolog can be used to encode types of common-sense
knowledge which, to the best of our knowledge, have no nat-
ural formalization in A-Prolog. In this section, we give an Let us add the following history to the action description:
example of such use, and show how the alternative formal-

N . . % CWA on initial observations
ization in CR-Prolog is less elegant and concise.

hpd(turn_key, 0). obs(—F,0) < not obs(F,0).

obs(—engine-on, 0).
obs(—engine_on, 1).

In the example that follows we consider a diagnostic reason- The observation at timeis unexpected, and causes the pro-
ing task performed by an intelligent agent acting in dynamic gram to be inconsistent (because ofiility check} unless
domains in the sense of [3]. Since space limitations do not at least one cr-rule is applied; because of the preference en-
allow us to give a complete introduction on the modeling of coded by, (T'), the preferred way to restore consistency is by
dynamic systems in A-Prolog and its extensions, we refer the applyingr.;..(0); of the two options contained in the head of
reader to [1, 2] for details on the formalization used. Tetec(0), h(battery_down, 0) is the preferred one. Clearly,

adding the beliefi(battery_down, 0) restores consistency
Example 2 “A car’s engine starts when the start key is turned,of the program, and explains the unexpected observation.
unless there is a failure with some equipment responsible for ; is worth noticing that the statements encoded by rules
starting the engine. There can be electrical failures, such Sy o0t (T), "meen (T) @andr,,(T)) of TI, can be also represented
battery down or fuse burnt; or mechanical failures, such as without ordered disjunction. The three rules are replaced by:
clutch sensor stuck or belt loose. In general, the electrical

failures are more likely than the mechanical failures. Among roae(T) i h(battery.down,T) < hyp.elec(T).
the electrical failures, battery down is more likely than fuse Pruse(T) s h(fuseburnt, T) <& hyp_elec(T).
burnt. Among the mechanical failures, clutch sensor stuck is roens(T) : h(sensor_stuck,T) < hyp.mech(T).
more likely than belt loose.” Toert(T) : h(beltloose, T) & hypmech(T).
PTEfET(Tbau (T)7 Tfuse(T))'
. . . prefer(Tsens(T)v Tbelt(T))'
The knowledge contained in this story can be represented by
reree(T) : hyp-elec(T) < .
3 - o) Pmech(T) i hyp-mech(T) &
We thank Richard Watson for pointing out the problem with LPOD. prefer(reiee(T), Tmeeh (T)).

The new program has (essentially) the same answer sets as

the previous one. This shows that the rules with ordered dis-
junction allow for a more concise and elegant representation
of knowledge.

CONCLUSIONS
In this paper, we extended CR-Prolog by ordered disjunction

[7]

and an improved semantics, gave the semantics of the new

language, and demonstrated how it differs from CR-Prolog
and LPOD. We also showed how CR-Praojogan be used

to formalize various types of common-sense knowledge and
reasoning. We could not find natural A-Prolog formaliza-
tions for some of the examples in the paper, and formal-
izations in CR-Prolog were often less elegant and concise
(besides giving sometimes unintuitive results). In compar-
ison with CR-Prolog, we believe that the new features of
CR-Prolog make it possible to write formalizations that are
more natural, and reasonably elaboration tolerant. In com-
parison with LPOD, CR-Prolggappears more expressive
(because of the availability of cr-rules and epistemic disjunc-

[8]

[9]

[10]

dlv system. In Sergio Flesca and Giovanbattista lanni,
editors,Proceedings of the 8th European Conference
on Artificial Intelligence (JELIA 2002)Sep 2002.

Pawel Cholewinski, V. Wiktor Marek, and Miroslaw
Truszczynski. Default reasoning system deres. In
International Conference on Principles of Knowledge
Representation and Reasonjmpgages 518-528.

Morgan Kaufmann, 1996.

Michael Gelfond. Epistemic approach to formalization
of commonsense reasoning. Technical Report
TR-91-2, University of Texas at El Paso, 1991.
Michael Gelfond. Representing knowledge in
a-prolog. In Antonis C. Kakas and Fariba Sadri,
editors,Computational Logic: Logic Programming

and Beyond, Essays in Honour of Robert A. Kowalski,
Part Il, volume 2408, pages 413-451. Springer Verlag,
Berlin, 2002.

Michael Gelfond and Vladimir Lifschitz. Classical
negation in logic programs and disjunctive databases.
New Generation Computingages 365-385, 1991.

tion), and, in some cases, yields more intuitive results than [11] K. Heljanko. Using logic programs with stable model

LPOD.

ACKNOWLEDGMENTS

semantics to solve deadlock and reachability problems
for 1-safe petri netdrundamenta Informaticae
37(3):247-268, 1999.

The authors are very thankful to Michael Gelfond for his [12] Antonis C. Kakas and Paolo Mancarella. Generalized

suggestions. This work was partially supported by United

Space Alliance under Research Grant 26-3502-21 and Con-

tract COC6771311, and by NASA under grant NCC9-157.

REFERENCES

[1] Marcello Balduccini and Michael Gelfond. Diagnostic
reasoning with a-prologlournal of Theory and
Practice of Logic Programming (TPLP)
3(4-5):425-461, Jul 2003.

[2] Marcello Balduccini and Michael Gelfond. Logic
programs with consistency-restoring rules. In Patrick
Doherty, John McCarthy, and Mary-Anne Williams,
editors,International Symposium on Logical
Formalization of Commonsense ReasonhgAl
2003 Spring Symposium Series, Mar 2003.

[3] Chitta Baral and Michael Gelfond. Reasoning agents
in dynamic domains. IiWorkshop on Logic-Based
Artificial Intelligence Kluwer Academic Publishers,
Jun 2000.

[4] Gerhard Brewka. Logic programming with ordered
disjunction. InProceedings of AAAI-Q2002.

[5] Gerhard Brewka, llkka Niemela, and Tommi Syrjanen
Implementing ordered disjunction using answer set
solvers for normal programs. In Sergio Flesca and
Giovanbattista lanni, editor®roceedings of the 8th
European Conference on Artificial Intelligence (JELIA
2002) Sep 2002.

[6] Francesco Calimeri, Tina Dell’Armi, Thomas Eiter,
Wolfgang Faber, Georg Gottlob, Giovanbattista lanni,
Giuseppe lelpa, Christoph Koch, Nicola Leone,
Simona Perri, Gerard Pfeifer, and Axel Polleres. The

[13]

[14]

[15]

[16]

stable models: a semantics for abduction. In
Proceedings of ECAI-9(pages 385-391. IOS Press,
1990.

Fangzhen Lin and Yuting Zhao. Assat: Computing
answer sets of a logic program by sat solvers. In
Proceedings of AAAI-Q2002.

Monica NogueiraBuilding Knowledge Systems in
A-Prolog PhD thesis, University of Texas at El Paso,
May 2003.

Monica Nogueira, Marcello Balduccini, Michael
Gelfond, Richard Watson, and Matthew Barry. An
a-prolog decision support system for the space shuttle.
In Alessandro Provetti and Son Cao Tran, editors,
Answer Set Programming: Towards Efficient and
Scalable Knowledge Representation and Reasoning
AAAI 2001 Spring Symposium Series, Mar 2001.
Enrico Pontelli, Marcello Balduccini, and

F. Bermudez. Non-monotonic reasoning on beowulf
platforms. In Veronica Dahl and Philip Wadler,
editors,PADL 2003 volume 2562 of_ecture Notes in
Artificial Intelligence (LNCS)pages 37-57, Jan 2003.

[17] Patrik SimonsComputing Stable Model©®ct 1996.

