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Abstract

Information Retrieval (IR) aims at retrieving documents that are most relevant to a query provided by a
user. Traditional techniques rely mostly on syntactic methods. In some cases, however, links at a deeper
semantic level must be considered. In this paper, we explore a type of IR task in which documents describe
sequences of events, and queries are about the state of the world after such events. In this context, success-
fully matching documents and query requires considering the events’ possibly implicit, uncertain effects
and side-effects. We begin by analyzing the problem, then propose an action language based formalization,
and finally automate the corresponding IR task using Answer Set Programming.
Under consideration in Theory and Practice of Logic Programming (TPLP).
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1 Introduction

Information Retrieval (IR) (Korfhage, 1997) aims at identifying, among a set of available in-
formation sources, those that are most relevant to a query provided by the user. IR is arguably
a staple of every day life – we consult Wikipedia for general reference, doctors search private
databases for patient information, and researchers use public databases to find scientific publica-
tions. IR is also at the core of numerous commercial activities such as searching for news about
business partners or competitors.

Most IR systems base the relevance of a source on a syntactic measurement of the overlap of
terms between query and source (Manning et al., 2008). Even advanced techniques still focus on
syntactic matching, and include temporal IR (Campos, 2015), query expansion (Carpineto and
Ramano, 2012), and graph-based term weighting (Blanco and Lioma, 2012).

Recent research (Glavas and Snajder, 2014) has demonstrated that traditional IR yields low
accuracy when applied to documents centered on events, such as police reports, medical records,
and breaking news. As one can imagine, documents centered on events occur in large quantities
and often contain very valuable information. Consider an example related to healthcare: a radi-
ologist might be looking for information on whether a patient was ever bedridden. This type of
information is rarely stated explicitly in patient documents; rather, the radiologist is more likely
to have access to documents reporting, for instance, that the patient suffered a multiple fracture
at his left leg. Such a document is indeed relevant to the radiologist’s request, since the patient
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was likely bedridden as a result of the injury. However, determining its relevance requires linking
the event of suffering a leg injury to the resulting state of the patient, which is beyond the reach
of IR techniques based on syntactic measurements. Similar considerations can be made in the
context of cybersecurity/cyberanalytics. Consider the case of a user asking whether a computer
was left without network connectivity during a certain time frame. A system log stating that the
router, to which the computer is connected, was restarted during that period of time, is indeed
relevant to the user’s query. However, identifying its relevance requires the ability to consider
that a restart causes the router to transition to a state in which connected devices are without
network connectivity. Again, this capability is clearly beyond the reach of traditional IR. In fact,
in practice this use case may be even more complicated if the computer is connected to the router
through other devices, in which case identifying a match requires reasoning about how the loss
of connectivity propagates recursively to any device connected to the router.

Glavas and Snajder (2014) proposed a new approach, called event-centered IR, which suc-
ceeded in increasing match accuracy by means of some level of semantic analysis. However,
their approach was limited to matching events mentioned in both queries and sources. This is
insufficient to handle the above examples, where one needs to link events and information about
the state of the world before, during, and after the events.

In this paper, we advance this line of research by considering the case in which the goal is to
match sources containing sequences of events with queries that are about the state of the world
after those events. The examples provided above fall in this category, as well as, generally speak-
ing, all cases in which the sources describe the history of a domain (e.g., historical documents
about property sales, police reports, computer event logs) and a user is interested in those sources
from which the state of the world at a certain point in time can be reconstructed (e.g., “was the
firewall active when the attack happened?”).

Our approach aims to identify reasonable matches even when a definitive answer cannot be
immediately found in the sources, events have complex/hidden effects, and information is in-
complete. We call the corresponding reasoning task Action-Centered IR.

The aim of the present paper is to provide an accurate definition of the problem, of the cor-
responding reasoning tasks, and of algorithms for automating the process. We begin the paper
by analyzing the problem and, appealing to commonsense and intuition, identify reasonable out-
comes of the task as a human reader might carry it out. For illustration purposes, we start with
a simple problem, which we progressively elaborate. An exhaustive evaluation of our approach
over realistic examples is beyond the scope of the paper: as discussed by Glavas and Snajder
(2014), the existing benchmarks for IR tasks are not suitable for the evaluation of semantic-
level matching approaches and the development of suitable datasets is a research project in its
own merit, which we will tackle and document separately. However, we conducted a preliminary
investigation of the scalability of our approach, whose results are discussed later in the paper.

It should be noted that, throughout the paper, we assume that passages in natural language
have already been translated into a suitable logic form, as the natural language task is orthogonal
to the problem addressed here. Specifically, we assume that query and sources have already been
translated to a temporally-tagged logical representation, e.g., by using techniques from (Nguyen
et al., 2015; LeBlanc and Balduccini, 2016; Lierler et al., 2017). We also assume the availability
of suitable knowledge repositories (Matuszek et al., 2006; Suchanek et al., 2008; Inclezan, 2016).
Additionally, while our work is somewhat related to research on temporal relations (e.g., Allen’s
interval calculus), the two differ because we focus on reasoning about events and their effects,
rather than relations between events.
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The main contributions of this paper are (a) the exploration of a novel, non-trivial variant of IR
in which sources include sequences of events, and queries are about the state of the world after
such events; (b) the extension of techniques for representing dynamic domains to increase the
flexibility of reasoning in the presence of uncertainty; (c) a formalization of the IR task based on
action languages; (d) an automated IR procedure based on Answer Set Programming (ASP).

In the next section, we cover the analysis of the problem. Next, we present a formalization
of the relevant knowledge and of the reasoning tasks underlying Action-Centered IR. In the
following section, we illustrate an ASP-based procedure for automating the reasoning processes,
and demonstrate it on the toy scenarios. Then, we present an experimental evaluation of our
approach. Finally, we discuss related work and draw conclusions.

2 Problem Analysis

In this section, we proceed by example to an analysis of the problem of Action-Centered IR and
discuss, in commonsensical terms, the underlying reasoning tasks. Let us start with the following:

Example 1
The user’s query, q, is “Is John married?” Available information sources are:
S1: “John went on his first date with Mary.”
S2: “John read a book.”

We want to determine which source is most relevant to q.

The query refers to the current state of the world, which with some approximation we can identify
with the final state of the world in the sources. The sources describe events that occurred over
time. Neither source mentions being married, making syntactic-based methods unfit for the task.
However, from an intuitive perspective, S1 is more relevant to q than S2. In fact, S1, together with
commonsense knowledge that married people typically do not go on first dates, provides a strong
indication that John is not married. S2, on the other hand, provides no relevant information.

In this simple example, one can not only identify S1 as the most relevant source, but also look
for an accurate answer to the question. The simplicity of the example blurs the line between IR
and question answering. In general, however, providing an accurate answer requires a substantial
amount of reasoning to be carried out once a relevant source has been identified, as well as deep
understanding of the content of the source and a large amount of world knowledge – something
that is still challenging for state-of-the-art approaches. Thus, in this paper, we assume that a
reader with human-level intelligence will later find accurate answers by studying the sources
identified as relevant by our approach. We focus on defining techniques that provide the reader
with a ranking of the sources based on our expectation that answers may be found in them.

The previous example allows us to establish a first, high-level characterization of the task we
aim to study, as one in which we are given a query q and a collection of sources S1, . . . ,Sn, and
are asked to produce scores s1, . . . , sn ranking each source based on its relevance to the problem
of finding an answer to q. If we adopt the convention that 0 is the best possible score and∞ the
worst, then it is conceivable that, in Example 1, S1 should be assigned a score of 0 and S2 a score
of∞ to indicate complete irrelevance.

As in traditional IR, the sources are ranked based on their respective score. We expect that, in
the long-term, both syntactic and semantic aspects will have to be taken into account to determine
scores for the documents. Thus, below, we use the term “semantic score” when we refer to the
score assigned to documents by the techniques we study. It is worth stressing the difference
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between the task at hand and question answering, where the goal is to produce a definitive answer.
At the end of the process we consider here, the answer to q may still be unknown, but there will
be reason to believe that careful study of the sources identified as relevant will lead to an answer.

Next, we consider a number of examples and corresponding expectations. Based on the ex-
amples, later we propose a formalization of the reasoning processes. Example 1 showed that the
event of going on a first date may lead us to infer that John is not married. But how can one reach
such conclusion? One option is to reason by cases, and consider two possible views of the world:
one in which John is married at the beginning of the story, and one in which he is not. Com-
monsense tells us that the action1 of going on a first date is not executable when married. Hence,
the view in which John is initially married is inconsistent with the source. So, we conclude that
John must not have been married in the initial state. Given further knowledge that one does not
get married on a first date, one can infer that John remains not married after the date. Thus, the
source provides evidence that a reader can use to answer the query.

From a technical perspective, the example highlights the importance of being able to reason
by cases, to reason about the executability of actions, and to propagate the truth of properties
of interest over the duration of the story. Note, however, that reasoning by cases is sometimes
misleading. Consider S2 from Example 1: reasoning by cases leads to the same two possible
initial states. Since reading does not affect married status, there are two ending states for the
story. This might be taken as an indication that the source provides some useful evidence for a
reader, but it is clear intuitively that S2 is, in fact, irrelevant. Next, let us consider if, and how,
the previous query should match a more complex document. For the sake of this example, let us
assume the existence of a fictitious country C, whose laws allow plural marriage.

Example 2
q: Is John married?
S: John, who lives in country C, just went on his first date with Mary.

In this case, S does not provide useful information towards answering q. John is from C, where
plural marriage is allowed, and knowledge about plural marriage yields that being married does
not preclude a married person from going on a first date. The example also demonstrates the
importance of reasoning about default statements (statements that are normally true) and their
exceptions. The fact that married people typically do not go on first dates is an instance of a
default statement, and an inhabitant of C constitutes an exception to it. Similarly to S2 from the
previous example, reasoning by cases may be somewhat misleading, as it may suggest that the
source provides some evidence useful to answering the question. Rather than reasoning by cases,
it appears to be more appropriate to state that whether John is initially married is unknown. The
lack of knowledge is propagated to the final state, given that going on a date has no effect on it in
the present context. The source is thus irrelevant and should receive a semantic score of∞. Note
the striking difference in scores between S1 from the previous example and the current source:
it appears that in some cases reasoning by cases is useful, while in others reasoning explicitly
about lack of knowledge is more appropriate. In the next section, we provide a characterization
of reasoning matching this intuition. Next, we investigate the role of the effects of actions.

Example 3

1 From now on, we will use action and event as synonyms.
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q: Is John married?
S: John, who lives in country C, recently went on his first date with Mary. A week later, they tied
the knot in Las Vegas.

Obviously, a first indication of relevance can be obtained with shallow reasoning and syntactic
matching: “tying the knot” is a synonym of “getting married,” and “getting married” and “being
married” share enough similarities to make a match likely. However, we are interested in more
sophisticated reasoning. In the initial state, John may or may not be married due to his country’s
laws. Similarly to Example 1, John’s married status persists in the state following the first date.
Tying the knot, however, has the effect of making John married in the resulting state. Hence, S
is indeed relevant to q. Intuitively, its semantic score should be equal to that of S1 from Example
1. This demonstrates the importance of keeping track of the changes in the truth of the relevant
properties over time. The next example takes this argument one step further.

Example 4
q: Is John married?
S: John recently went on his first date with Mary. A week later, they tied the knot in Las Vegas. A
month later, they filed for divorce.

Here, we assume that filing for divorce does not immediately cause the spouses to be divorced.
For simplicity, we adopt a view in which filing has a non-deterministic effect: in the resulting
state, it is equally likely for the spouses to be married or not. The relevance of S to q is not as
straightforward as in previous cases. It is true that, at the end of the story, it is unknown whether
John is married. On the other hand, the story still provides some information pertaining to John’s
married status – certainly, more than source S2 (“John read a book”) from Example 1 or the
source from Example 2 (“John, who lives in country C, just went on his first date with Mary.”).

One way to make a distinction between the two cases is to consider that, if S from Example 4 is
provided to a reader, and the reader manages to determine if the filing action succeeded (e.g., by
gathering additional evidence), S will immediately allow the reader to answer q. Differently from
the previous examples, knowing that filing occurred is essential to allowing a reader to answer
the question. Hence, while S is not as relevant to q as other sources we have considered, it is
still somewhat relevant. This will have to be reflected in the score assigned to the source, which
should be higher than the 0 assigned to S1, but obviously smaller than∞ because the source is
indeed relevant. Next, we propose a formalization that captures the behaviors described.

3 Formalization of the Action-Centered IR

One may note that carrying out the reasoning discussed above requires considering how actions
may affect the state of the world in possibly indirect and intricate ways. For this reason, our for-
malization of the reasoning task at the core of Action-Centered IR leverages techniques from the
research on reasoning about actions and change, and specifically action language AL (Baral and
Gelfond, 2000), approximated representations (Morales et al., 2007) and evidence-based reason-
ing (Balduccini and Gelfond, 2003). These techniques rely on a graph-based representation of the
evolution of the state of the world over time in response to the occurrence of actions. We adopt
and expand this approach. Specifically, similarly to the approach by Morales et al. (2007), our
formalization enables reasoning explicitly about lack of knowledge. Differently from it, however,
we allow a reasoner to reason by cases whenever needed. This is applied to knowledge about both
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initial state and effects of actions. Our approach also leverages evidence-based reasoning to rule
out some of the cases considered. Finally, we adoptAL as the underlying formalism, but expand
it for an explicit characterization of non-deterministic effects and we allow hypothesizing about
exceptional/atypical circumstances, eventually linking them to the relevance of sources. Differ-
ently fromAL, our language is defined so that, in the presence of actions with non-deterministic
effects, it is possible to reason by cases as well as by explicitly characterizing lack of knowledge.
The syntax of the language, which we call ALIR, is described next, followed by its semantics.

Let F be a set of symbols for fluents and E be a set of symbols for elementary actions. Fluents
are boolean properties of the domain, whose truth value may change over time. An action is a set
of elementary actions. With slight abuse of notation, we denote a singleton action by its element.

A fluent literal is a fluent f or its negation ¬f . The complement of f (written f ) is ¬f , and
vice-versa. The set of literals formed from F is denoted by Lit. An extended (fluent) literal is
either a fluent literal or an expression of the form u(f), intuitively meaning that it is unknown
whether fluent f is true or false. An expression u(f) is called a proper extended literal.

A signature is a tuple Ψ = 〈F , E〉, whose components are defined above. Given a signature,
the laws of ALIR are statements of the form:

e causes λ if l1, l2, . . . , ln (1)

l0 if l1, . . . , ln (2)

e impossible if l1, . . . , ln (3)

where λ is an extended literal, l1, . . . , ln are fluent literals, and e is an elementary action2. Law
(1) is called dynamic (causal) law. If λ is a fluent literal, the law intuitively says that, if action
e is executed in a state in which l1, . . . , ln hold, then λ will hold in the next state. If λ is a
proper extended literal u(f), the law intuitively states that the action affects the truth of f non-
deterministically. λ is called the consequence of the law. The action of filing for divorce from
Example 4 might be formalized with a dynamic law that has u(married) as its consequence.
Law (2) is called state constraint and says that, in any state in which l1, . . . , ln hold, l0 also
holds. As in AL, state constraints allow for an elegant and concise representation of the indirect
effects of actions, increasing the expressive power of the language significantly. Law (3) is called
executability condition and intuitively says that e cannot be executed if l1, . . . , ln hold. A set of
laws of ALIR is called action description.3 The semantics of ALIR maps action descriptions to
transition diagrams, as described next.

A set S of extended literals is closed under a state constraint (2) if {l1, . . . , ln} 6⊆ S or l0 ∈ S.
A set S of extended literals is consistent if, for every f ∈ F , at most one of {f,¬f, u(f)} is in
S. It is complete if at least one of {f,¬f, u(f)} is in S. A state of an action description AD is a
complete and consistent set of extended literals closed under the state constraints of AD.

Given an action a and a state σ, the set of (direct) effects of a in σ, denoted by E(a, σ), is the
set that contains an extended literal λ for every dynamic law (1) s.t. {l1, . . . , ln} ⊆ σ and e ∈ a.

Consider A = {A1, A2, . . . , Ak} where every Ai is a set of extended literals. Let B be a set
of extended literals. We define A 1 B = {Ai ∪ {b} |Ai ∈ A, b ∈ B}. For instance:

• {{p}, {q}} 1 {r,¬r} = {{p, r}, {p,¬r}, {q, r}, { q,¬r}}

2 We focus on elementary actions for simplicity of presentation. Expanding the laws to allow non-elementary actions is
not difficult.

3 Technically speaking, a set of laws of ALIR should always be accompanied by a specification of a signature. For
simplicity, we omit the signature whenever possible and infer it from the statements.
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• {{p, q}} 1 {r,¬r} 1 {s,¬s} = {{p, q, r, s}, {p, q, r,¬s}, {p, q,¬r, s}, {p, q,¬r,¬s}}

Definition 1
Let a be an action and σ be a state. The expansion of E(a, σ) is:

E(a, σ) = {E(a, σ) ∩ Lit} 1 {f1,¬f1, u(f1)} 1 . . . 1 {fk,¬fk, u(fk)}

where {f1, . . . , fk} is the set of fluents such that u(fi) ∈ E(a, σ) for every 1 ≤ i ≤ k.

(For an illustration of the notion of expansion, refer to Example 5 below.) Given a set S of
extended literals and a set Z of state constraints, the set, CnZ(S), of consequences of S under Z
is the smallest set of extended literals that contains S and is closed under Z. Finally, an action a
is executable in a state σ if there is no executability condition (3) such that {l1, . . . , ln} ⊆ σ and
e ∈ a.

The semantics of an action description AD is defined by its transition diagram τ(AD), i.e., a
directed graph 〈N,E〉 such that:

• N is the collection of all states of AD, and
• E is the set of all triples 〈σ, a, σ′〉 where σ, σ′ are states, a is an action executable in σ,

and σ′ satisfies the expanded successor-state equation:

σ′ = CnZ(W ∪ (σ ∩ σ′)) for some W ∈ E(a, σ). (4)

As before, Z is the set of all state constraints of AD. The argument of CnZ in (4) is the union of
(i) the set of direct effects E(e, σ) for each e ∈ a with (ii) the set σ ∩ σ′ of the facts “preserved
by inertia”. The application of CnZ adds the “indirect effects” to this union. Triple 〈σ, a, σ′〉 is
called a transition of τ(AD) and σ′ is a successor state of σ (under a). A path in a transition dia-
gram T (AD) is a sequence π = 〈σ0, a0, σ1, a1, σ2, . . . , σn〉 in which every triple 〈σi, ai, σi+1〉
satisfies the expanded successor state equation. We denote the initial state of a path π by πσ0

.

Example 5
Consider an action description {e1 causes f1; e1 causes u(f2); f3 if f1}, a state σ0 = {¬f1,¬f2,

¬f3}, and action a0 = {e1}. One can check that E(a0, σ0) = {f1, u(f2)}. Note the lack of
knowledge about f2, due to the non-deterministic nature of e1. Our definition of transition in-
corporates the idea that, in the presence of uncertainty about the effects of an action, one may
sometimes model that uncertainty explicitly by means of u(f) literals, and sometimes reason by
cases by “replacing” u(f) by f and ¬f . The set E(a0, σ0) captures this intuition, yielding the
three possible options {f1, u(f2)}, {f1, f2}, and {f1,¬f2}. Through (4), each option leads to
a different successor state, {f1, u(f2), f3}, {f1, f2, f3}, and {f1,¬f2, f3}, obtained by taking
into account the consequences of state constraints. Figure C 1 (see Appendix C) illustrates the
corresponding transitions.

Intuitively, the first state from Example 5 is the most “economical,” in that it is obtained with
the least amount of assumptions, while the other two are less “economical.” To keep track of
where reasoning by cases is applied, we introduce the following definition.

Definition 2
The branching-set of a transition 〈σ, a, σ′〉 is:

β(〈σ, a, σ′〉) = {f |u(f) ∈ E(a, σ) and u(f) 6∈ σ′}
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For Example 5, the branching-set for the first successor state considered is ∅, while for the other
two it is {f2}, indicating reasoning by cases over f2.

We call an action description AD non-deterministic when multiple successor states exist for a
given σ and a. Furthermore, AD has emergent non-deterministic behavior if, for some a and σ,
there exist multiple σ′ such that the following equation (Baral and Gelfond, 2000) is satisfied:

σ′ = CnZ(E(a, σ) ∪ (σ ∩ σ′)). (5)

In this paper, we focus on action descriptions without emergent non-deterministic behavior.4

Next, we turn our attention to the use of transition diagrams to reason about sequences of
actions and to determine the relevance of available sources.

4 Reasoning about Relevance of Sources

In order to enable reasoning about the relevance of sources, we begin by formalizing the notions
of source and query. A source is a tuple 〈Ψ,D, AD, I,ℵ〉, where Ψ is a signature,D is a (possibly
empty) subset ofF (called the set of default fluents),AD is an action description, I is a consistent
set of fluent literals (intuitively capturing the available information about the initial state of the
source), and ℵ = 〈a0, a1, . . . , ak〉 is a sequence of actions (which occur in the source). A query
q is a fluent. Intuitively, default fluents are fluents that should be assumed to be false by default
at the beginning of a source.

In our approach, a qualified action sequence is a tuple s = 〈a0/q0, a1/q1, . . . , ak/qk〉 where
each ai is an action and each qi is a set of fluents, called qualifier. Intuitively, a qualifier specifies
to which effects of the corresponding action one should apply reasoning by cases. In reference
to Example 5, the expression e1/{f2} intuitively means that the reasoner should consider the
transitions in which f2 and ¬f2 hold in the successor state, while e1/{} indicates that only the
transition resulting in u(f2) should be considered. The length of s is k+1. The branching degree
of s is ∆(s) = |q0|+ |q1|+ · · ·+ |qk|. Given a sequence of actions ℵ = 〈a0, a1, . . . , ak〉, we say
that s = 〈a0/q0, a1/q1, . . . ak/qk〉 extends ℵ for every possible choice of qualifiers. ℵ? denotes
the extension where all qualifiers are {} and ℵ× denotes the extension where all are F . Let σ be
a state and s be a qualified action sequence. A path π = 〈σ0, a0, σ1, . . . , ak, σk+1〉 is a model of
[σ, s] if (a) σ0 = σ, and (b) β(〈σi, ai, σi+1〉) = qi. Given a set Σ of states and a qualified action
sequence s, a path π is a model of [Σ, s] if π is a model of [σ, s] for some σ ∈ Σ. Consider an
action description {a1 causes ¬g if g; a2 causes u(f) if ¬g}. Let σ be {¬f, g}. One can check
that s1 = [σ, 〈a1/∅, a2/∅〉] has a unique model, 〈{¬f, g}, a1, {¬f,¬g}, a2, {u(f),¬g}〉. On
the other hand, s2 = [σ, 〈a1/∅, a2/{f}〉] has two models, 〈{¬f, g}, a1, {¬f,¬g}, a2, {f,¬g}〉
and 〈{¬f, g}, a1, {¬f,¬g}, a2, {¬f,¬g}〉. Hence, ∆(s1) = 0 and ∆(s2) = |∅|+ |{f}| = 1.

Now we turn our attention to incomplete knowledge about the initial state. In our approach,
the default assumption is to consider the default fluents false and to assume that u(f) holds for
every non-default fluent f . However, as highlighted by Section 2, commonsense sometimes leads
one to explore cases beyond those of the default assumption – either considering that a default
fluent might be true, or reasoning by cases over the truth of the other fluents.

This intuition is captured by the notion of forcing of a fluent. A fluent whose truth value is
currently unknown is forced when a reasoner wants to consider for it cases other than those from

4 Action description {q if ¬r, p; r if ¬q, p; a causes p} has an emergent non-deterministic behavior.
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the default assumption. More precisely, let I be a consistent set of extended literals and f be a
fluent that should be forced. The forcing of f in I , written I[f ], is defined as follows:

I[f ] =


{I ∪ {f}} if f ∈ D and {¬f, u(f)} ∩ I = ∅

{ I ∪ {f}, I ∪ {¬f} } if f 6∈ D and {f,¬f, u(f)} ∩ I = ∅
{I} otherwise

For an example of the notion of forcing, consider the following.

Example 6
Consider S1 from Example 1, “John went on his first date with Mary.” The source is encoded by
tuple 〈Ψ,D, AD, I,ℵ〉 where Ψ = 〈F ,D, E〉 and:

• F consists of fluents: m – John is married5; ab – John is an exception w.r.t. going on first dates
when married.

• D = {ab}, i.e. by default, John is not an exception.
• E consists of action d, i.e. going on a first date.
• Action description AD consists of law {impossible d if m,¬ab}, intuitively stating that a mar-

ried person does not normally go on first dates.6

• The knowledge about the initial state of the source is captured by I = ∅.
• The sequence of actions is ℵ = 〈d〉, i.e. John went on a first date.

Finally, query q is given by fluent m. Because the story does not say whether m holds in the
initial state, the forcing of m in I allows one to consider both cases explicitly. One can check
that I[m] is {{m}, {¬m}}.

It is important to note that fluents that already occur in I are not affected by the forcing. The
notion of forcing is extended to sets of fluents in a natural way. The forcing of {f1,. . . ,fm} in I
is defined recursively as follows:

I[{f1, . . . , fm}] =

{
I[f1] if m = 1

{I ′[fm] | I ′ ∈ I[{f1, . . . , fm−1}]} if m > 1

In the case of Example 6, one can check that I[m, ab] is {{m, ab}, {¬m, ab}}, intuitively mean-
ing that both cases are considered for m and that default fluent ab is hypothesized to be true.

Once the fluents that deserve special treatment have been handled, the default assumption is
applied to all remaining fluents whose truth value is still unknown. This process is captured by
the notion of completion, defined next.

Definition 3
Let I be a consistent set of fluent literals and Z be the set of state constraints of an action
description AD. The completion of I , denoted by γ(I), is the consistent set of extended literals
obtained as follows:

1. Let I ′ be obtained by expanding I with a fluent literal ¬f for every default fluent f such
that f 6∈ I .

2. If CnZ(I ′) is consistent, then γ(I) is the union of CnZ(I ′) and a literal u(f) for every f
that does not occur in CnZ(I ′). Otherwise, γ(I) does not exist.

5 In practical cases, one will want to introduce variables to increase generality, e.g. m(X) for X is married.
6 Note the use of default fluent ab to formalize the fact that action d is normally impossible if one is married.
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For an example of a case in which γ(I) does not exist, consider I = {p, q}, D = ∅ and AD =

{¬q if p}. Given that there are no default fluents, I ′ = I . The application of CnZ to I ′ results in
{p, q,¬q}, which is inconsistent. Hence, the completion of I does not exist.

When γ(I) exists, it is not difficult to check that the following holds:

Proposition 1
For any consistent set of fluent literals I , γ(I) is complete, consistent and includes I .

We can now combine forcing of a set of fluents F and completion of its outcomes as follows:

Definition 4
Let F be a set of fluents. The completion of I w.r.t. F is the set:

γ(I, F ) = {γ(I ′) | I ′ ∈ I[F ] and γ(I ′) exists}.

The degree of γ(I, F ), denoted by ∆(γ(I, F )), is |F |.

The following example illustrates this concept.

Example 7
Continuing Example 6, let us find γ(I, F ) for F = {m}. Intuitively, this means that we would
like to consider explicitly the possible options for the truth value ofm, while applying the default
assumption to all other fluents.

According to Definition 4, first we need to find the forcing of F in I . By definition of forcing,
I[F ] = I[m]. In Example 6, we found I[m] to be I[m] = {{m}, {¬m}}. Hence, I[F ] =

{{m}, {¬m}}.
Next, we apply the default assumption to every I ′ ∈ I[F ] by finding γ(I ′). From Defini-

tion 3 it follows that γ({m}) = {m,¬ab} and γ({¬m}) = {¬m,¬ab}. Hence, γ(I, F ) =

{{m,¬ab}, {¬m,¬ab}}. Intuitively, this corresponds to a situation in which a reasoner consid-
ering possible initial states for the scenario makes the default assumption about default fluent
ab, but decides to reason by cases about m.

As demonstrated by Example 1, there are cases in which the truth of certain fluents in the
initial state can be inferred indirectly from the source. By building on the previous definitions,
we can now make this idea precise in the following.

Definition 5
Given a consistent set I of fluent literals and a sequence of actions ℵ, the conservative expansion
of I under a ℵ is:

ε(I,ℵ) =
⋂

I′∈I[F\D]

{I ′ | [γ(I ′),ℵ×] has a model}

The intuition behind this definition is that the reasoner expands I by considering all possible
cases for the non-default fluents from I . For each resulting expanded set I ′, the reasoner checks
if there exists a completion γ(I ′) compatible with the actions in ℵ. The conservative expansion
of I under ℵ consists of the extended literals shared by all expanded sets I ′ satisfying this test. To
ensure that all possible contingencies are considered, the definition applies reasoning by cases to
the effects of the actions in ℵ – hence the use of ℵ×.

The above definition yields a number of important properties.
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Proposition 2
1. If γ(I ′) does not exist for any element of I[F \ D], then ε(I,ℵ) does not exist.
2. If ε(I,ℵ) exists, then I ⊆ ε(I,ℵ).
3. When it exists, ε(I,ℵ) is consistent but not necessarily complete.

Note that, if ε(I,ℵ) does not exist, this intuitively indicates that there is some fundamental in-
consistency in the story and the source should be considered irrelevant to any query. As we will
see later, this is handled by assigning a semantic score of∞ to the source.

Example 8
Let us calculate ε(I,ℵ) for our running example. Recall that ℵ = 〈d〉. The first step consists in
checking for models of [γ(I ′),ℵ×] where I ′ ∈ I[F \ D]. From Example 7, we know that I[F \
D] = {{m}, {¬m}} and that the completions of each component of the set are, respectively,
{m,¬ab} and {¬m,¬ab}. We can now check for models. Clearly, [{m,¬ab}, 〈d〉] has no model,
because d is not executable in {m,¬ab}. On the other hand, [{¬m,¬ab}, 〈d〉] has a model. The
second step consists in calculating the intersection of all I ′ that satisfy the requirements. In this
example, ε(I,ℵ) is the intersection of the only set {¬m}, resulting in ε(I,ℵ) = {¬m}. That is,
we have inferred that John is not married in the initial state, which is aligned with the conclusion
reached in Example 1.

We are now ready to introduce the notion of entailment and to use it to determine whether there is
a match between q and S. A path π = 〈σ0, a0, σ1, . . . , ak−1, σk〉 entails a fluent literal l (written
π |= l) if l ∈ σk. Given a fluent f , we say that π entails ±f (written π |= ±f ) if π |= f or
π |= ¬f . The main notion of this section is given next.

Definition 6
Given a source S = 〈Ψ, AD, I,ℵ〉 and a query q, we say that S is a match for q if there exist a
set F of fluents from Ψ and a qualified action sequence s extending ℵ such that:

c1 π |= ±q for some model π of [γ(ε(I,ℵ), F ), s], and
c2 for every model π′ of [γ(πσ0

\ ε(I,ℵ), ∅), 〈 〉] , one of the following holds:

(a) π′ 6|= ±q, or
(b) π′ |= ¬q and π |= q, or
(c) π′ |= q and π |= ¬q.

Condition (c1) checks whether the S is relevant to q, that is, if it has any bearing on the truth value
of q. To do so, the reasoner is allowed to reason by cases about an arbitrary set of non-default
fluents and to assume that some default fluents behave exceptionally. This choice of fluents is
embodied by set F and by its role in (c1). The reasoner is also allowed to reason by cases
about the effects of an arbitrary set of actions from ℵ, as outlined by the freedom in selecting its
extension s. Note that the key criterion that a path needs to satisfy in (c1) is the entailment of
±q.

Condition (c2) ensures that the assumptions made by (c1) leading to the selection of path
π, are not directly and solely responsible for the entailment of ±q. (Refer to Example 9 for
an illustration of the application and interplay of (c1) and (c2).) To achieve this, given path π,
condition (c2) identifies the fluents of πσ0

that are in I and those whose truth value was inferred
according to Definition 5. The default assumption is applied to all of those fluents. Next, the truth
value of q is checked in the state obtained in this way. If the truth value of q in this state coincides
with the truth value of q in πσ0

, this indicates that the entailment of ±q in (c1) was due solely to
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the assumptions made and was independent from the initial state information and actions from
S. Therefore, the current model π should be discarded, as insufficient evidence that S is a match
for q. S is considered to be a match for q only when a path satisfying (c1) is found and when is
shown that the information from S is critical in entailing ±q in πσ0

.
In Definition 6, F and s can be viewed as an indication of the “strength” of the match. If a

match can be found for F = ∅ and s = ℵ?, it means that all that is needed to determine that
S is a match for q is the information from S. This makes for a “strong match”. Instead, if a
match is found only for other values of F and s, it means that the match depends on additional
assumptions, such as assuming that a default fluent is unexpectedly true or that a non-default
fluent has a specific truth value. This makes for a “weaker” match, since such assumptions may or
may not be true in reality, and will have to be checked by a reader with human-level intelligence,
as discussed in Section 1. The notion of semantic score, defined next, makes this idea precise.

Definition 7
Given a source S and a query q, the semantic score of S (w.r.t. q) is the smallest value of
∆(γ(ε(I,ℵ), F )) + ∆(s) for all possible choices of F and s satisfying conditions (c1) and (c2)
from Definition 6. If S is not a match for q, its semantic score is∞.

Note that a semantic score of ∞ indicates that S is irrelevant to the query. Definitions 6 and 7
provide a complete definition of the reasoning task of Action-Centered IR. Given a query and
a set of sources, the sources relevant to q can be identified by means of Definition 6 and then
ranked by relevance according to the semantic score given by Definition 7. We illustrate the
process by means of the following examples.

Example 9
Continuing our running example, let us apply Definition 6 to check if S1 is a match for q. Let us
first look for F and s satisfying (c1). We begin with F = ∅, s = 〈d〉?. We need to find a model
π of [γ(ε(I,ℵ), F ), s] such that π |= ±q. Using the results from the previous examples, one can
check that γ(ε(I,ℵ), F ) = γ({¬m}, ∅) = {{¬m,¬ab}} and that [{{¬m,¬ab}}, 〈d〉?] has a
unique model π = 〈{¬m,¬ab}, d, {¬m,¬ab}〉. Thus, the model entails ±q, which means that
condition (c1) is satisfied.

Next, we check condition (c2). Clearly, γ(πσ0
\ ε(I,ℵ), ∅) = {{u(m),¬ab}} and [{{u(m),

¬ab}}, 〈〉] has a unique model 〈{u(m),¬ab}〉. The model does not entail ±q, and thus condi-
tions (c2a) and (c2) are satisfied. Intuitively, this means that any assumptions made to satisfy
(c1) are not directly and solely responsible for the ability of π to entail ±q in (c1). Hence, it is
acceptable to conclude that S matches q. Additionally, according to Definition 7, the semantic
score of S1 is ∆(γ(ε(I,ℵ), F )) + ∆(s) = |F |+ ∆(s) = |∅|+ ∆(〈d〉?) = 0.

Example 10
As an additional example, consider S2, “John read a book,” from Example 1. As above, q = m,
F = {m, ab}, D = {ab}, I = ∅. E is expanded by an additional action r, representing reading
a book. The sequence of actions is captured by ℵ = 〈r〉. AD is as before.7

Let us begin by finding the conservative expansion ε(I,ℵ) through Definition 5. Similarly to
the running example, I[F\D] is {{m}, {¬m}}, and its elements yield completions {m,¬ab} and
{¬m,¬ab} respectively. Differently from Example 9, both [{{m,¬ab}}, 〈 r〉×] and [{{¬m,¬ab}},

7 For simplicity, we formalize r as a no-op action.
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〈 r〉×] have models. Hence, ε(I,ℵ) = {m} ∩ {¬m} = ∅. That is, the story does not allow one
to infer the truth value of any additional fluent.

Next, we apply Definition 6. We begin by considering the models of [γ(ε(I,ℵ), F ), s] for F =

∅, s = 〈r〉?. One can check that γ(ε(I,ℵ), F ) = γ(∅, ∅) = {{u(m),¬ab}}. [{{u(m),¬ab}}, 〈r〉?]

has a unique model π = 〈{u(m),¬ab}, r, {u(m),¬ab}〉. Thus, π 6|= ±q.
Another possible choice for F and s is F = ∅, s = 〈r〉×. One can check that [γ(ε(I,ℵ), F ), s]

has two models – for instance, 〈{u(m),¬ab}, r, {u(m),¬ab}〉 – but neither entails ±q.
A more interesting choice is F = {m}, s = 〈r〉?. Clearly, γ(ε(I,ℵ), F ) = γ(∅, {m}), from

which it follows that [γ(ε(I,ℵ), F ), s] has two models: π1 = 〈{m,¬ab}, r, {m,¬ab}〉 and π2 =

〈{¬m,¬ab}, r, {¬m,¬ab}〉, with π1 |= q and π2 |= ¬q respectively. Next, we need to check
condition (c2) for each. For the former, γ((π1)σ0

\∅, ∅) = {{m,¬ab}}, and [{{m,¬ab} }, 〈〉] has
a unique model 〈{m,¬ab}〉, which entails q. Since q is also entailed by π1, (c2) is not satisfied.
For π2, we obtain a unique model 〈{{ ¬m,¬ab}}〉, which entails ¬q, thus failing to satisfy (c2)
as well. Therefore, none of these choices for F and s yields a match. Similar conclusions can be
drawn for the other choices for F and s. Hence, S2 does not match q. By Definition 7, S2 has a
semantic score of∞.

The other examples are solved similarly. We provide highlights of their solutions.
Example 2. In this example, people from countries that allow plural marriage are exceptions to
the custom about first dates, and thus I = {ab}, ℵ = 〈d〉, and I[F \D] = {{m, ab}, {¬m, ab}}.
Differently from the previous case, both sets of I[F \ D] yield a model, since ab makes the
executability condition inapplicable. Hence, ε(I,ℵ) = {ab}. Selecting F = ∅, s = 〈d〉? yields
a unique model 〈{u(m), ab}, d, {u(m), ab}〉 6|= ±q. Selecting F = {m}, s = 〈d〉? yields
two models entailing q and ¬q respectively, but the same conclusions are entailed by [γ(πσ0

\
ε(I,ℵ), ∅), 〈〉], thus failing to satisfy condition (c2). Similar reasoning applies to the other cases.
Because no F and s satisfying Definition 6 exist, the semantic score of S is∞, indicating that
it is irrelevant to q. Note the key role played by condition (c2) in this example: without it, the
source would have been deemed relevant to the query.
Example 4. In this example, AD is expanded with w causes m; fd causes u(m) and relevant
executability conditions. The signature is extended accordingly. Also, I = ∅ and ℵ = 〈d,w, fd〉.

Similarly to Example 1, one can check that ε(I,ℵ) = {¬m}. The model obtained from
F = ∅ and s = ℵ? does not entail ±q. On the other hand, the choice of F = ∅ and s =

〈d/∅, w/∅, fd/{m}〉 yields two models, entailing q and ¬q respectively, depending on whether
m is true or false after fd. This time, condition (c2) is satisfied, since, in both cases, γ(πσ0

\
ε(I,ℵ), ∅) = {{u(m),¬ab}} and [{{u(m),¬ab} }, 〈〉] does not entail ±q. In conclusion, S in-
deed matches q. In this case, the source has semantic score of 1, which is, as one might expect,
worse than that of S1 from Example 1, while better than that of S2.

5 Automating the Reasoning Task

In this section, we propose an approach for automating Action-Centered IR. Our approach lever-
ages a translation of ALIR to ASP. The choice of ASP is motivated by the availability of well-
understood mappings from action language AL and its semantics to ASP, as well as of ASP-
based implementations of the other modeling and reasoning techniques, discussed earlier, which
we build upon. Additionally, ASP’s non-monotonic nature allows one to model, in a natural and
declarative way, crucial elements such as the effects of non-deterministic actions and the different
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ways of formalizing uncertainty (by cases vs. explicit lack of knowledge). A brief introduction
on ASP can be found in Appendix A.

5.1 ASP Implementation of the Reasoning Task

Given a consistent set I of fluent literals, a set F of fluents, a qualified action sequence s, and an
action description AD, the encoding of ALIR is program ΠAD(I, F, s), described next.

In the following, I ranges over steps in the evolution of the domain8; given fluent literal l,
χ(l, I) stands for holds(f, I) if l = f and ¬holds(f, I) if l = ¬f . The translation of a dynamic
law of the form (1) depends on the form of λ. If λ is a fluent literal, the translation is:

χ(λ, I + 1)← occurs(e, I), χ(l1, I), . . . , χ(ln, I).

If λ is of the form u(f), the translation of the law is:

u(f, I + 1)← occurs(e, I), χ(l1, I), . . . , χ(ln, I), not split(f, I).

χ(f, I + 1) ∨ χ(¬f, I + 1)← occurs(e, I), χ(l1, I), . . . , χ(ln, I), split(f, I).

Expression occurs(e, I) states that elementary action e occurs at step I in the story; split(f, I)

indicates that reasoning by cases should be applied to fluent f .
A state constraint of the form (2) is translated as an ASP rule of the form

χ(l0, I)← χ(l1, I), . . . , χ(ln, I).

Finally, an executability condition of the form (3) is translated as a rule

← occurs(e, I), χ(l1, I), . . . , χ(ln, I).

The translation is completed by a set of general-purpose axioms that formalize the semantics of
ALIR. The following rules capture the notion of consistency of sets of fluents (F is a variable
ranging over all fluents):

← χ(F, I), u(F, I). ← χ(¬F, I), u(F, I).

Next are the inertia axioms, which are expanded in ALIR to accommodate extended literals:

χ(F, I + 1)← χ(F, I), not χ(¬F, I + 1), not u(F, I + 1).

χ(¬F, I + 1)← χ(¬F, I), not χ(F, I + 1), not u(F, I + 1).

u(F, I + 1)← u(F, I), not χ(F, I + 1), not χ(¬F, I + 1).

The final set of axioms captures the definition of completion:

[g1] χ(F, 0)← init(F). χ(¬F, 0)← ¬init(F).

[g2] χ(F, 0)← forced(F), default(F), not ¬init(F).

χ(F, 0) ∨ χ(¬F, 0)← forced(F), not default(F),

not init(F), not ¬init(F).

[g3] χ(¬F, 0)← default(F), not χ(F, 0).

u(F, 0)← not default(F), not χ(F, 0), not χ(¬F, 0).

Above, atom default(f) states that f is a default fluent, and is included in the form of a fact, as

8 We assume that the range of I is provided by the process of translating the passage to a logical representation.
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a part of the translation, for every f ∈ D. Atom init(f) (resp., ¬init(f)) says that f is initially
true (resp., false), i.e. is part of set I . Atom forced(f) states that f is forced.

Set [g1] of rules maps the knowledge about the initial state to atoms of the form holds(·, ·).
Set [g2] formalizes to the definition of forcing: the first rule ensures that a forced default fluent is
set to true, and the second rule states that, when a non-default fluent is forced, both possible truth
values should be considered for it. Set [g3] applies the default assumption and follows closely
Definition 4: default fluents default to false, and non-default fluents default to unknown.

The next step of the definition of ΠAD(I, F, s) is the encoding of its arguments. For every
f ∈ I (resp., ¬f ∈ I), ΠAD(I, F, s) includes a fact init(f) (resp., ¬init(f)). For every f ∈ F ,
ΠAD(I, F, s) includes a fact forced(f). Qualified action sequence s is encoded by a set of facts
of the form occurs(e, i) and split(f, i), where every e and f is from s, and i is the corresponding
index in the sequence of elements from s.

One can check that an expression of the form {e1, . . . , em}? at position i of s (where each ei is
an elementary action) is translated into a collection of statements occurs(e1, i), . . . , occurs(em, i).
An expression of the form {e1, . . . , em}× at position i of s is translated into a collection of state-
ments occurs(e1, i), . . . , occurs(em, i) together with a statement split(f, i) for every f ∈ F .

This completes the definition of ΠAD(I, F, s). Next, we link its answer sets to the models of
[γ(I, F ), s]. We say that an answer set A of a program encodes a path π if:

(a) for every fluent literal l, l ∈ σi iff χ(l, i) ∈ A;
(b) for every fluent f , u(f) ∈ σi iff u(f, i) ∈ A;
(c) for every elementary action e, e ∈ ai iff occurs(e, i) ∈ A;

The link between answer sets and models is established by the following.

Theorem 1
Let I be a consistent set of fluent literals, F a set of fluents, and s a qualified action sequence. A
path π is a model of [γ(I, F ), s] iff there exists an answer set of ΠAD(I, F, s) that encodes π.

Corollary 1
• A model π of [γ(I, F ), s] that entails a fluent literal l exists iff there exists an answer set A

of ΠAD(I, F, s) such that χ(l, k) ∈ A, where k is the length of s.
• For every fluent f , π |= ±f iff {χ(f, k), χ(¬f, k)} ∩A 6= ∅.

These results motivate the FindMatch algorithm, shown in Figure 1. Let ||A|| be the number
of atoms of A formed by relations forced and split (with ||A|| = ∞ if A = ⊥). To illustrate
the algorithm, let us trace its key parts with S1 from Example 1. Clearly, ΠAD(I,F \D,ℵ×} ⊇
{← occurs(d, I), holds(m, I), step(I). forced(m). occurs(d, 0).}. Step 1 infers the initial
truth of fluents indirectly from the S1, resulting in an answer set containing {¬holds(m, 0),

forced(m)}, i.e., John cannot be initially married. Hence, I ′ = I ∪ {¬m}. Step 4 checks con-
dition (c1). It results in a unique answer set A ⊇ {holds(m, 0), ¬holds(ab, 0), occurs(d, 0),

¬holds(m, 1), ¬holds(ab, 1)}, indicating that 〈{¬m,¬ab}, d, {¬m,¬ab}〉 entails ±m. Step
4b checks condition (c2). There is a single answer set B ⊇ {u(m, 0), ¬holds(ab, 0), u(m, 1),

¬holds(ab, 1)}, and, clearly, {holds(m, 0), ¬holds(m, 0)} ∩ B = ∅. Hence, (c2) is satisfied
and the algorithm returns A. The semantic score of S1 is ||A|| = 0.

The behavior of the algorithm is characterized by the following theorem, whose proof can be
found in B.2.
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Algorithm: FindMatch(I ,ℵ,q)
Input:

I – set of fluent literals explicitly stated to hold in the initial state by S;
ℵ = 〈a0, a1, . . . , ak〉 – sequence of actions from S;
q – fluent.

Output: an answer set encoding a path if a match exists; ⊥ otherwise.
1. Let R be the intersection of all answer sets of ΠAD(I,F \ D,ℵ×) and I ′ be I ∪
{l | {χ(l, 0), forced(f)} ⊆ R ∧ (l = f ∨ l = ¬f)}.

2. If ΠAD(I,F \ D,ℵ×) has no answer set, return ⊥ and terminate.
3. Initialize F := ∅ and s := ℵ?.
4. For every answer set A of ΠAD(I ′, F, s) such that {χ(q, k + 1), χ(¬q, k + 1)} ∩A 6= ∅:

(a) Let X = {f |χ(f, 0) ∈ A ∧ f 6∈ I ′} ∪ {¬f |χ(¬f, 0) ∈ A ∧ ¬f 6∈ I ′}.
(b) For every answer set B of ΠAD(X, ∅, 〈 〉), check that one of the following holds:

• {χ(q, 0), χ(¬q, 0)} ∩B = ∅, or
• χ(q, 0) ∈ B ∧ χ(¬q, k + 1) ∈ A, or
• χ(¬q, 0) ∈ B ∧ χ(q, k + 1) ∈ A.

(c) If the test at step (4b) succeeds, then return A and terminate.

5. Select a set F ′ of fluents and an extension s′ of ℵ such that:

(a) the pair F ′, s′ has not yet been considered by the algorithm, and
(b) |F ′|+ ∆(s′) is minimal among such pairs.

6. If no such pair F ′, s′ exists, then return ⊥ and terminate.
7. F := F ′; s := s′. Repeat from step 4.

Fig. 1. FindMatch algorithm

Theorem 2
A source S is a match for a query q iff FindMatch(I ,ℵ,q) 6= ⊥. The semantic score of S is
||FindMatch(I ,ℵ,q)||.

Given a query q and a collection S1, . . . ,Sn of sources, the Action-Centered IR task of ranking
the sources based on how relevant each of them is to the problem of finding an answer to q can
now be reduced to (a) using algorithm FindMatch to calculate Ai = FindMatch(Ii,ℵi, q),
where Ii and ℵi are the corresponding components of Si; (b) calculating each semantic score
||Ai||; and (c) sorting the sources according to their semantic scores.

5.2 Empirical Evaluation

While an exhaustive experimental evaluation is beyond the scope of this paper, we include re-
sults from a preliminary evaluation we conducted in order to assess the overall viability of our
approach. The evaluation is based on a prototypical implementation of FindMatch, which can
be downloaded from http://www.mbal.tk/ACIR/.

It follows immediately from Section 5.1 that the execution time of FindMatch only depends
on the source under consideration, which means that the search over a set of sources can be
trivially parallelized. Note also that the sorting of the sources based on their score is clearly
dominated by the execution time of FindMatch. Thus, the time required for answering a query
over a set of n sources with m identical computing resources is t nm , where t is the average time
for processing one source. As a result, in the rest of this discussion we focus on the execution of
FindMatch on individual sources. We organize our evaluation along three dimensions.

http://www.mbal.tk/ACIR/
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Sensitivity to problem features. We evaluated the sensitivity of FindMatch to variations
in the problem’s features by measuring its performance over 100 problem instances from the
ins-3-0 set of the Shuttle’s Reaction Control System benchmark (Balduccini et al., 2006).
These instances are significant for at least a preliminary evaluation because they involve actions
whose effects have intricate ramifications, and involve the practically-relevant cyberanalytics
task of answering questions about a real-world cyber-physical systems.

For this part of the evaluation, we focused on stories consisting of 5 steps (an intermediate
number of steps in the context of the original study), and potentially up to 3 concurrent actions
per step, for a total of 15 actions. For each selected instance from the original benchmark, we
randomly generated a sequence of actions of the desired length. The queries were selected in
such a way that they would lead to a successful match in approximately 50% of the instances.

The results of the experiment are illustrated in Figure C 2 (see Appendix C). The figure reports
the execution time for each instance, with the instances colored differently depending on whether
they led to a match or not. The corresponding average times are shown as dashed lines. The
execution times for instances that led to a match are substantially faster than those of instances
that did not, with an average of 0.85 seconds vs. 12.81 seconds. This is not surprising, given that
in the latter case the algorithm needs to explore exhaustively all possible forcings and extensions
of the action sequence from the source.

Other than this distinction, it appears that performance of FindMatch is largely independent
from the features of the source. In fact, the standard deviation for the “match” instances is 1.10

and for the “no-match” instances it is 3.71.
Sensitivity to the number of actions. Another aspect of the algorithm that we wanted to eval-

uate was its sensitivity to the number of actions in a source and, more specifically, to the number
of time steps. Approaches to reasoning about actions and change based on ASP sometimes suffer
from a rather substantial growth of the execution time as the number of steps increases. Given
that the previous experiment demonstrated the overall insensitivity of the algorithm to the fea-
tures of the source, for this part of the evaluation we focused on the two instances that yielded,
respectively, the fastest and lowest execution times in the previous experiment.

We randomly generated sequences of actions involving a progressively increasing number of
steps, ranging between 3 and 10. With up to 3 parallel actions per step, this yields sources with a
number of actions between 9 and 30. The outcome of the experiment is illustrated in Figure C 3
(see Appendix C). As one might expect, the figure shows an increase of execution time as the
number of steps grows. However, the increase is rather moderate, with a worst-case performance
of 53.72 seconds and an average time, across all instances, of 13.08 seconds. As before, instances
that yielded a match were substantially faster than those that did not. Out of 16 instances, 7 were
solved in less than 1 second and 10 in less than 2 seconds (in fact, in less than 1.10 seconds).

Sensitivity to non-determinism. The final aspect of the performance of FindMatch that
we evaluated is its scalability in the presence of actions with non-deterministic effects. As we
discussed earlier, determining if a source is a match for a query may require reasoning by cases
over the effects of non-deterministic actions, which tends to increase the number of iterations of
FindMatch. For this part of the evaluation, we used the same two instances used in the previous
experiment, and created 10 variants for each, so that in each variant, 2 randomly selected actions
from the story were redefined to have a non-deterministic direct effects (as in the first experiment,
the number of steps was 5). The choice to select 2 actions was a pragmatic one, since a source
involving a large amount of uncertainty is of limited utility in the context of Action-Centered IR,
since the step of manual evaluation by a human would require a substantial effort for determining
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the actual effects of the actions. The results of the experiment are shown in Figure C 4 (see
Appendix C). As one might expect, the execution time in this experiment was higher than in
the previous ones, due to the larger number of options FindMatch needs to consider. The
maximum execution time was 257.48 seconds and the minimum 0.81, with an average of 71.15

seconds. Out of 20 instances, 7 were solved in less than 1 second, and 9 in less than 10 seconds.
Overall considerations. A comprehensive evaluation is needed before general claims can be

made, but we believe our experiments show that the approach is promising. In a complex domain
such as the Reaction Control System of the Space Shuttle, our simple implementation was able
to solve all instances considered in less than 260 seconds and frequently in less than 1 second.

6 Related Work

Most traditional IR systems base the relevance of a document on a syntactic measurement of
the overlap of terms between query and document (Manning et al., 2008). Results using this ap-
proach may be improved via the application of query expansion (Carpineto and Ramano, 2012),
an approach reformulating the original query to expand the sphere of search, for example by col-
lecting synonyms for terms in the query and searching for documents related to those synonyms.

Several approaches for improving search results have been proposed. Recent work (Blanco
and Lioma, 2012) aims at rethinking the modeling of documents by representing text as a graph
whose nodes are terms linked to one another by such properties as co-occurrence in text or gram-
matical morphology. In this approach, the weights of connections between terms are learned
using graph search algorithms such as PageRank (Page et al., 1999). Another interesting area of
related research is Temporal IR, or T-IR. Work in this field aims to improve the results of Infor-
mation Retrieval methods by extracting and leveraging temporal information in both documents
and queries. Campos (2015) presents an extensive survey of the topic. Approaches involving se-
mantic networks, such as Google’s Knowledge Graph, bolster IR techniques with world facts and
relationships. However, they are not concerned with a deeper analysis of query and documents.

There are a number of research efforts which, while not directly comparable to the work pre-
sented here, demonstrate the numerous ways in which IR and complex reasoning tasks are being
addressed. One remarkable line of research is that of the question answering agent architecture by
Mitra and Baral (2016). In response to the Facebook set of pre-requisite toy tasks for intelligent
question answering (Weston et al., 2015), their architecture features a sophisticated reasoning
layer that leverages Inductive Logic Programming, implemented in ASP, to learn the knowledge
needed to answer the toy task questions. The authors demonstrated that their agent either matches
or outperforms machine learning approaches on the Facebook dataset. It is important to note that
this technique is aimed at question answering, not IR. However, the research on the question an-
swering agent architecture demonstrates the advantages of leveraging formal reasoning for these
kinds of tasks, and provides an encouraging indication for our work as well.

Another approach based on logic and reasoning is in (Lukasiewicz and Straccia, 2007), where
the authors aim to answer vague queries such as “find a car that costs around $11,000 with
about 15,000 miles” by leveraging description logics and logic programming to rank potential
answers by a defined degree of relatedness. Although the notion of degree of relatedness bears
some superficial similarities with our work, it should be noted that, once again, this approach is
focused on question answering rather than IR. Another major difference is that our work aims at
reasoning about sequences of events and the effects of those events, both direct and indirect.

Liu et al. (2007) presents a novel benchmark dataset for the evaluation of Machine Learning
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algorithms for ranking text sources in IR. Citing a growing field of feature-based ranking for IR,
the authors identify and address the lack of standard benchmarks. Although not directly related
to our approach, this work may offer useful leads for the creation of evaluation benchmarks.

Finally, Dong et al. (2014) propose an approach for the creation of knowledge bases about
actions and their effects. They leverage the process of knowledge fusion, in which large-scale
knowledge bases are automatically extracted from text and associated with a quality measure.

7 Conclusions and Future Work

In this paper, we presented an investigation of an IR task in which sources containing sequences
of events are matched to a query about the state of the world after those events. While this task
is critical to simplifying access to information and reducing information overload, traditional IR
techniques appear unfit to solve it. Thus, we began by analyzing the problem from a common-
sensical and intuitive perspective, and identified characteristics of the corresponding reasoning
tasks. We focused particularly on the ability to carry out the fine-grained reasoning needed for a
determination of relevance in the presence of uncertainty. Our investigation led us to developing
a novel action language, which we used to give an accurate definition of the Action-Centered
IR task. Finally, we defined an ASP-based procedure for automating the reasoning task and con-
ducted an empirical evaluation of its scalability.

At this stage of our research, we have focused on the definition and study of the core IR task.
Future work will address the connection with natural language processing and with available
knowledge repositories, the development of an end-to-end system, and the quantitative evaluation
of our approach. Additionally, it will be interesting to study particular classes of query-source
pairs for which simplified forms of reasoning may be possible. For instance, one can check
that sources that can be formalized by a deterministic action description without default fluents
may be processed without the need for reasoning by cases and, in fact, yield only two possible
semantic scores for any query: 0 and ∞. Identifying additional classes may lead to a better
understanding of the problem and to more efficient computations.
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Appendix A Answer Set Programming

ASP (Gelfond and Lifschitz, 1991; Marek and Truszczynski, 1999) is a knowledge representation
language with roots in the research on the semantics of logic programming languages and non-
monotonic reasoning. The syntax of the language is defined as follows.

Let Σ be a signature containing constant, function and predicate symbols. Terms and atoms
are formed as in first-order logic. A literal is an atom a or its negation ¬a. A rule is a statement
of the form:

h1 ∨ h2 . . . ∨ hk ← l1, . . . , lm, not lm+1, . . . , not ln (A1)

where each hi and li is a literal and not is called default negation operator. The intuitive meaning
of A1 is given in terms of a rational agent reasoning about its own beliefs and it is summarized by
the statement “a rational agent that believes l1, . . . , lm and has no reason to believe lm+1, . . . , ln,
must believe one of h1, . . . , hk.” If m = n = 0, symbol ← is omitted and the rule is a fact.
Rules of the form ⊥ ← l1, . . . , not ln are abbreviated← l1, . . . , not ln, and called constraints,
intuitively meaning that {l1, . . . , not ln}must not be satisfied. A rule with variables is interpreted
as a shorthand for the set of rules obtained by replacing the variables with all possible variable-
free terms. A program is a set of rules over Σ.

Next, we define the semantics of ASP. We say that a consistent set S of literals is closed under
a rule if {h1, . . . , hk}∩S 6= ∅ whenever {l1, . . . , lm} ⊆ S and {lm+1, . . . , ln}∩S = ∅. Set S is
an answer set of a not-free program Π if S is the minimal set closed under its rules. The reduct,
ΠS , of a program Π w.r.t. S is obtained from Π by removing every rule containing an expression
“not l” s.t. l ∈ S and by removing every other occurrence of not l. Set S is an answer set of Π

if it is the answer set of ΠS .

Appendix B Proofs of Theorems

In this appendix, we provide proofs of the main results of this paper.

B.1 Proof of Theorem 1

Before we proceed to the proof of Theorem 1, we need to introduce the following notions. Let
AD be an action description of ALIR, n be a positive integer, and Σ(AD) be the signature of
AD. Σn(AD) denotes the signature obtained as follows:

• const(Σn(AD)) = const(Σ(AD)) ∪ {0, . . . , n}
• pred(Σn(AD)) = {holds, u, split, occurs}

Let

αn(AD) = 〈Σn(AD),Πα(AD)〉, (B1)

where

Πα(AD) =
⋃

r∈AD
α(r), (B2)

and α(r) is defined as follows:

• α(e causes λ if l1, . . . , ln) is

χ(λ, I + 1)← occurs(e, I), χ(l1, I), . . . , χ(ln, I). (B3)
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if λ is a fluent literal. If λ is of the form u(f), the translation of the law is

u(f, I + 1)← occurs(e, I), χ(l1, I), . . . , χ(ln, I), not split(f, I). (B4)

χ(f, I + 1) ∨ χ(¬f, I + 1)← occurs(e, I), χ(l1, I), . . . , χ(ln, I), split(f, I). (B5)

• α(l0 if l1, . . . , ln) is

χ(l0, T )← χ(l1, T ), . . . , χ(ln, T ). (B6)

• α(e impossible if l1, . . . , ln) is

←χ(l1, T ), . . . , χ(ln, T ), occurs(e, T ).

Let also

Φn(AD) = 〈Σn(AD),ΠΦ(AD)〉, (B7)

where

ΠΦ(AD) = Πα(AD) ∪Π (B8)

and Π contains the following rules:

χ(F, I + 1)← χ(F, I), not χ(¬F, I + 1), not u(F, I + 1). (B9)

χ(¬F, I + 1)← χ(¬F, I), not χ(F, I + 1), not u(F, I + 1). (B10)

u(F, I + 1)← u(F, I), not χ(F, I + 1), not χ(¬F, I + 1). (B11)

Π also contains the following rules:

← χ(F, I), u(F, I). (B12)

← χ(¬F, I), u(F, I). (B13)

When we refer to a single action description, we drop argument AD from the above expres-
sions.

For the rest of this section, we will focus on ground programs. In order to keep notation simple,
we will use αn and Φn to denote the ground versions of the programs previously defined.

The following notation will be useful in our further discussion. Given a time point t, a state σ,
and a compound action a, let

χ(σ, t) = {χ(l, t) | l ∈ σ ∩ Lit} ∪
{u(f, t) | u(f) ∈ σ}

occurs(a, t) = {occurs(e, t) | e ∈ a}
(B14)

These sets can be viewed as the representation of σ and a in ASP. Let also

split(qt, t) = {split(f, t) | f ∈ qt}

which represents a set of fluents to which reasoning by cases should be applied according to a
qualifier qt.

For any action descriptionAD, state σ0, and qualified action sequence s = 〈a0/q0, . . . , an−1/

qn−1〉, let Φn(σ0, s) denote

Φn ∪ {occurs(ai, i) | ai is in s} ∪ {split(qi, i) | qi is in s} (B15)

Where possible, we drop the first argument, and denote the program by Φn(σ0, s). Also, for
convenience, we write Φ1(σ0, a0, q0) when n = 1.
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An important property of CnZ that we will use later is:

Lemma 3
For every fluent f , u(f) ∈ CnZ iff u(f) ∈ S.

Proof
The thesis follows trivially from the observation that proper extended literals do not occur in
state constraints.

The following lemma will be helpful in proving the main result of this section. It states the
correspondence between (single) transitions of the transition diagram and answer sets of the
corresponding ASP program.

Lemma 4
Let AD be an action description and T (AD) be the transition diagram it describes. Then,
〈σ0, a0, σ1〉 ∈ T (AD) iff σ1 = {l | χ(l, 1) ∈ A} ∪ {u(f) | u(f, 1) ∈ A} for some qualifier q0

and some answer set A of Φ1(σ0, a0, q0).

Proof
Let us define

Yσ0,a0,q0 = χ(σ0, 0) ∪ occurs(a0, 0) ∪ split(q0, 0) (B16)

and

Φ1(σ0, a0, q0) = Φ1 ∪ Yσ0,a0,q0

Left-to-right. Let us construct the qualifier q0 as:

q0 = {f | e causes u(f) if Γ ∈ AD, (B17)

e ∈ a0,Γ ⊆ σ0, and

u(f) 6∈ σ1}

The set q0 is an ASP representation of a qualifier q0 in a qualified action sequence.
Let us show that, if 〈σ0, a0, σ1〉 ∈ T (AD), then

A = Yσ0,a0,q0 ∪ χ(σ1, 1) (B18)

is an answer set of Φ1(σ0, a0, q0). Notice that 〈σ0, a0, σ1〉 ∈ T (AD) implies that σ1 is a state.
Herein, we refer to Φ1(σ0, a0, q0) as P .

Let us prove that A is the minimal set of literals closed under the rules of the reduct PA. Let
Nα1(AD) be the set of rules of α1(AD) of form (B4). PA contains:

a) set Yσ0,a0,q0 .
b) all rules in α1(AD) \ Nα1(AD).
c) a rule

u(f, 1)← occurs(e, 0), χ(l1, 0), . . . , χ(ln, 0).

for every fluent f such that split(f, 0) 6∈ A.
d) a rule

χ(l, 1)← χ(l, 0)

for every fluent literal l such that χ(l, 1) ∈ A and a rule

χ(¬l, 1)← χ(¬l, 0)

for every fluent literal ¬l such that χ(¬l, 1) ∈ A.
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e) a rule

u(f, 1)← u(f, 0)

for every fluent f such that u(f, 1) ∈ A.

Note that because A is an answer set, χ(f, 1) ∈ A ⇔ χ(¬f, 1) 6∈ A and u(f, 1) 6∈ A. The
conditions for χ(¬f) ∈ A and u(f) ∈ A can be similarly described.

A is closed under PA. We will prove it for every rule of the program.

1. Rules of groups (a), (d), and (e): obvious.
2. Rules of group (b) encoding dynamic laws of the form e causes λ if l1, . . . , ln when λ is a fluent

literal:

χ(λ, 1)← occurs(e, 0), χ(l1, 0), . . . , χ(ln, 0).

If {o(e, 0), χ(l1, 0), . . . , χ(ln, 0)} ⊆ A, then, by (B18), {l1, . . . , ln} ⊆ σ0 and e ∈ a0. There-
fore, the preconditions of the dynamic law are satisfied by σ0. Hence (4) implies λ ∈ σ1. By
(B18), χ(λ, 1) ∈ A.

3. Rules of group (b) encoding dynamic laws of the form e causes λ if l1, . . . , ln when λ is of the
form u(f):

χ(f, 1) ∨ χ(¬f, 1)← occurs(e, 0), χ(l1, 0), . . . , χ(ln, 0), split(f, 0).

Let us suppose that split(f, 0) ∈ A. In fact, if that is not the case, thenA is trivially closed under
the rule. Similarly, assume {occurs(e, 0), χ(l1, 0), . . . , χ(ln, 0)} ⊆ A. Then, by construction of
Yσ0,a0,q0 , split(f, 0) ∈ split(q0, 0). In turn, by construction of split(q0, 0) and from (B17) we
conclude that f ∈ q0 and that u(f) 6∈ σ1. Because σ1 is complete from (5), we conclude that
either f or ¬f is in σ1. By (B18), either χ(f, 1) ∈ A or χ(¬f, 1) ∈ A.

4. Rules of group (b) encoding state constraints of the form l0 if l1, . . . , ln:

χ(l0, t) ← χ(l1, t), . . . , χ(ln, t).

If {χ(l1, t), . . . , χ(ln, t)} ⊆ A, then, by (B18), {l1, . . . , ln} ⊆ σt, i.e. the preconditions of the
state constraint are satisfied by σt. If t = 1, then (5) implies l0 ∈ σ1. By (B18), χ(l0, t) ∈ A. If
t = 0, since states are closed under the state constraints of AD, we have that l ∈ σ0. Again by
(B18), χ(l0, t) ∈ A.

5. Rules of group (b) encoding executability conditions of the form e impossible if
l1, . . . , ln:

← occurs(e, 0), χ(l1, 0), . . . , χ(ln, 0).

Since 〈σ0, a0, σ1〉 ∈ T (AD) by hypothesis, 〈σ0, a0〉 does not satisfy the preconditions of any
executability condition. Then, either e 6∈ a0 or li 6∈ σ0 for some i. By (B18), the body of this rule
is not satisfied.

6. Rules of group (c) encoding dynamic laws when λ is of the form u(f):

u(f, 1)← occurs(e, 0), χ(l1, 0), . . . , χ(ln, 0).

If the rule is in PA, then split(f, 0) 6∈ A. By construction of Yσ0,a0,q0 , split(f, 0) 6∈ split(q0, 0)

By construction of split(q0, 0), f 6∈ q0 and from (B17) it follows that u(f) ∈ σ1. By (B18),
u(f, 1) ∈ A.
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A is the minimal set closed under the rules of PA. We will prove this by assuming that there
exists a set B ⊆ A such that B is closed under the rules of PA, and by showing that B = A.

First of all,

Yσ0,a0,q0 ⊆ B, (B19)

since these are facts in PA.
Let

δ = {l | χ(l, 1) ∈ B}. (B20)

Since B ⊆ A,

δ ⊆ σ1 (B21)

Let W be the element of E(a0, σ0) satisfying (4). We will show that δ = σ1 by proving that

δ = CNZ(W ∪ (σ1 ∩ σ0)). (B22)

Dynamic laws. Let d be a dynamic law of AD of the form e causes λ if l1, . . . , ln, such that
e ∈ a0 and {l1, . . . , ln} ⊆ σ0. Because of (B19), χ({l1, . . . , ln}, 0) ⊆ B and o(e, 0) ∈ B. If λ
is a fluent literal, then since B is closed under α(d), χ(λ, 1) ∈ B, and λ ∈ δ. Therefore, W ⊆ δ.
It can be similarly shown if λ is a properly extended literal.

Inertia. PA contains a (reduced) inertia rule of the form

χ(f, 1)← χ(f, 0). (B23)

for every fluent f ∈ σ1. Suppose l ∈ σ1 ∩ σ0. Then, χ(l, 0) ∈ Yσ0,a0,q0 , and, since B is closed
under (B23), χ(f, 1) ∈ B. Therefore, σ1 ∩ σ0 ⊆ δ. The same argument applies to the other
reduced inertia rules.

State constraints. Let r be a state constraints of AD of the form l0 if l1, . . . , ln, such that

χ({l1, . . . , ln}, 0) ⊆ B. (B24)

Since B is closed under α(r), χ(l0, 1) ∈ B, and l0 ∈ δ. Then, δ is closed under the state
constraints of AD.

Summing up, (B22) holds. From (4) and (B21), we obtain σ1 = δ. Therefore χ(σ1, 1) ⊆ B.
At this point we have shown that Yσ0,a0,q0 ∪ χ(σ1, 1) ⊆ B ⊆ A.
Right-to-left. Let A be an answer set of P and let σ1 = {l | χ(l, 1) ∈ A} ∪ {u(f) | u(f, 1) ∈

A}. We have to show that

σ1 = CNZ(W ∪ (σ1 ∩ σ0)) for some W ∈ E(a0, σ0) (B25)

as well as that 〈σ0, a0〉 respects all executability conditions and that σ1 is consistent and com-
plete.
σ1 consistent. Obvious, since A is a (consistent) answer set by hypothesis.
σ1 complete. By contradiction, and without loss of generality, let f be a fluent s.t. f 6∈ σ1,

¬f 6∈ σ1, u(f) 6∈ σ1, and f ∈ σ0 (since σ0 is complete by hypothesis, if f 6∈ σ0, we can still
select ¬f or u(f)). Then, the reduct PA contains a rule

χ(f, 1)← χ(f, 0). (B26)

Since A is closed under PA, χ(f, 1) ∈ A and f ∈ σ1. Contradiction.

Executability conditions respected. By contradiction, assume that law r of form e impossible if
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l1, . . . , ln is not respected. Note that χ({l1, . . . , ln}, 0) ⊆ A and occurs(e, 0) ∈ A. Therefore,
the body of α(r) is satisfied by A, and A is not a answer set.

(B25) holds. Let us construct W so that:

• W ⊇ E(a0, σ0) ∩ Lit
• for every u(f) ∈ E(a0, σ0):

— if f 6∈ q0, then u(f) ∈W
— otherwise, f ∈W if χ(f, 1) ∈ A and ¬f ∈W if χ(¬f, 1) ∈ A.

One can check that W ∈ E(a0, σ0).
Next, let us prove that σ1 ⊇ W , i.e. that for every λ ∈ W,λ ∈ σ1. Suppose λ ∈ E(a0, σ0) ∩

Lit. There must exist a dynamic law d of the form (1) such that {l1, . . . , ln} ⊆ σ0 and e ∈ a0.
SinceA is closed under (B3) of α(d), it follows that χ(λ, 1) ∈ A. By construction of σ1, λ ∈ σ1.

Let us now consider the case in which λ 6∈ E(a0, σ0)∩Lit. There must be a dynamic law d of
the form e causes u(f) if l1, . . . , ln such that f is the fluent that occurs in λ. It must be the case
that {l1, . . . , ln} ⊆ σ0, and e ∈ a0. Note that either f ∈ q0 or f 6∈ q0.

If f 6∈ q0, then by construction of W it must be the case that λ is u(f). Let us consider (B4)
from α(d). Because A is closed under it, it follows that u(f, 1) ∈ A. By construction of σ1, we
conclude that u(f) ∈ σ1.

Next, consider the case in which f ∈ q0. If λ is f , then by construction ofW , one can conclude
that χ(f, 1) ∈ A. It follows, then, that f ∈ σ1. If λ is ¬f , with similar reasoning we derive that
¬f ∈ σ1. This concludes the proof that σ1 ⊇W .

Additionally, σ1 ⊇ σ1 ∩ σ0 is trivially true.
Let us prove that σ1 is closed under the state constraints ofAD. Consider a state constraint s, of

the form l0 if l1, . . . , ln, such that {l1, . . . , ln} ⊆ σ0. SinceA is closed under α(s), χ(l0, 1) ∈ A.
By construction of σ1, l0 ∈ σ1.

Let us prove that σ1 is the minimal set satisfying all conditions. By contradiction, assume that
there exists a set δ ⊂ σ1 such that δ ⊇ W ∪ (σ1 ∩ σ0) and that δ is closed under the state
constraints of AD. We will prove that this implies that A is not an answer set of P .

Let A′ be the set obtained by removing from A all literals χ(l, 1) such that l ∈ σ1 \ δ and all
atoms of form u(f, 1) such that u(f) ∈ σ1 \ δ. Since δ ⊂ σ1, A′ ⊂ A.

Since δ ⊇ W ∪ (σ1 ∩ σ0), for every extended fluent literal λ ∈ σ1 \ δ it must be true that
λ 6∈ σ0 and λ 6∈ W . From Lemma 3, we conclude that λ must be a fluent literal. Therefore
there must exist (at least) one state constraint λ if l1, . . . , ln such that {l1, . . . , ln} ⊆ σ1 and
{l1, . . . , lm} 6⊆ δ. Hence, A′ is closed under the rules of PA. This proves that A is not an answer
set of P . Contradiction.

Corollary 2
Let AD be an action description and T (AD) be the transition diagram it describes. Then,
〈σ0, a0, σ1, . . . , an−1, σn〉 is a path of T (AD) iff there exist qualifiers q0, q1, . . . , qn−1 and an
answer set A of Φn(σ0, 〈a0/q0, a1/q1, . . . , an−1/qn−1〉) such that, for every 1 ≤ i ≤ n,
σi = {l | χ(l, i) ∈ A} ∪ {u(f) | u(f, i) ∈ A}.

Proof
The thesis can be easily proven by induction from Lemma 4.

Theorem 1
Let I be a consistent set of fluent literals, F be a set of fluents, and s be a qualified action
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sequence. A path π is a model of [γ(I, F ), s] iff there exists an answer set of ΠAD(I, F, s) that
encodes π.

Proof
The proof leverages Corollary 2 and the Splitting Set Lemma (Lifschitz and Turner, 1994). First
of all, note that it is possible to split ΠAD(I, F, s) in such a way that the bottom corresponds
to rules [g1], [g2], [g3] (see Section 5.1) together with facts encoding I and F , as well as rules
encoding the state constraints for time step 0. One can check that the answer sets of the bottom
encode the completion γ(I, F ), and that every element of γ(I, F ) is a state of τ(AD).

The thesis follows from the application of Corollary 2 to each σ0 ∈ γ(I, F ), after noticing the
correspondence between the top of ΠAD(I, F, s) and program Φn(σ0, s).

B.2 Proof of Theorem 2

Theorem 2
A source S is a match for a query q iff FindMatch(I ,ℵ,q) 6= ⊥. The semantic score of S is
||FindMatch(I ,ℵ,q)||.

Proof
We begin by showing that the algorithm terminates. This follows simply from the consideration
that, in the worst case, the algorithm proceeds to a systematic enumeration of the subsets of F
and of the extensions of ℵ (refer to steps (3), (5), and (7)), which are clearly finite, and terminates
when all have been enumerated (step (6)).

Next, we demonstrate that if ΠAD(I,F \ D,ℵ×) has at least one answer set, then step (1) of
the algorithm finds ε(I,ℵ), i.e. that I ′ = ε(I,ℵ) . Note that the existence of an answer set is
verified at step (2).

Left-to-right. Let A be an answer set of ΠAD(I,F \ D,ℵ×). From Theorem 1, it follows that
A encodes a model πA of [γ(I,F \ D),ℵ×]. By construction of γ(I,F \ D),

there exists I ′ ∈ I[F \ D] such that πA is a model of [γ(I ′),ℵ×]. (B27)

Note that l ∈ I ′ iff l ∈ I or I ∈ {l′ | {χ(l′, 0), forced(l′f )} ⊆ R, where l′f is the fluent from
which l′ is formed. If l ∈ I , then from Proposition 2, l ∈ ε(I,ℵ) and the thesis is proven from the
observation that the hypothesis of existence of an answer set guarantees the existence of ε(I,ℵ).
In the other case, it follows that χ(l, 0) ∈ R and that forced(lf ) ∈ R. From the former and
(B27), it follows that l ∈

⋂
Y ∈I[F\D] γ(Y ). Hence,

l ∈ γ(Y ) for every Y ∈ I[F \ D]. (B28)

By construction of ΠAD(I,F \ D,ℵ×), forced(lf ) ∈ R iff lf ∈ F \ D. By definition of
forcing of a fluent, every element of I[F \ D] contains either l or l. From Proposition 1, γ(Y ) is
consistent and includes Y . From (B28) and the fact that l ∈ γ(Y ), it follows that l ∈ Y . Hence,
l ∈
⋂
Y ∈I[F\D] Y and thus l ∈ ε(I,ℵ). From the generality of l, it follows that I ′ = ε(I,ℵ).

Right-to-left. The conclusion follows from Definition 5 and Theorem 1 in a straightforward
way.

Next, we prove that the algorithm terminates at step (4c) iff S is a match for q. From Theorem
1, Corollary 1, and from our observations about step (1), it follows that for every answer set A
found at step (4), there exists a model πA of [γ(ε(I,ℵ), F ), s] that encodes A and satisfies con-
dition (c1) of Definition 6. With similar considerations, one can conclude that for every answer
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setB of ΠAD(X, ∅, 〈 〉) there exists a model πB of [γ(πσ0
\ε(I,ℵ), ∅), 〈 〉], where πσ0

is defined
in Definition 6. Using Corollary 1, one can check that the three tests at step (4b) ensure that
condition (c2) from Definition 6 is satisfied by πA and πB . Thus, if the algorithm terminates at
step (4c), then S is a match for q.

The right-to-left direction is proven by contradiction. We assume that the algorithm never
reaches step (4c), and yet S is a match for q. From Definition 6, it follows that there exist π
and π′ satisfying conditions (c1) and (c2). From Theorem 1 and earlier considerations, it follows
that there exist answer sets A and B satisfying the conditions from step (4) of the algorithm.
This means that the condition of the if statement at step (4c) is true, and thus the algorithm must
terminate, which yields contradiction. This concludes the proof that a source S is a match for a
query q iff FindMatch(I ,ℵ,q)6= ⊥.

Next, we demonstrate that the semantic score of S is v = ||FindMatch(I ,ℵ,q)||. If the algo-
rithm returns⊥, then v =∞ by definition, and thus the thesis is proven. Otherwise, according to
Definition 7, we need to prove that there exist F and s such that v = ∆(γ(ε(I,ℵ), F )) + ∆(s)

and that v is minimal among all possible choices of F and s satisfying conditions (c1) and (c2)
from Definition 6. By construction of ΠAD(I,F \D,ℵ×), Definition 4, and the earlier part of the
present theorem, it follows that ∆(γ(ε(I,ℵ), F )) is equal to the number of atoms ofA formed by
relation forced. Similarly, ∆(s) is equal to the number of atoms of A formed by split. Hence,
v = ∆(γ(ε(I,ℵ), F )) + ∆(s). The minimality of v is demonstrated by contradiction. Let us
proceed by cases. Suppose that, when the algorithm terminates at step (4c), F = ∅ and s = ℵ?.
By Definition 4 and Definition 6, v is minimal, which yields contradiction. Suppose, then, that
F 6= ∅ or s 6= ℵ?. Because the values of the two variables are changed only by step 7, it follows
that they were set at that step from the values of F ′ and s′ determined by step 5. However, the
values of those variables are selected so that |F ′| + ∆(s′) is minimal (step 5b). Contradiction.
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Appendix C Addendum: Figures

Fig. C 1. Sample transitions
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Fig. C 2. Sensitivity to problem features



Action-Centered Information Retrieval 31

Fig. C 3. Sensitivity to the number of actions, instance set #1 (top) and instance set #2 (bottom)
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Fig. C 4. Sensitivity to non-determinism, instance set #1 (top) and instance set #2 (bottom)
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