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Abstract

Researchers in answer set programming and constraint programming have spent significant efforts
in the development of hybrid languages and solving algorithms combining the strengths of these
traditionally separate fields. These efforts resulted in a new research area: constraint answer set pro-
gramming. Constraint answer set programming languages and systems proved to be successful at
providing declarative, yet efficient solutions to problems involving hybrid reasoning tasks. One of
the main contributions of this paper is the first comprehensive account of the constraint answer set
language and solverEZCSP, a mainstream representative of this research area that has been used in
various successful applications. We also develop an extension of the transition systems proposed by
Nieuwenhuis et al. in 2006 to capture Boolean satisfiability solvers. We use this extension to de-
scribe theEZCSPalgorithm and prove formal claims about it. The design and algorithmic details
behindEZCSPclearly demonstrate that the development of the hybrid systems of this kind is chal-
lenging. Many questions arise when one faces various design choices in an attempt to maximize
system’s benefits. One of the key decisions that a developer of a hybrid solver makes is settling on a
particular integration schema within its implementation. Thus, another important contribution of this
paper is a thorough case study based onEZCSP, focused on the various integration schemas that it
provides.
Under consideration in Theory and Practice of Logic Programming (TPLP).

1 Introduction

Knowledge representation and automated reasoning are areas of Artificial Intelligence
dedicated to understanding and automating various aspects of reasoning. Such tradition-
ally separate fields of AI as answer set programming (ASP) (Niemel̈a, 1999; Marek and
Truszczýnski, 1999; Brewka et al., 2011), propositional satisfiability (SAT) (Gomes et al.,

∗ This version of the paper corrects inaccurate claims occurring in Section 2.3 and the beginning of Sec-
tion 3 of the paper that appeared in print at TPLP 17(4): 462-515 (2017). We are grateful to Sara Bi-
avaschi and Agostino Dovier for bringing this issue to our attention. The changes are marked by foot-
notes.
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2008), constraint (logic) programming (CSP/CLP) (Rossi et al., 2008; Jaffar and Maher,
1994) are all representatives of distinct directions of research in automated reasoning. The
algorithmic techniques developed in subfields of automated reasoning are often suitable
for distinct reasoning tasks. For example, ASP proved to be an effective tool for formaliz-
ing elaborate planning tasks, whereas CSP/CLP is efficient in solving difficult scheduling
problems. However, when solving complex practical problems, such as scheduling prob-
lems involving elements of planning or defeasible statements, methods that go beyond
traditional ASP and CSP are sometimes desirable. By allowing one to leverage specialized
algorithms for solving different parts of the problem at hand, these methods may yield bet-
ter performance than the traditional ones. Additionally, by allowing the use of constructs
that more closely fit each sub-problem, they may yield solutions that conform better to the
knowledge representation principles of flexibility, modularity, and elaboration tolerance.
This has led, in recent years, to the development of a plethora ofhybrid approaches that
combine algorithms and systems from different AI subfields. Constraint logic program-
ming (Jaffar and Maher, 1994), satisfiability modulo theories (SMT) (Nieuwenhuis et al.,
2006), HEX-programs (Eiter et al., 2005), and VI-programs (Calimeri et al., 2007) are all
examples of this current. Various projects have focused on the intersection of ASP and
CSP/CLP, which resulted in the development of a new field of study, often calledcon-
straint answer set programming(CASP) (Elkabani et al., 2004; Mellarkod et al., 2008;
Gebser et al., 2009; Balduccini, 2009a; Drescher and Walsh, 2011; Lierler, 2014).

Constraint answer set programming allows one to combine the best of two different
automated reasoning worlds: (1) the non-monotonic modeling capabilities and SAT-like
solving technology of ASP and (2) constraint processing techniques for effective reason-
ing over non-Boolean constructs. This new area has already demonstrated promising re-
sults, including the development of CASP solversACSOLVER (Mellarkod et al., 2008),
CLINGCON (Gebser et al., 2009), EZCSP(Balduccini, 2009a), IDP (Wittocx et al., 2008),
INCA (Drescher and Walsh, 2011), DINGO (Janhunen et al., 2011), MINGO (Liu et al.,
2012), ASPMT2SMT (Bartholomew and Lee, 2014), and EZSMT (Susman and Lierler,
2016). CASP opens new horizons for declarative programming applications. For instance,
research by Balduccini (2011) on the design of CASP languageEZCSPand on the corre-
sponding solver, which is nowadays one of the mainstream representatives of CASP sys-
tems, yielded an elegant, declarative solution to a complex industrial scheduling problem.

Unfortunately, achieving the level of integration of CASP languages and systems re-
quires nontrivial expertise in multiple areas, such as SAT, ASP and CSP. The crucial mes-
sage transpiring from the developments in the CASP research area is the need for stan-
dardized techniques to integrate computational methods spanning these multiple research
areas. We argue for undertaking an effort to mitigate the difficulties of designing hybrid
reasoning systems by identifying general principles for their development and studying
the implications of various design choices. Our work constitutes a step in this direction.
Specifically, the main contributions of our work are:

1. The paper provides the first comprehensive account of the constraint answer set
solverEZCSP(Balduccini, 2009a), a long-time representative of the CASP subfield.
We define the language ofEZCSPand illustrate its use on several examples. We also
account for algorithmic and implementation details behindEZCSP.
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2. To present theEZCSPalgorithm and prove formal claims about the system, we de-
velop an extension of the transition systems proposed by Nieuwenhuis et al. (2006)
for capturing SAT/SMT algorithms. This extension is well-suited for formalizing the
behavior of theEZCSPsolver.

3. We also conduct a case study exploring a crucial aspect in building hybrid systems –
the integration schemas of participating solving methods. This allows us to shed light
on the costs and benefits of this key design choice in hybrid systems. For the case
study, we useEZCSPas a research tool and study its performance with three integra-
tion schemas: “black-box”, “ grey-box”, and “clear-box”. One of the main conclu-
sions of the study is that there is no single choice of integration schema that achieves
best performance in all cases. As such, the choice of integration schema should be
made as easily configurable as it is the choice of particular branching heuristics in
SAT or ASP solvers. The work on analytical and architectural aspects described in
this paper shows how this can be achieved.

We begin this paper with a review of the ASP and CASP formalisms. In Section3
we present theEZCSPlanguage. In Section4 we provide a broader context to our study
by drawing a parallel between CASP and SMT solving. Then we review the integration
schemas used in the design of hybrid solvers focusing on the schemas implemented in
EZCSP. Section5 provides a comprehensive account of algorithmic aspects ofEZCSP. Sec-
tion 6 introduces the details of the “integration schema” case study. In particular, it provides
details on the application domains considered, namely, Weighted Sequence, Incremental
Scheduling, and Reverse Folding. The section also discusses the variants of the encodings
we compared. Experimental results and their analysis form Section7. Section8 provides a
brief overview of CASP solvers. The conclusions are stated in Section9.

Parts of this paper have been earlier presented at ASPOCP 2009 (Balduccini, 2009a) and
at PADL 2012 (Balduccini and Lierler, 2012).

2 Preliminaries

2.1 Regular Programs

A regular (logic) programis a finite set of rules of the form

a0 ← a1, . . . , al , not al+1, . . . , not am , not not am+1, . . . , not not an , (1)

wherea0 is ⊥ (false) or an atom, and eachai (1 ≤ i ≤ n) is an atom so thatai 6= aj

(1 ≤ i < j ≤ l ), ai 6= aj (l + 1 ≤ i < j ≤ m), andai 6= aj (m + 1 ≤ i < j ≤ n).
This is a special case of programs with nested expressions (Lifschitz et al., 1999). The
expressiona0 is theheadof a rule (1). If a0 = ⊥, we often omit⊥ from the notation.
We call such rulesdenials. We call the right hand side of the arrow in (1) the body. If a
body of a rule is empty, we call such rule afact and omit the← symbol. We also ignore
the order of the elements in the rule. For example, rulea ← b, c is considered identical to
a ← c, b. If B denotes thebodyof (1), we writeBpos for the elements occurring in the
positivepart of the body, i.e.,Bpos = {a1, . . . , al}. We frequently identify the body of (1)
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with the conjunction of its elements (in whichnot not is dropped andnot is replaced with
the classical negation connective¬):

a1 ∧ . . . ∧ al ∧ ¬al+1 ∧ . . . ∧ ¬am ∧ am+1 ∧ . . . ∧ an ∙ (2)

Similarly, we often interpret a rule (1) as a clause

a0 ∨ ¬a1 ∨ . . . ∨ ¬al ∨ al+1 ∨ . . . ∨ am ∨ ¬am+1 ∨ . . . ∨ ¬an (3)

In the case whena0 = ⊥ in (1), a0 is absent in (3). Given a programΠ, we writeΠcl for
the set of clauses of the form (3) corresponding to the rules inΠ.

Answer setsAn alphabetis a set of atoms. The semantics of logic programs relies on the
notion of answer sets, which are sets of atoms. Aliteral is an atoma or its negation¬a.
We say that a setM of literals iscompleteover alphabetσ if, for any atoma in σ, either
a ∈ M or ¬a ∈ M . It is easy to see how a setX of atoms over some alphabetσ can be
identified with a complete and consistent set of literals overσ (an interpretation):

{a | a ∈ X } ∪ {¬a | a ∈ σ \X }∙

We now restate the definition of an answer set due to Lifschitz et al. (1999) in a form
convenient for our purposes. ByAt(Π) we denote the set of all atoms that occur inΠ. The
reductΠX of a regular programΠ with respect to setX of atoms overAt(Π) is obtained
from Π by deleting each rule (1) such thatX does not satisfy its body (recall that we
identify its body with (2)), and replacing each remaining rule (1) by a0 ← Bpos . A setX
of atoms is ananswer setof a regular programΠ if it is subset minimal among the sets of
atoms satisfying(ΠX )cl . For example, consider a program consisting of a single rule

a ← not not a ∙

This program has two answer sets: set∅ and set{a}. Indeed,(Π∅)cl is an empty set of
clauses so that∅ is subset minimal among the sets of atoms that satisfies(Π∅)cl . On the
other hand,(Π{a})cl consists of a single clausea. Set{a} is subset minimal among the
sets of atoms that satisfies(Π{a})cl .

A choice ruleconstruct{a} ← B (Niemel̈a and Simons, 2000) of theLPARSElanguage
can be seen as an abbreviation for a rulea ← not not a ,B (Ferraris and Lifschitz, 2005).
We adopt this abbreviation in the rest of the paper.

Example 1
Consider the regular program

{switch}∙
lightOn ← switch , not am ∙
← not lightOn ∙
{am}∙

(4)

Intuitively, the rules of the program state the following:

• actionswitchis exogenous,
• light is ononly if an actionswitchoccurs during the non-amhours,
• it is impossible thatlight is noton (in other words,light must beon).
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• it is either the case that these areamhours or not,

This program’s only answer set is{switch , lightOn}.

We now state an important result that summarizes the effect of adding denials to a pro-
gram. For a setM of literals, byM + we denote the set of positive literals inM . For
instance,{a, c,¬b}+ = {a, c}.

Theorem 1(Proposition 2 from (Lifschitz et al., 1999))
For a programΠ, a setΓ of denials, and a consistent and complete setM of literals over
At(Π), M + is an answer set ofΠ ∪ Γ if and only if M + is an answer set ofΠ andM is a
model ofΓcl .

Unfounded setsFor a literall , by l we denote its complement. For a conjunction (disjunc-
tion) B of literals,B stands for a disjunction (conjunction) of the complements of literals.
For instance,a ∧ ¬b = ¬a ∨ b. We sometimes associate disjunctions and conjunctions of
literals with the sets containing these literals. For example, conjunction¬a ∧ b and dis-
junction¬a∨b are associated with the set{¬a, b} of literals. ByBodies(Π, a) we denote
the set of the bodies of all rules of programΠ with the heada (including the empty body
that can be seen as>).

A setU of atoms occurring in a programΠ is unfounded(Van Gelder et al., 1991; Lee,
2005) on a consistent setM of literals with respect toΠ if for every a ∈ U and every
B ∈ Bodies(Π, a), M ∩ B 6= ∅ or U ∩ Bpos 6= ∅. We say that a consistent and complete
setM of literals overAt(Π) is amodelof Π if it is a model ofΠcl .

We now state a result that can be seen as an alternative way to characterize answer sets
of a program.

Theorem 2(Theorem on Unfounded Sets from (Lee, 2005))
For a programΠ and a consistent and complete setM of literals overAt(Π), M + is an
answer set ofΠ if and only if M is a model ofΠ andM contains no non-empty subsets
unfounded onM with respect toΠ.

Theorem2 is essential in understanding key features of modern answer set solvers. It pro-
vides a description of properties of answer sets that are utilized by so called “propagators”
of solvers. Section5 relies on these properties.

2.2 Logic Programs with Constraint Atoms

A constraint satisfaction problem (CSP) is defined as a triple〈X ,D ,C 〉, whereX is a
set of variables,D is a domain – a (possibly infinite) set of values – andC is a set of
constraints. Every constraint is a pair〈t ,R〉, wheret is ann-tuple of variables andR is an
n-ary relation onD . When arithmetic constraints are considered, it is common to replace
explicit representations of relations as collections of tuples by arithmetic expressions. For
instance, for a domain of three values{1, 2, 3} and binary-relationR consisting of ordered
pairs(1, 1), (2, 2), and(3, 3), we can abbreviate the constraint〈x , y ,R〉 by the expression
x = y . We follow this convention in the rest of the paper.

An evaluationof the variables is a function from the set of variables to the domain
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of values,ν : X → D . An evaluationν satisfiesa constraint〈(x1, . . . , xn),R〉 if
(v(x1), . . . , v(xn)) ∈ R. A solutionis an evaluation that satisfies all constraints.

For a constraintc = 〈t ,R〉, whereD is the domain of its variables andk is the arity
of t , we call theconstraintc = 〈t ,Dk \R〉 thecomplementof c. Obviously, an evaluation
of variables int satisfiesc if and only if it does notsatisfyc.

For a setM of literals and alphabetB, by M|B we denote the set of literals over alpha-
betB in M . For example,{¬a, b, c}|{a,b} = {¬a, b}.

A logic program with constraint atoms(CA program) is a quadruple

〈Π, C, γ, D〉,

where

• C is an alphabet,
• Π is a regular logic program such that (i)a0 6∈ C for every rule (1) in Π and (ii)
C ⊆ At(Π),
• γ is a function fromC to constraints, and
• D is a domain.

We refer to the elements of alphabetC asconstraintatoms. We call all atoms occurring
in Π but not inC regular. To distinguish constraint atoms from the constraints to which
these atoms are mapped, we use bars to denote that an expression is a constraint atom.
For instance,|x < 12| and |x ≥ 12| denote constraint atoms. Consider alphabetC1 that
consists of these two constraint atoms and a functionγ1 that maps atoms inC1 to constraints
as follows:γ1(|x < 12|) maps to an inequalityx < 12, whereasγ1(|x ≥ 12|) maps to
an inequalityx ≥ 12. Clearly, γ1(|x < 12|) maps into an inequalityx ≥ 12; similarly
γ1(|x ≥ 12|) maps into an inequalityx < 12.

Example 2
Here we present a sample CA program

P1 = 〈Π1, C1, γ1,D1〉, (5)

whereD1 is a range of integers from0 to 23 andΠ1 is a regular program

{switch}∙
lightOn ← switch , not am ∙
← not lightOn ∙
{am}∙
← not am , |x < 12|∙
← am, |x ≥ 12|∙

(6)

The first four rules ofΠ1 follow the lines of (4). The last two rules intuitively state that

• it is impossible that these are notamhours while variablex has a value less than12,
• it is impossible that these areamhours while variablex has a value greater or equal

to 12.

Note howx represents specific hours of a day. Also worth noting is the fact thatx has a
global scope. This is different from the traditional treatment of variables in CLP, Prolog,
and ASP.
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LetP = 〈Π, C, γ, D〉 be a CA program. ByVP we denote the set of variables occurring
in the constraints{γ(c) | c ∈ C}. For instance,VP1 = {x}. By Π[C] we denoteΠ
extended with choice rules{c} for each constraint atomc ∈ C. We call programΠ[C] an
asp-abstractionof P . For example, an asp-abstractionΠ1[C1] of any CA program whose
first two elements of its quadruple areΠ1 andC1 consists of rules (6) and the following
choice rules

{|x < 12|}
{|x ≥ 12|}∙

Let M be a consistent set of literals overAt(Π). By KP,M we denote the following con-
straint satisfaction problem

〈V , D , {γ(c)|c ∈ M|C , c ∈ C} ∪ {γ(c)|¬c ∈ M|C , c ∈ C}〉,

whereV is the set of variables occurring in the constraints of the last element of the triple
above. We call this constraint satisfaction problem acsp-abstractionof P with respect
to M . For instance, a csp-abstraction ofP1 w.r.t. {|x ≥ 12|, ¬|x < 12|, lightOn}, or
KP1,{|x≥12|, ¬|x<12|, lightOn}, is

〈{x},D1, {x ≥ 12}〉∙ (7)

It is easy to see thatVP consists of the variables that occur in a csp-abstractions ofP w.r.t.
any consistent sets of literals overAt(Π).

Let P = 〈Π, C, γ, D〉 be a CA program andM be a consistent and complete set of
literals overAt(Π). We say thatM is ananswer setof P if

(a1) M + is an answer set ofΠ[C] and

(a2) the constraint satisfaction problemKP,M has a solution.

Let α be an evaluation from the setVP of variables to the setD of values. We say that a
pair 〈M , α〉 is anextended answer setof P if M is an answer set ofP andα is a solution
to KP,M .

Example 3

Consider sample CA programP1 = 〈Π1, C1, γ1,D1〉 given in (5). Consistent and complete
set

M1 = {switch , lightOn ,¬am,¬|x < 12|, |x ≥ 12|}

of literals overAt(Π1) is such thatM +
1 is the answer set ofΠ1[C1]. The constraint satis-

faction problemKP1,M1 is presented in (7). Pairs

〈M1, x = 12〉

and

〈M1, x = 23〉

are two among twelve extended answer sets of program (5).
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2.3 CA Programs and Weak Answer Sets

In the previous section we introduced CA programs that capture programs that a CASP
solver such asCLINGCON processes. TheEZCSPsolver interprets similar programs slightly
differently. To illustrate the difference we introduce the notion of a weak answer set for a
CA program and discuss the differences with earlier definition.

Let P = 〈Π, C, γ, D〉 be a CA program andX be a set of atoms overAt(Π). We say
thatX is aweak answer setof P if

(w1) X is an answer set ofΠ[C] and
(w2) the constraint satisfaction problem

〈VP , D , {γ(c)|c ∈ X|C}〉, (8)

has a solution.

Let α be an evaluation from the setVP of variables to the setD of values. We say that a
pair 〈X , α〉 is anextended weak answer setof P if X is an answer set ofP andα is a
solution to (8).

The key difference between the definition of an answer set and a weak answer set of
a CA program lies in their conditions(a2) and (w2). (It is obvious that we can always
identify a complete and consistent set of literals with the set of its atoms.) To illustrate the
difference between the two semantics, consider simple CA program:

night ← |x < 6|∙
am ← |x < 12|∙

This program has three answer sets and four weak answer sets that we present in the fol-
lowing table.

AnswerSets: Weak Answer Sets:
{night , am, |x < 6|, |x < 12|} {night , am, |x < 6|, |x < 12|}
{¬night , am,¬|x < 6|, |x < 12|} {am, |x < 12|}
{¬night ,¬am,¬|x < 6|,¬|x < 12|} ∅

{night , |x < 6|}

Note how the last weak answer set listed yields an unexpected solution, as it suggests that
it is currently night but not am hours.

Another sample program is due to Sara Biavaschi and Agostino Dovier4:

← |x < 12|∙
← |x > 10|∙

This program has no answer sets, but has a weak answer set,∅. Arguably, weak answer
sets exhibit anagnosticattitude toward the values of variables associated with constraints
that have no corresponding constraint atoms occurring in the answer sets.

4 This example is new to the online version of the paper. It substitutes the erroneous claim found in the TPLP
version of the paper.
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3 The EZCSP Language

The origins of the constraint answer set solverEZCSPand of its language go back to the
development of an approach for integrating ASP and constraint programming, in which
ASP is viewed as a specification language for constraint satisfaction problems (Balduccini,
2009a). In this approach, (i) ASP programs are written in such a way that some of their
rules, and corresponding atoms found in their answer sets, encode the desired constraint
satisfaction problems; (ii) both the answer sets and the solutions to the constraint problems
are computed with arbitrary off-the-shelf solvers. This is achieved by an architecture that
treats the underlying solvers as black boxes and relies on translation procedures for linking
the ASP solver to constraint solver. The translation procedures extract from an answer set
of an ASP program the constraints that must be satisfied and translate them into a constraint
problem in the input language of the corresponding constraint solver. At the core of the
EZCSPspecification language is relationrequired , which is used to define the atoms that
encode the constraints of the constraint satisfaction problem.

We start this section by defining the notion of propositional ez-programs and introducing
their semantics via a simple mapping into CA programs under weak answer set semantics.
Then, we move to describing the full language available to CASP practitioners in theEZCSP

system. The tight relation between ez-programs and CA programs makes the following ev-
ident: although the origins ofEZCSPare rooted in providing a simple, yet effective frame-
work for modeling constraint satisfaction problems, theEZCSPlanguage developed into a
full-fledged constraint answer set programming formalism. This also yields another inter-
esting observation: constraint answer set programming can be seen as a declarative mod-
eling framework utilizing constraint satisfaction solving technology. The MiniZinc lan-
guage (Marriott et al., 2008) is another remarkable effort toward a declarative modeling
framework supported by the constraint satisfaction technology. It goes beyond the scope
of this paper comparing the expressiveness of the constraint answer set programming and
MiniZinc.

SyntaxAn ez-atomis an expression of the form

required(β),

whereβ is an atom. Given an alphabetC, the corresponding alphabet ofez-atomsCEZ is
obtained in a straightforward way. For instance, from an alphabetC1 = {|x < 12|, |x ≥
12|} we obtainCEZ

1 = {required(|x < 12|), required(|x ≥ 12|)}.
A (propositional) ez-programis a tuple

〈E ,A, C, γ, D〉,

where

• A andC are alphabets so thatA, C, CEZ do not share the elements,
• E is a regular logic program so thatAt(E ) = A ∪ CEZ and atoms fromCEZ only

occur in the head of its rules,
• γ is a function fromC to constraints, and
• D is a domain.
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SemanticsWe define the semantics of ez-programs via a mapping to CA programs under
the weak answer set semantics. LetE = 〈E ,A, C, γ, D〉 be an ez-program. ByPE we
denote the CA program

〈Π, C, γ, D〉,

whereΠ extendsE by two denials

← required(β), not β

← not required (β), β
(9)

for every ez-atomrequired(β) occurring inE .6 For a setX of atoms overAt(E ) ∪ C and
an evaluationα from the setVPE of variables to the setD of values, we say that

• X is ananswer setof E if X is aweak answer setof PE ;
• a pair〈X , α〉 is anextended answer setof E if 〈M , α〉 is an extended weak answer

set ofPE .

Example 4
We now illustrate the concept of an ez-program on our running example of the “light do-
main”. LetA1 denote the alphabet{switch , lightOn , am}. Let E1 be a collection of
rules

{switch}∙
lightOn ← switch , not am ∙
← not lightOn ∙
{am}∙
required(|x ≥ 12|)← not am ∙
required(|x < 12|)← am∙

(10)

whereCez1 forms an alphabet of ez-atoms. LetE1 be an ez-program

〈E1,A1, C1, γ1,D1〉∙ (11)

The first member of the quadruplePE is composed of the rules from (10) and of the denials

← required(|x ≥ 12|), not |x ≥ 12|∙
← required(|x < 12|), not |x < 12|∙
← not required (|x ≥ 12|), |x ≥ 12|∙
← not required (|x < 12|), |x < 12|∙

(12)

Ez-programE1 has one answer set

N1 = {switch , lightOn , required(|x ≥ 12|), |x ≥ 12|)}

Pairs

〈N1, x = 12〉 (13)

and〈N1, x = 23〉 are two among twelve extended answer sets of ez-programE1.

6 Formula (9) is an extension of the corresponding formula from the TPLP version of the paper, which only
included the first of the two denials. The latest definition of the semantics of ez programs coincides with the
semantics of these programs introduced in (Balduccini, 2009b). The proof of this claim can be obtained in a
straightforward way from the definition of reduct and its minimal models.
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At the core of theEZCSPsystem is itssolveralgorithm (described in Section5), which
takes as an input a propositional ez-program and computes its answer sets. In order to allow
for more compact specifications, theEZCSPsystem supports an extension of the language
of propositional ez-programs, which we callEZ. The language is described by means of
examples next. Its definition can be found inAppendix A. Also, the part of formalization
of the Weighted Sequence domain presented in Section6 illustrates the use of the so called
reified constraints, which form an important modeling tool of theEZ language.

Example 5
In theEZ language, the ez-programE1 introduced inExample 4 is specified as follows:

cspdomain(fd)∙
cspvar(x , 0, 23)∙
{switch}∙
lightOn ← switch , not am ∙
← not lightOn ∙
{am}∙
required(x ≥ 12)← not am ∙
required(x < 12)← am∙

The first rule specifies domain of possible csp-abstractions, which in this case is that of
finite-domains. The second rule states thatx is a variable over this domain ranging between
0 and23. The rest of the program follows the lines of (10) almost verbatim.

It is easy to see that denial (9) poses the restriction on the form of the answer sets of
ez-programs so that an atom of the formrequired(β) appears in an answer set if and only
if an atom of the formβ appears in it. Thus, when theEZCSPsystem computes answer sets
for theEZ programs, it omitsβ atoms. For instance, for the program of this exampleEZCSP

will output:

{cspdomain(fd), cspvar(x , 0, 23), required(x ≥ 12), switch , lightOn , x = 12}

to encode extended answer set (13).

Example 6
TheEZ language includes support for a number of commonly-used global constraints, such
asall different andcumulative (more details inAppendix A). For example, a possible
encoding of the classical “Send+More=Money” problem is:

cspdomain(fd).
cspvar(s , 0, 9). cspvar(e, 0, 9). . . . cspvar(y , 0, 9).
required(s ∗ 1000 + e ∗ 100 + n ∗ 10 + d+

m ∗ 1000 + o ∗ 100 + r ∗ 10 + e =
m ∗ 10000 + o ∗ 1000 + n ∗ 100 + e ∗ 10 + y).

required(s 6= 0). required(m 6= 0).
required(all different([s , e, n, d ,m, o, r , y ])).

As before, the first rule specifies the domain of possible csp-abstractions. The next set
of rules specifies the variables and their ranges. The remaining rules state the main con-
straints of the problem. Of those, the final rule encodes anall different constraint, which
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informally requires all of the listed variables to have distinct values. The argument of the
constraint is an extensional list of the variables of the CSP. An extensional list is a list that
explicitly enumerates all of its elements.

A simple renaming of the variables of the problem allows us to demonstrate the inten-
sional specification of lists:

cspdomain(fd).
cspvar(v(s), 0, 9). cspvar(v(e), 0, 9). . . . cspvar(v(y), 0, 9).
required(v(s) ∗ 1000 + v(e) ∗ 100 + v(n) ∗ 10 + v(d)+

v(m) ∗ 1000 + v(o) ∗ 100 + v(r) ∗ 10 + v(e) =
v(m) ∗ 10000 + v(o) ∗ 1000 + v(n) ∗ 100 + v(e) ∗ 10 + v(y)).

required(v(s) 6= 0). required(v(m) 6= 0).
required(all different([v/1])).

The argument of the global constraint in the last rule is intensional list[v/1], which is
a shorthand for the extensional list,[v(d), v(e), v(m), v(n), . . .], of all variables of the
form v(∙).

Example 7

Consider a riddle:

There are either 2 or 3 brothers in the Smith family. There is a 3 year difference between one
brother and the next (in order of age) for all pairs of brothers. The age of the eldest brother is twice
the age of the youngest. The youngest is at least 6 years old.

Figure1 presents theEZ program that captures the riddle8. We refer to this program asP1.
Note how this program contains non-constraint variablesB , N , B1, B2, BE , andBY . As
explained inAppendix A, the grounding process that occurs in theEZCSPsystem trans-
forms these rules into propositional (ground) rules using the same approach commonly
applied to ASP programs. For instance, the last rule of programP1 results in three ground
rules

required(age(1) ≥ 6)← index (1), youngest brother (1)∙
required(age(2) ≥ 6)← index (2), youngest brother (2)∙
required(age(3) ≥ 6)← index (3), youngest brother (3)∙

The ez-program that corresponds toP1 has a unique extended answer set

〈{num brothers(3),
cspvar(age(1), 1, 80), . . . , cspvar(age(3), 1, 80), . . .},
{(age(1) = 12, age(2) = 9, age(3) = 6}〉∙

The extended answer set states that there are3 brothers, of age12, 9, and6 respectively.

8 The reader may notice that the program features the use of arithmetic connectives both within terms and as
full-fledged relations. Although, strictly speaking, separate connectives should be introduced for each type of
usage, we abuse notation slightly and use context to distinguish between the two cases.



Constraint Answer Set Solver EZCSP and Why Integration Schemas Matter9 13

% There are either 2 or 3 brothers in the Smith family.
num brothers(2)← not num brothers(3).
num brothers(3)← not num brothers(2).

index (1). index (2). index (3).

is brother (B)← index (B), index (N ), num brothers(N ), B ≤ N ∙

eldest brother (1).
youngest brother (B)← index (B), num brothers(B).

cspdomain(fd).

cspvar(age(B), 1, 80)← index (B), is brother (B).

% 3 year difference between one brother and the next.
required(age(B1)− age(B2) = 3))←

index (B1), index (B2), is brother (B1), is brother (B2), B2 = B1 + 1∙

% The eldest brother is twice as old as the youngest.
required(age(BE ) = age(BY ) ∗ 2)←

index (BE ), index (BY ), eldest brother (BE ), youngest brother (BY ).

% The youngest is at least 6 years old.
required(age(BY ) ≥ 6)← index (BY ), youngest brother (BY )∙

Figure 1. TheEZ program for the riddle ofExample 7

4 Satisfiability Modulo Theories and its Integration Schemas

We are now ready to draw a parallel between constraint answer set programming and sat-
isfiability modulo theories. To do so, we first define the SMT problem by following the
lines of (Nieuwenhuis et al., 2006, Section 3.1). AtheoryT is a set of closed first-order
formulas. A CNF formulaF (a set of clauses) over a fixed finite set of ground (variable-
free) first-order atoms isT -satisfiableif there exists an interpretation, in first-order sense,
that satisfies every formula in setF ∪T . Otherwise, it is calledT -unsatisfiable. LetM be
a set of ground literals. We say thatM is aT -model ofF if

(m1) M is a model ofF and
(m2) M , seen as a conjunction of its elements, isT -satisfiable.

The SMT problem for a theoryT is the problem of determining, given a formulaF ,
whetherF has aT -model. It is easy to see that in the CASP problem,Π[C] in condi-
tion (a1)plays the role ofF in (m1) in the SMT problem. At the same time, condition(a2)
is similar to condition(m2).

Given this tight conceptual relation between the SMT and CASP formalisms, it is not
surprising that solvers stemming from these different research areas share several design
traits even though these areas have been developing to a large degree independently (CASP
being a younger field). We now review major integration schemas/methods in SMT solvers
by following (Nieuwenhuis et al., 2006, Section 3.2). During the review, we discuss how
different CASP solvers account for one or another method. This discussion allows us to
systematize design patterns of solvers present both in SMT and CASP so that their relation
becomes clearer. Such a transparent view on architectures of solvers immediately translates
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findings in one area to the other. Thus, although the case study conducted as part of our
research uses CASP technology only, we expect similar results to hold for SMT, and for
the construction of hybrid automated reasoning methods in general. To the best of our
knowledge there was no analogous effort – thorough evaluation of effect of integration
schemas on performance of systems – in the SMT community.

In every approach discussed, a formulaF is treated as a satisfiability formula, where
each atom is considered as a propositional symbol,forgettingabout the theoryT . Such a
view naturally invites an idea oflazy integration: the formulaF is given to a SAT solver, if
the solver determines thatF is unsatisfiable thenF has noT -model. Otherwise, a proposi-
tional modelM of F found by the SAT solver is checked by a specializedT -solver, which
determines whetherM is T -satisfiable. If so, then it is also aT -model ofF , otherwiseM
is used to build a clauseC that precludes this assignment, i.e.,M 6|= C while F ∪ C has
a T -model if and only ifF has aT -model. The SAT solver is invoked on an augmented
formulaF ∪C . This process is repeated until the procedure finds aT -model or returns un-
satisfiable. Note how in this approach two automated reasoning systems – a SAT solver and
a specializedT -solver – interleave: a SAT solver generates “candidate models” whereas
a T -solver tests whether these models are in accordance with requirements specified by
theoryT . We find that it is convenient to introduce the following terminology for the fu-
ture discussion: abasesolver and atheorysolver, where the base solver is responsible for
generating candidate models and thetheorysolver is responsible for any additional testing
required for stating whether a candidate model is indeed a solution. In this paper we refer
to lazy evaluation asblack-boxto be consistent with the terminology often used in CASP.

It is easy to see how theblack-boxintegration policy translates to the realm of CASP.
Given a CA programP , an answer set solver serves the role of base solver by generat-
ing answer sets of the asp-abstraction ofP (that are “candidate answer sets” forP) and
then uses a CLP/CSP solver as a theory solver to verify whether condition(a2)is satisfied
on these candidate answer sets. Originally, constraint answer set solverEZCSPembraced
the black-boxintegration approach in its design.10 To solve a CASP problem viablack-
box approach,EZCSPoffers a user various options for base and theory solvers. Table1
shows some of the currently available solvers. The variety of possible configurations of
EZCSPillustrates howblack-boxintegration provides great flexibility in choosing under-
lying base and theory solving technology in addressing problems of interest. In principle,
this approach allows for a simple integration of constraint programming systems that use
MiniZinc and FlatZinc11 as their front-end description languages. Implementing support
for this interface is a topic of future research.

The Davis-Putnam-Logemann-Loveland (DPLL) procedure (Davis et al., 1962) is a
backtracking-based search algorithm for deciding the satisfiability of a propositional CNF
formula. DPLL-like procedures form the basis for most modern SAT solvers as well as an-
swer set solvers. If a DPLL-like procedure underlies a base solver in the SMT and CASP
tasks then it opens a door to several refinements ofblack-boxintegration. We now describe
these refinements.

10 (Balduccini, 2009a) refers toblack-boxintegration ofEZCSPaslightweight integration of ASP and constraint
programming.

11 http://www.minizinc.org/ .

http://www.minizinc.org/
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Base Solvers Theory Solvers

SMODELS(Simons et al., 2002) SICSTUS PROLOG (Carlsson and Mildner, 2012)
CLASP (Gebser et al., 2007) BPROLOG(Zhou, 2012)
CMODELS (Giunchiglia et al., 2006)

Table 1. Base and theory solvers supported byEZCSP

In theblack-boxintegration approach a base solver is invoked iteratively. Consider the
SMT task: a CNF formulaFi+1 of thei + 1th iteration to a SAT solver consists of a CNF
formulaFi of thei th iteration and an additional clause (or a set of clauses). Modern DPLL-
like solvers commonly implement such technique asincrementalsolving. For instance, in-
cremental SAT-solving allows the user to solve several SAT problemsF1, . . . , Fn one after
another (using a single invocation of the solver), ifFi+1 results fromFi by adding clauses.
In turn, the solution toFi+1 may benefit from the knowledge obtained during solving
F1, . . . , Fi . Various modern SAT-solvers, includingMINISAT (Eén and Biere, 2005; Eén
and S̈orensson, 2003), implement interfaces for incremental SAT solving. Similarly, the
answer set solverCMODELS implements an interface that allows the user to solve several
ASP problemsΠ1, . . . , Πn one after another, ifΠi+1 results fromΠi by adding a set of de-
nials. It is natural to utilize incrementalDPLL-like procedures for enhancing theblack-box
integration protocol: we call this refinementgrey-boxintegration. In this approach, rather
than invoking a base solver from scratch, an incremental interface provided by a solver is
used to implement the iterative process. CASP solverEZCSPimplementsgrey-boxintegra-
tion using the above mentioned incremental interface byCMODELS.

Nieuwenhuis et al. (2006) also review such integration techniques used in SMT ason-
line SAT solverandtheory propagation. We refer to on-line SAT solver integration asclear-
boxhere. In this approach, theT -satisfiability of the “partial” assignment is checked, while
the assignment is being built by the DPLL-like procedure. This can be done fully eagerly as
soon as a change in the partial assignment occurs, or with a certain frequency, for instance
at some regular intervals. Once the inconsistency is detected, the SAT solver is instructed to
backtrack. The theory propagation approach extends theclear-boxtechnique by allowing a
theory solver not only to verify that a current partial assignment is “T -consistent“ but also
to detect literals in a CNF formula that must hold given the current partial assignment.

The CASP solverCLINGCON exemplifies the implementation of the theory propagation
integration schema in CASP. It utilizes answer set solverCLASP as the base solver and
constraint processing systemGECODE (Schulte and Stuckey, 2008) as the theory solver.
TheACSOLVER andIDP systems are other CASP solvers that implement the theory propa-
gation integration schema. In the scope of this work, the CASP solverEZCSPwas extended
to implement theclear-boxintegration schema usingCMODELS. It is worth noting that all
of the above approaches consider the theory solver as a black box, disregarding its inter-
nal structure and only accessing it through its external API. To the best of our knowledge,
no systematic investigation exists of integration schemas that also take advantage of the
internal structure of the theory solver.
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An important point is due here. Some key details about thegrey-boxandclear-boxin-
tegration schemas have been omitted in the presentation above for simplicity. To make
these integration schemas perform efficiently, learning – a sophisticated solving technique
stemming from SAT (Zhang et al., 2001) – is used to capture the information (explanation)
retrieved due to necessity to backtrack upon theory solving. This information is used by
the base solver to avoid similar conflicts. Section5.2presents the details on the integration
schemas formally and points at the key role of learning.

5 The EZCSP Solver

In this section, we describe an algorithm for computing answer sets of CA programs. A
specialization of this algorithm to ez-programs is used in theEZCSPsystem. For this reason,
we begin by giving an overview of the architecture of theEZCSPsystem. We then describe
the solving algorithm.

5.1 Architecture

Solutions

Prolog
program

Propositional
ez-program

Legal ASP
program

EZCSP System

EZ 
Program

Extended 
Answer Sets

Pre-processor Grounder EZCSP Solver

ASP Solver
CLP

Translator
CP Solver

Figure 2. Architecture of theEZCSPsystem

Figure 2 depicts the architecture of the system, while the narrative below elaborates
on the essential details. Both are focused on the functioning of theEZCSPsystem while
employing theblack-boxintegration schema.

The first step of the execution ofEZCSP(corresponding to thePre-processorcomponent
in the figure) consists in running a pre-processor, which translates an inputEZ program
into a syntactically legal ASP program. This is accomplished by replacing the occurrences
of arithmetic functions and operators inrequired(β) atoms by auxiliary function symbols.
For example, an atomrequired(v > 2) is replaced byrequired(gt(v , 2)). A similar pro-
cess is also applied to the notation for the specification of lists. For instance, an atom
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required(all different([x , y ])) is translated intorequired(all different(list(x , y))). The
Groundercomponent of the architecture transforms the resulting program into its proposi-
tional equivalent, a regular program, using an off-the-shelf grounder such asGRINGO(Geb-
ser et al., 2007). This regular program is then passed to theEZCSPSolvercomponent.

The EZCSPSolver component iterates ASP and constraint programming computations
by invoking the corresponding components of the architecture. Specifically, theASP Solver
component computes an answer set of the regular program using an off-the-shelf ASP
solver, such asCMODELS or CLASP.13 If an answer set is found, theEZCSPsolver runs the
CLP Translatorcomponent, which maps the csp-abstraction corresponding to the com-
puted answer set to a Prolog program. The program is then passed to theCP Solver
component, which uses the CLP solver embedded in a Prolog interpreter, e.g. SICStus
or BPROLOG,14 to solve the CSP instance. For example, for the sample program presented
in Example 5, theEZCSPsystem produces the answer set15:

{cspdomain(fd), cspvar(x , 0, 23), required(x ≥ 12), switch , lightOn}∙

The csp-abstraction of the program with respect to this answer set is translated into a Prolog
rule:

solve([x ,Vx ]) : − Vx ≥ 0, Vx ≤ 23, Vx ≥ 12, labeling([Vx ])∙

In this case, the CLP solver embedded in the Prolog interpreter will find feasible assign-
ments for variableVx . The head of the rule is designed to return a complete solution and
to ensure that the variable names used in theEZ program are associated with the corre-
sponding values. The interested reader can refer to (Balduccini, 2009a) for a complete
description of the translation process.

Finally, the EZCSP Solver component gathers the solutions to the respective csp-
abstraction and combines them with the answer set obtained earlier to form extended
answer sets. Additional extended answer sets are computed iteratively by finding other
answer sets and the solutions to the corresponding csp-abstractions.

5.2 Solving Algorithm

We are now ready to present our algorithm for computing answer sets of CA programs.
In earlier work, Lierler (2014) demonstrated how the CASP languageCLINGCON (Gebser
et al., 2009) as well as the essential subset of the CASP languageAC of ACSOLVER (Mel-
larkod et al., 2008) are captured by CA programs. Based on those results, the algorithm
described in this section can be immediately used as an alternative to the procedures im-
plemented in systemsCLINGCON andACSOLVER.

Usually, software systems are described by means of pseudocode. The fact thatEZCSP

system follows an “all-solvers-in-one” philosophy combined with a variety of integration
schemas complicates the task of describing it in this way. For example, one configuration

13 The ASP solver to be used can be specified by command-line options.
14 The Prolog interpreter is also selectable by command-line options.
15 For illustrative purposes, we show theEZ atomrequired(x ≥ 12) in place of the ASP atom obtained from

the pre-processing phase.
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of EZCSPmay invoke answer set solverCLASP via black-boxintegration for enumerating
answer sets of an asp-abstraction of CA program, whereas another may invokeCMOD-
ELS via grey-boxintegration for the same task. Thus, rather than committing ourselves to
a pseudocode description, we follow a path pioneered by Nieuwenhuis et al. (2006). In
their work, the authors devised a graph-based abstract framework for describing backtrack
search procedures for Satisfiability and SMT. Lierler (2014) designed a similar abstract
framework that captures theEZCSPalgorithm in two cases: (a) whenEZCSPinvokes an-
swer set solverSMODELS via black-boxintegration for enumerating answer sets of asp-
abstraction program, and (b) whenEZCSPinvokes answer set solverCLASP via black-box
integration.

In the present paper we introduce a graph-based abstract framework that is well suited
for capturing the similarities and differences of the various configurations ofEZCSPstem-
ming from different integration schemas. The graph-based representation also allows us to
speak of termination and correctness of procedures supporting these configurations. In this
framework, nodes of a graph representing a solver capture its possible “states of compu-
tation”, while edges describe the possible transitions from one state to another. It should
be noted that the graph representation is too high-level to capture some specific features of
answer set solvers or constraint programming tools used within differentEZCSPconfigura-
tions. For example, the graph incorporates no information on the heuristic used to select a
literal upon which a decision needs to be made. This is not an issue, however: stand alone
answer set solvers have been analyzed and compared theoretically in the literature (Anger
et al., 2006), (Giunchiglia et al., 2008) (Lierler and Truszczýnski, 2011) as well as empir-
ically in biennial answer set programming competitions (Gebser et al., 2007), (Denecker
et al., 2009), (Calimeri et al., 2011). At the same time,EZCSPtreats constraint program-
ming tools as “black-boxes” in all of its configurations.

5.2.1 AbstractEZCSP

Before introducing the transition system (graph) capable of capturing a variety ofEZCSP

procedures, we start by developing some required terminology. To make this section more
self-contained we also restate some notation and definitions from earlier sections. Recall
that for a setM of literals, byM + we denote the set of positive literals inM . For a CA
programP = 〈Π, C, γ, D〉, a consistent and complete setM of literals overAt(Π) is an
answer setof P if

(a1) M + is an answer set ofΠ[C] and
(a2) the constraint satisfaction problemKP,M has a solution.

As noted in Section2.1we can view denials as clauses. Given a denialG , by Gcl we will
denote a clause that corresponds toG , e.g.,(← not pm)cl denotes a clausepm. We may
sometime abuse the notation and refer to a clause as if it were a denial. For instance, a
clausepm may denote a denial← not pm .

We now introduce notions for CA programs that parallel ”entailment” for the case of
classical logic formulas. LetP = 〈Π, C, γ, D〉 be a CA program. We say thatP asp-entails
a denialG overAt(Π) when for every complete and consistent setM of literals overAt(Π)
such thatM + is an answer set ofΠ[C], M satisfiesGcl . In other words, a denial is asp-
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entailed if any set of literals that satisfies the condition(a1)of the answer set definition is
such that it satisfies this denial. CA programP cp-entailsa denialG overAt(Π) when (i)
for every answer setM of P , M satisfiesGcl and (ii) there is a complete and consistent set
N of literals overAt(Π) such thatN + is an answer set ofΠ[C] andN does not satisfyG .
Notice that if a denialG is such that a CA programP cp-entailsG , thenP does not asp-
entailG . We say thatP entailsa denialG whenP either asp-entails or cp-entailsG . For
a consistent setN of literals overAt(Π) and a literall , we say thatP asp-entailsl with
respect toN , if for every complete and consistent setM of literals overAt(Π) such that
M + is an answer set ofΠ[C] andN ⊆ M , l ∈ M .

Example 8

Recall programP1 = 〈Π1, C1, γ1,D1〉 from Example 2. It is easy to check that denial
← not lightOn ∙ (or, in other words clauselightOn) is asp-entailed byP1. Also,P1 asp-
entails literalsswitch and¬am with respect to set{lightOn} (and also with respect to∅).

Let regular programΠ2 extend programΠ1 from Example 2 by rules

{pm}∙
← not pm , |x ≥ 12|∙
← |x < 12|∙

Consider a CA programP2 that differs fromP1 only by substituting its first memberΠ1 of
quadruple〈Π1, C1, γ1,D1〉 by Π2. Denial← not pm (or clausepm) is cp-entailed byP2.
Indeed, the only answer set of this program is{pm,¬|x < 12|, |x ≥ 12|}. This set satisfies
(← not pm)cl , in other words, clausepm. Consider set{¬pm,¬|x < 12|, |x ≥ 12|} that
does not satisfy clausepm. Set of atoms{¬pm,¬|x < 12|, |x ≥ 12|}+ = {|x ≥ 12|} is
an answer set ofΠ2[C1].

For a CA programP = 〈Π, C, γ, D〉 and a setΓ of denials, byP [Γ] we denote the CA pro-
gram〈Π∪Γ, C, γ, D〉. The following propositions capture important properties underlying
the introduced entailment notions.

Proposition 1

For a CA programP = 〈Π, C, γ, D〉 and a setΓ of denials overAt(Π) if P asp-entails
every denial inΓ then (i) programsΠ[C] and(Π∪Γ)[C] have the same answer sets; (ii) CA
programsP andP [Γ] have the same answer sets.

Proof

We first show that condition (i) holds. From Theorem1 and the fact thatP asp-entails
every denial inΓ it follows that programsΠ[C] and(Π ∪ Γ)[C] have the same answer sets.
Condition (ii) follows from (i) and the fact thatKP,M = KP[Γ],M for any answer setM of
Π[C] (and, consequently, for(Π ∪ Γ)[C]).

Proposition 2

For a CA programP = 〈Π, C, γ, D〉 and a setΓ of denials overAt(Π) if P cp-entails
every denial inΓ then CA programsP andP [Γ] have the same answer sets.
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Proof
LetP be a CA program〈Π, C, γ, D〉. It is easy to see that (a)Π[C] ∪ Γ = (Π ∪ Γ)[C] and
(b) KP,M = KP[Γ],M .

Right-to-left: TakeM to be an answer set ofP . By the definition of an answer set,
(i) M + is an answer set ofΠ[C] and (ii) the constraint satisfaction problemKP,M has a
solution. SinceP cp-entails every denial inΓ, we conclude thatM is a model ofΓcl . By
Theorem1, M + is an answer set ofΠ[C] ∪ Γ. From (a) and (b) we derive thatM is an
answer set ofP [Γ].

Left-to-right: TakeM to be an answer set ofP [Γ]. By the definition of an answer set,
(i) M + is an answer set of(Π ∪ Γ)[C] and (ii) the constraint satisfaction problemKP[Γ],M

has a solution. From (i) and (a) it follows thatM + is an answer set ofΠ[C] ∪ Γ. By
Theorem1, M + is an answer set ofΠ[C]. By (b) and (ii) we derive that,M is an answer
set ofP .

Proposition 3
For a CA programP = 〈Π, C, γ, D〉 and a setΓ of denials overAt(Π) if P entails every
denial inΓ then (i) every answer set of(Π ∪ Γ)[C] is also an answer set ofΠ[C]; (ii) CA
programsP andP [Γ] have the same answer sets.

Proof
Condition (i) follows from Theorem1 and the fact that(Π)[C] and(Π ∪ Γ)[C] only differ
in denials.

We now show that condition (ii) holds. SetΓ is composed of two disjoint setsΓ1 andΓ2

(i.e.,Γ = Γ1 ∪ Γ2), whereΓ1 is the set of all denials that are asp-entailed byP andΓ2 is
the set of all denials that are cp-entailed byP . By Proposition1 (ii), CA programsP and
P [Γ1] have the same answer sets. By Proposition2, CA programsP [Γ1] andP [Γ1 ∪ Γ2]
have the same answer sets. It immediately follows that CA programsP andP [Γ1 ∪ Γ2]
have the same answersets.

For an alphabetσ, a recordrelative toσ is a sequenceM composed ofdistinct literals
overσ or symbol⊥, some literals are possibly annotated by the symbolΔ, which marks
them asdecisionliterals such that:

1. the set of literals inM is consistent orM = M ′l , where the set of literals inM ′ is
consistent andcontainsl ,

2. if M = M ′lΔM ′′, then neitherl nor itsdual l is in M ′, and
3. if ⊥ occurs inM , thenM = M ′⊥ andM ′ does not contain⊥.

We often identify records with the set of its members disregarding annotations.
For a CA programP = 〈Π, C, γ, D〉, astaterelative toP is either a distinguished state

Failstateor a tripleM ||Γ||Λ whereM is a record relative toAt(Π); Γ andΛ are each
a set of denials that are entailed byP . Given a stateM ||Γ||Λ if neither a literall nor l
occurs inM , thenl is unassignedby the state; if⊥ does not occur inM as well as for any
atoma it is not the case that botha and¬a occur inM , then this state isconsistent. For a
stateM ||Γ||Λ, we callM , Γ, andΛ theatomic, permanent, andtemporalparts of the state,
respectively. The role of the atomic part of the state is to track decisions (choices) as well
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Decide: M ||Γ||Λ ⇒ M lΔ||Γ||Λ if l is unassigned byM andM is consistent

Fail: M ||Γ||Λ ⇒ Failstate if

{
M is inconsistent and
M contains no decision literals

Backtrack: P lΔ Q ||Γ||Λ⇒ P l ||Γ||Λ if

{
P lΔ Q is inconsistent, and
Q contains no decision literals.

ASP-Propagate: M ||Γ||Λ ⇒ M l ||Γ||Λ if P[Γ ∪ Λ] asp-entailsl with respect toM

CP-Propagate: M ||Γ||Λ ⇒ M ⊥||Γ||Λ if KP,M has no solution

Learn: M ||Γ||Λ ⇒ M ||Γ ∪ {R}||Λ if P[Γ ∪ Λ] entails denialR andR 6∈ Γ ∪ Λ

Learnt : M ||Γ||Λ ⇒ M ||Γ||Λ ∪ {R} if P[Γ ∪ Λ] entails denialR andR 6∈ Γ ∪ Λ

Restart: M ||Γ||Λ ⇒ ∅||Γ||Λ if M 6= ∅

Restartt : M ||Γ||Λ ⇒ ∅||Γ||∅ if M 6= ∅

Figure 3. The transition rules of the graphEZP .

as inferences that the solver has made. The permanent and temporal parts are responsible
for assisting the solver in accumulating additional information – entailed denials by a given
program – that becomes apparent during the search process.

∅||∅||∅
ASP-Propagate

⇒

lightOn ||∅||∅
ASP-Propagate

⇒

lightOn switch ||∅||∅
ASP-Propagate

⇒

lightOn switch ¬am||∅||∅
ASP-Propagate

⇒

lightOn switch ¬am ¬|x < 12| ||∅||∅
Decide
⇒

lightOn switch ¬am ¬|x < 12| ¬|x ≥ 12|Δ||∅||∅
CP-Propagate

⇒

lightOn switch ¬am ¬|x < 12| ¬|x ≥ 12|Δ ⊥||∅||∅
Backtrack
⇒

lightOn switch ¬am ¬|x < 12| |x ≥ 12| ||∅||∅

Figure 4. Sample path in graphEZP1 .

We now define a graphEZP for a CA programP . Its nodes are the states relative toP .
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These nodes intuitively correspond to states of computation. The edges of the graphEZP

are specified by nine transition rules presented in Figure3. These rules correspond to pos-
sible operations by theEZCSPsystem that bring it from one state of computation to another.
A path in the graphEZP is a description of a process of search for an answer set ofP . The
process is captured via applications of transition rules. Theorem3 introduced later in this
section makes this statement precise.

Example 9
Recall CA programP1 = 〈Π1, C1, γ1,D1〉 introduced inExample 2. Figure4 presents a
sample path inEZP1 with every edge annotated by the name of a transition rule that justifies
the presence of this edge in the graph.

Now we turn our attention to an informal discussion of the role of each of the transition
rules inEZP .

5.2.2 Informal account on transition rules

We refer to the transition rulesDecide, Fail, Backtrack, ASP-Propagate, CP-Propagateof
the graphEZP asbasic.

The unique feature of basic rules is that they only concern the atomic part of a state.
Consider a stateS = M ||Γ||Λ. An application of any basic rule results in a state whose
permanent and temporal parts remain unchanged, i.e.,Γ andΛ respectively (unless it is the
case ofFail).

Decide An application of the transition ruleDecideto S results in a state whose atomic
part has the formM lΔ. Intuitively this rule allows us to pursue evaluation of assignments
that assume value of literall to be true. The fact that this literal is marked byΔ suggests
that we can still reevaluate this assumption in the future, in other words to backtrack on
this decision.

Fail The transition ruleFail specifies the conditions on atomic partM of stateS suggesting
thatFailstateis reachable fromM . Intuitively, if our computation brought us to such a state
transition toFailstateconfirms that there is no solution to the problem.

Backtrack The transition ruleBacktrackspecifies the conditions on atomic part of the state
suggesting when it is time to backtrack and what the new atomic part of the state is after
backtracking. RulesFail andBacktrackshare one property: they are applicable only when
states are inconsistent.

ASP-Propagate The transition ruleASP-Propagatespecifies the condition under which a
new literal l (without a decision annotation) is added to an atomic part. Such rules are
commonly calledpropagators. Note that the condition ofASP-Propagate

P [Γ ∪ Λ] asp-entailsl with respect toM (14)

is defined over a program extended by permanent and temporal part. This fact illustrates the
role of these entities. They carry extra information aquired/learnt during the computation.
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Also condition (14) is semantic. It refers to the notion of asp-entailment, which is defined
by a reference to the semantics of a program. Propagators used by software systems typ-
ically use syntactic conditions, which are easy to check by inspecting syntactic properties
of a program. Later in this section we present instances of such propagators, in particular,
propagators that are used within theEZCSPsolver.

CP-Propagate The transition ruleCP-Propagatespecifies the condition under which sym-
bol⊥ is added to an atomic part. Thus it leads to a state that is inconsistent suggesting that
the search process is either ready to fail or to backtrack. The condition ofCP-Propagate

KP,M has no solution

represents a decision procedure that establishes whether the CSP problemKP,M has solu-
tions or not.

We now turn our attention to non-basic rules that concern permanent and temporal parts
of the states of computation.

Learn Recall the definition of the transition ruleLearn

M ||Γ||Λ ⇒ M ||Γ ∪ {R}||Λ if P [Γ ∪ Λ] entails denialR andR 6∈ Γ ∪ Λ

An application of this rule to a stateM ||Γ||Λ, results in a state whose atomic and temporal
parts stay unchanged. The permanent part is extended by a denialR. Intuitively the effect
of this rule is such that from this point of computation the “permanent” denial becomes
effectively a part of the program being solved. This is essential for two reasons. First, if
the learnt denialR is cp-entailed thenΠ ∪ Γ ∪ Λ andΠ ∪ Γ ∪ Λ ∪ {R} are programs
with different answer sets. In turn, the ruleASP-Propagatemay be applicable to some
stateN ||Γ ∪ {R}||Λ and not toN ||Γ||Λ. Similarly, due to the fact that only “syntactic”
instances ofASP-Propagateare implemented in solvers, the previous statement also holds
for the case whenR is asp-entailed.

Learnt The role of the transition ruleLearnt is similar to that ofLearn, but the learnt
denials by this rule are not meant to be preserved permanently in the computation.

Restart and Restartt The transition ruleRestartallows the computation to start from
“scratch” with respect to atomic part of the state. The transition ruleRestartt forces the
computation to start from “scratch” with respect to not only atomic part of the state but
also all temporally learnt denials. These restart rules are essential in understanding the key
differences between various integration strategies that are of focus in this paper.

5.2.3 Formal properties ofEZP

We call the state∅||∅||∅— initial. We say that a node in the graph issemi-terminalif no
rule other thanLearn, Learnt , Restart, Restartt is applicable to it (or, in other words, if no
single basic rule is applicable to it). We say that a path inEZP is restart-safewhen, prior to
any edgee due to an application ofRestartor Restartt on this path, there is an edgee ′ due
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to an application ofLearnsuch that: (i) edgee ′ precedese; (ii) e ′ does not precede any
other edgee ′′ 6= e due toRestartor Restartt . We say that a restart-safe patht is maximal
if (i) the first state int is an initial state, and (ii)t is not a subpath of any restart-safe path
t ′ 6= t .

Example 10
Recall CA programP1 = 〈Π1, C1, γ1,D1〉 introduced inExample 2. Trivially a sample
path inEZP1 in Figure4 is a restart-safe path. A nontrivial example of restart-safe path in
EZP1 follows

∅||∅||∅
Learn
⇒

∅||{← not switch}||∅
ASP-Propagate

⇒

lightOn ||{← not switch}||∅
Restart
⇒

∅||{← not switch}||∅∙

(15)

Similarly, a path that extends the path above as follows

Learn
⇒

∅||{← not switch , ← am}||∅
ASP-Propagate

⇒

lightOn ||{← not switch , ← am}||∅
Restart
⇒

∅||{← not switch , ← am}||∅

is restart-safe.
A simple path inEZP1 that is not restart-safe

∅||∅||∅
ASP-Propagate

⇒

lightOn ||∅||∅
Restart
⇒

∅||∅||∅∙

Indeed, condition (i) of the restart-safe definition does not hold. Another example of a not
restart-safe path is a path that extends path (15) as follows

ASP-Propagate
⇒

lightOn ||{← not switch}||∅
Restart
⇒

∅||{← not switch}||∅∙

Indeed, condition (ii) of the restart-safe definition does not hold for the second occurrence
of theRestartedge.
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The following theorem captures key properties of the graphEZP . They suggest that the
graph can be used for deciding whether a program with constraint atoms has an answer set.

Theorem 3
For any CA programP :

(a) every restart-safe path inEZP is finite, and any maximal restart-safe path ends with
a state that is semi-terminal,

(b) for any semi-terminal stateM ||Γ||Λ of EZP reachable from initial state,M is an
answer set ofP ,

(c) stateFailstateis reachable from initial state inEZP by a restart-safe path if and only
if P has no answer set.

On the one hand, part (a) of Theorem3 asserts that, if we construct a restart-safe path
from initial state, then some semi-terminal state is eventually reached. On the other hand,
parts (b) and (c) assert that, as soon as a semi-terminal state is reached by following any
restart-safe path, the problem of deciding whether CA programP has answer sets is solved.
Section5.3describes the varying configurations of theEZCSPsystem.

Example 11
RecallExample 9. Since the last state in the sample path presented in Figure (4) is semi-
terminal, Theorem3 asserts that the set of literals composed of the elements of this semi-
terminal state forms the answer set of CA programP1. Indeed, this set coincides with the
answer setM1 of P1 presented inExample 3.

In our discussion of the transition ruleASP-Propagatewe mentioned how theEZCSPsolver
accounts only for some transitions due to this rule. LetP = 〈Π, C, γ, D〉 be a CA program.
By EZSMP we denote an edge-induced subgraph ofEZP , where we drop the edges that
correspond to the application of transition rulesASP-Propagatenot accounted by the fol-
lowing two transition rules (propagators)Unit PropagateandUnfounded:

Unit Propagate: M ||Γ||Λ ⇒ M l ||Γ||Λ






C ∨ l ∈ (Π[C] ∪ Γ ∪ Λ)cl ,
M is consistent,
M |= C

Unfounded: M ||Γ||Λ ⇒ M l ||Γ||Λ






M is consistent, and there is literall sothat
l ∈ U for a setU , which is
unfounded onM w.r.t. Π[C] ∪ Γ ∪ Λ

These two propagators rely on properties that can be checked by efficient procedures. The
conditions of these transition rules are such that they are satisfied only ifP [Γ ∪ Λ] asp-
entails l w.r.t. M . In other words, the transition rulesUnit Propagateor Unfoundedare
applicable only in states whereASP-Propagateis applicable. The other direction is not
true. Theorem3 holds if we replaceEZP by EZSMP in its statement. The proof of this
theorem relies on the statement of Theorem2, and is given at the end of this subsection.
GraphEZSMP is only one of the possible subgraphs of the generic graphEZP that share
its key properties stated in Theorem3. These properties show that graphEZSMP gives rise
to a class of correct algorithms for computing answer sets of programs with constraints.
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It provides a proof of correctness of every CASP solver in this class and a proof of termi-
nation under the assumption that restart-safe paths are considered by a solver. Note how
much weaker propagators, such asUnit PropagateandUnfounded, thanASP-Propagate
are sufficient to ensure the correctness of respective solving procedures. We picked the
graphEZSMP for illustration as it captures the essential propagators present in modern
(constraint) answer set solvers and allows a more concrete view on theEZP framework.
Yet the goal of this work is not to detail the variety of possible propagators of (constraint)
answer set solvers but master the understanding of hybrid procedures that include this tech-
nology. Therefore in the rest of this section we turn our attention back to theEZP graph
and use this graph to formulateblack-box, grey-box, andclear-boxconfigurations of the
CASP solverEZCSP.

The rest of this subsection presents a proof of Theorem3 as well as a proof of the similar
theorem for the graphEZSMP .

Proof of Theorem3
(a) LetP be a CA program〈Π, C, γ, D〉.

We first show that any path inEZP that does not containRestartt or Restartedges is
finite. We name this statementStatement 1.

Consider any patht in EZP that does not containRestartt or Restartedges.
For any listN of literals, by |N | we denote the length ofN . Any stateM ||Γ||Λ has

the formM0 lΔ1 M1 . . . lΔp Mp ||Γ||Λ, wherelΔ1 . . . lΔp are all decision literals ofM ; we
define α(M ||Γ||Λ) as the sequence of nonnegative integers|M0|, |M1|, . . . , |Mp |, and
α(Failstate) = ∞. For any two states,S andS ′, of EZP , we understandα(S ) < α(S ′) as
the lexicographical order. We note that, for any stateM ||Γ||Λ, the value ofα is based only
on the first component,M , of the state. Second, there is a finite number of distinct values
of α for the states ofEZP due to the fact that there is a finite number of distinctM ’s over
P . We now define relationsmallerover the states ofEZP . We say that stateM ||Γ||Λ is
smallerthan stateM ′||Γ′||Λ′ when either

1. Γ ⊂ Γ′, or
2. Γ = Γ′, andΛ ⊂ Λ′, or
3. Γ = Γ′, Λ = Λ′, andα(M ||Γ||Λ) < α(M ′||Γ′||Λ′).

It is easy to see that this relation is anti-symmetric and transitive.
By the definition of the transition rules ofEZP , if there is an edge fromM ||Γ||Λ to

M ′||Γ′||Λ′ in EZP formed by any basic transition rule or rulesLearn or Learnt , then
M ||Γ||Λ is smaller than stateM ′||Γ′||Λ′. Observe that (i) there is a finite number of dis-
tinct values ofα, and (ii) there is a finite number of distinct denials entailed byP . Then, it
follows that there is only a finite number of edges int , and, thus, Statement 1 holds.

We call a subpath from stateS to stateS ′ of some path inEZP restartingwhen (i) an
edge that followsS is due to the application of ruleLearn, (ii) an edge leading toS ′ is due
to the application of ruleRestartt or Restart, and (iii) on this subpath, there are no other
edges due to applications ofLearn, Restartt , or Restart, but the ones mentioned above.
Using Statement 1, it follows that any restarting subpath is finite.

Consider any restart-safe pathr in EZP . We construct a pathr ′ by dropping some finite
fragments fromr . This is accomplished by replacing each restarting subpath ofr from
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stateS to stateS ′ by an edge fromS to S ′ that we callArtificial . It is easy to see that an
edge inr ′ due toArtificial leads from a state of the formM ||Γ||Λ to a state∅||Γ ∪ {C}||Λ′,
whereC is a denial. Indeed, within a restarting subpath an edge due to ruleLearnoccurred
introducing denialC . StateM ||Γ||Λ is smaller than the state∅||Γ ∪ {C}||Λ′. At the same
time,r ′ contains no edges due to applications ofRestartt or Restart. Indeed, we eliminated
these edges in favor of edges calledArtificial . Thus by the same argument as in the proof
of Statement 1,r ′ contains a finite number of edges. We can now conclude thatr is finite.

It is easy to see that maximal restart-safe path ends with a state that is semi-terminal.
Indeed, assume the opposite: there is a maximal restart-safe patht , which ends in a non
semi-terminal stateS . Then, some basic rule applies to stateS . Consider patht ′ consisting
of patht and a transition due to a basic rule applicable toS . Note thatt ′ is also a restart-safe
path, and thatt is a subpath oft ′. This contradicts the definition of maximal.

(b) Let M ||Γ||Λ be a semi-terminal state so that none of the Basic rules are applicable.
From the fact thatDecideis not applicable, we conclude thatM assigns all literals orM is
inconsistent.

We now show thatM is consistent. Proof by contradiction. Assume thatM is incon-
sistent. Then, sinceFail is not applicable,M contains a decision literal. Consequently,
M ||Γ||Λ is a state in whichBacktrackis applicable. This contradicts our assumption that
M ||Γ||Λ is semi-terminal.

Also, M + is an answer set ofΠ[C]. Proof by contradiction. Assume thatM + is not an
answer set ofΠ[C]. It follows that thatM is not an answer set ofP . By Proposition3, it
follows thatM is not an answer set ofP [Γ∪Λ] andM + is not an answer ofΠ[C]∪Γ∪Λ.
Recall thatP [Γ ∪ Λ] asp-entails a literall with respect toM if for every complete and
consistent setM ′ of literals overAt(Π) such thatM ′+ is an answer set ofΠ[C] ∪ Γ ∪ Λ
andM ⊆ M ′, l ∈ M ′. SinceM is complete and consistent set of literals overAt(Π) it
follows that there is no complete and consistent setM ′ of literals overAt(Π) such that
M ⊆ M ′ andM ′+ is an answer set ofΠ[C] ∪ Γ ∪ Λ. We conclude thatP [Γ ∪ Λ] asp-
entails any literall . Takel to be a complement of some literal occurring inM . It follows
thatASP-Propagateis applicable in stateM ||Γ||Λ allowing a transition to stateM l ||Γ||Λ.
This contradicts our assumption thatM ||Γ||Λ is semi-terminal.

CSPKP,M has a solution. This immediately follows from the application condition of
the transition ruleCP-Propagateand the fact that the stateM ||Γ||Λ is semi-terminal.

From the conclusions thatM + is an answer set ofΠ[C] andKP,M has a solution we
derive thatM is an answer set ofP .

(c) We start by proving an auxiliary statement:

Statement 2: For any CA programP , and a path from an initial state tol1 . . . ln ||Γ||Λ in
EZP , every answer setX for P satisfiesli if it satisfies all decision literalslΔj with j ≤ i .
By induction on the length of a path. Since the property trivially holds in the initial state,
we only need to prove that all transition rules ofEZP preserve it.

Consider an edgeM ||Γ||Λ ⇒ S whereS is either a fail state or state of the form
M ′||Γ′||Λ′, M is a sequencel1 . . . lk such that every answer setX of P satisfiesli if it
satisfies all decision literalslΔj with j ≤ i .

Decide, Fail, CP-Propagate Learn, Learnt , Restart, Restartt : Obvious.
ASP-Propagate: M ′||Γ′||Λ′ is M lk+1||Γ||Λ. Take any answer setX of P such thatX
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satisfies all decision literalslΔj with j ≤ k + 1. From the inductive hypothesis it follows
that X satisfiesM . Consequently,M ⊆ X sinceX is a consistent and complete set of
literals. From the definition ofASP-Propagate, P asp-entailslk+1 with respect toM . We
also know thatX + is an answer set ofΠ[C]. Thus,lk+1 ∈ X .

Backtrack: M has the formP lΔi Q whereQ contains no decision literals.M ′||Γ′||Λ′

has the formP li ||Γ||Λ. Take any answer setX of P such thatX satisfies all decision
literals lΔj with j ≤ i . We need to show thatX |= li . By contradiction. Assume that
X |= li . By the inductive hypothesis, sinceQ does not contain decision literals, it follows
thatX satisfiesP lΔi Q , that is,M . This is impossible becauseM is inconsistent. Hence,
X |= li .

Left-to-right: SinceFailstateis reachable from the initial state by a restart-safe path,
there is an inconsistent stateM ||Γ||Λ without decision literals such that there exists a path
from the initial state toM ||Γ||Λ. By Statement 2, any answer set ofP satisfiesM . SinceM
is inconsistent we conclude thatP has no answer sets.

Right-to-left: From (a) it follows that any maximal restart-safe path is a path from initial
state to some semi-terminal stateS . By (b), this stateS cannot be different fromFailstate,
becauseP has no answer sets.

Theorem 4
For any CA programP ,

(a) every restart-safe path inEZSMP is finite, and any maximal restart-safe path ends
with a state that is semi-terminal,

(b) for any semi-terminal stateM ||Γ||Λ of EZSMP reachable from initial state,M is an
answer set ofP ,

(c) stateFailstateis reachable from initial state inEZSMP by a restart-safe path if and
only if P has no answer sets.

Proof
LetP be a CA program〈Π, C, γ, D〉.

(a) This part is proved as part (a) in proof of Theorem3.

(b) Let M ||Γ||Λ be a semi-terminal state so that none of the basic rules are applicable
(Unit PropagateandUnfoundedare basic rules). As in proof of part (b) in Theorem3 we
conclude thatM assigns all literals and is consistent. Also, CSPKP,M has a solution.

We now illustrate that,M + is an answer set ofΠ[C]. Proof by contradiction. Assume
thatM + is not an answer set ofΠ[C]. It follows that thatM is not an answer set ofP . By
Proposition3, it follows thatM is not an answer set ofP [Γ∪Λ] andM + is not an answer
of Π[C] ∪ Γ ∪ Λ. By Theorem2, it follows that eitherM is not a model ofΠ[C] ∪ Γ ∪ Λ
or M contains a non-empty subset unfounded onM w.r.t.Π[C]∪Γ∪Λ. In case the former
holds we derive that the ruleUnit Propagateis applicable in the stateM ||Γ||Λ. In case
the later holds we derive that the ruleUnfoundedis applicable in the stateM ||Γ||Λ. This
contradicts our assumption thatM ||Γ||Λ is semi-terminal.

From the conclusions thatM + is an answer set ofΠ[C] andKP,M has a solution we
derive thatM is an answer set ofP .
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(c) Left-to-right part of the proof follows from Theorem3 (c, left-to-right) and the fact that
EZSMP is a subgraph ofEZP .

Right-to-left part of the proof follow the lines of Theorem3 (c, right-to-left).

5.3 Integration Configurations ofEZCSP

We can characterize the algorithm of a specific solver that utilizes the transition rules of
the graphEZP by describing a strategy for choosing a path in this graph.

black-box: A configuration ofEZCSP that invokes an answer set solver viablack-box
integration for enumerating answer sets of an asp-abstraction program is captured by the
following strategy in navigating the graphEZP

1. Restartnever applies,
2. ruleCP-Propagatenever applies to the states where one of these rules are applicable:

Decide, Backtrack, Fail, ASP-Propagate,
3. Learnt may apply anytime with the restriction that the denialR learnt by the appli-

cation of this rule is such thatP asp-entailsR,
4. single application ofLearn follows immediately after an application of the rule

CP-Propagate. Furthermore, the denialR learnt by the application of this rule is
such thatP cp-entailsR,

5. Restartt follows immediately after an application of the ruleLearn. Restartt does not
apply under any other condition.

It is easy to see that the specifications of the strategy above forms a subgraph of the
graphEZP . Let us denote this subgraph byEZb

P . Theorem3 holds if we replaceEZP by
EZb

P in its statement:

Theorem 5
For any CA programP ,

(a) every restart-safe path inEZb
P is finite, and any maximal restart-safe path ends with

a state that is semi-terminal,
(b) for any semi-terminal stateM ||Γ||Λ of EZb

P reachable from initial state,M is an
answer set ofP ,

(c) stateFailstateis reachable from initial state inEZb
P by a restart-safe path if and only

if P has no answer sets.

Proof
LetP be a CA program〈Π, C, γ, D〉.

(a) This part is proved as part (a) in proof of Theorem3.

(b) GraphEZb
P is the subgraph ofEZP . At the same time it is easy to see that any non semi-

terminal state inEZP is also a non semi-terminal state inEZb
P . Thus, claim (b) follows from

Theorem3 (b).

(c) Left-to-right part of the proof follows from Theorem3 (c, left-to-right) and the fact that
EZb

P is a subgraph ofEZP .
Right-to-left part of the proof follows the lines of Theorem3 (c, right-to-left).
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grey-box: A configuration ofEZCSPthat invokes an answer set solver viagrey-boxinte-
gration for enumerating answer sets of asp-abstraction program is captured by the strategy
in navigating the graphEZP that differs from the strategy ofblack-boxin rules 1 and 5
only. Below we present only these rules.

1. Restartt never applies,
5. Restartfollows immediately after an application of the ruleLearn. Restartdoes not

apply under any other condition.

clear-box: A configuration ofEZCSPthat invokes an answer set solver viaclear-boxinte-
gration for enumerating answer sets of asp-abstraction program is captured by the follow-
ing strategy in navigating the graphEZP

• Restartt andRestartnever apply.

Similar to theblack-boxcase, the specifications of thegrey-boxandclear-boxstrategies
form subgraphs of the graphEZP . Theorem3 holds if we replaceEZP by these subgraphs.
We avoid stating formal proofs as they follow the lines of proof for Theorem5.

We note that the outlined strategies provide only a skeleton of the algorithms imple-
mented in these systems. Generally, any particular configurations ofEZCSPcan be captured
by some subgraph ofEZP . The provided specifications ofblack-box, grey-box, andclear-
boxscenarios allow more freedom than specific configurations ofEZCSPdo. For example,
in any setting ofEZCSPit will never follow an edge due to the transitionDecidewhen the
transitionASP-Propagateis available. Indeed, this is a design choice of all available an-
swer set solvers thatEZCSPis based upon. The provided skeleton is meant to highlight the
essence of key differences between the variants of integration approaches. For instance, it
is apparent that any application ofRestartt forces us to restart the search process by for-
getting about atomic part of a current state as well as some previously learnt clauses. The
black-boxintegration architecture is the only one allowing this transition.

As discussed earlier, the schematic ruleASP-Propagateis more informative than any real
propagator implemented in any answer set solver. These solvers are only able to identify
some literals that are asp-entailed by a program with respect to a state. Thus if a program
is extended with additional denials a specific propagator may find additional literals that
are asp-entailed. This observation is important in understanding the benefit thatRestart
provides in comparison toRestartt . Note that applications of these rules highlight the dif-
ference betweenblack-boxandgrey-box.

6 Application Domains

In this work we compare and contrast different integration schemas of hybrid solvers on
three application domains that stem from various subareas of computer science:weighted-
sequence(Lierler et al., 2012), incremental scheduling(Balduccini, 2011), reverse folding.
The weighted-sequence domain is a handcrafted benchmark, whose key features are in-
spired by the important industrial problem of finding an optimal join order by cost-based
query optimizers in database systems. The problem is not only practically relevant but
proved to be hard for current ASP and CASP technology as illustrated in (Lierler et al.,
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2012). The incremental scheduling domain stems from a problem occurring in commercial
printing. CASP offers an elegant solution to it. Thereverse foldingproblem is inspired
by VLSI design – the process of creating an integrated circuit by combining thousands of
transistors into a single chip.

This section provides a brief overview of these applications. All benchmark domains are
from theThird Answer Set Programming Competition – 2011(ASPCOMP) (Calimeri et al.,
2011), in particular, theModel and Solvetrack. We chose these domains for our investi-
gation for several reasons. First, these problems touch on applications relevant to various
industries. Thus, studying different possibilities to model and solve these problems is of
value. Second, each one of them displays features that benefit from the synergy of com-
putational methods in ASP and CSP. Each considered problem contains variables ranging
over a large integer domain thus making grounding required in pure ASP a bottleneck. Yet,
the modeling capabilities of ASP and availability of such sophisticated solving techniques
such as learning makes ASP attractive for designing solutions to these domains. As a re-
sult, CASP languages and solvers become a natural choice for these benchmarks making
them ideal for our investigation.

Three Kinds of CASP Encodings:Hybrid languages such as CASP combine constructs
and processing techniques stemming from different formalisms. As a result, depending on
how the encodings are crafted, one underlying solver may be used more heavily than the
other. For example, any ASP encoding of a problem is also a CASP formalization of it.
Therefore, the computation for such encoding relies entirely on the base solver and the
features and performance of the theory solver are irrelevant to it. We call this apure-ASP
encoding. At the other end of the spectrum arepure-CSPencodings: encodings that consist
entirely of ez-atoms. From a computational perspective, such an encoding exercises only
the theory solver. (From a specification perspective, the use of CASP is still meaningful, as
it allows for a convenient, declarative, and at the same time executable specification of the
constraints.) In the middle of the spectrum aretrue-CASPencodings, which, typically, are
non-stratified and include collections of ez-atoms expressing constraints whose solution is
non-trivial.

An analysis of these varying kinds of encodings in CASP gives us a better perspective
on how different integration schemas are affected by the design choices made during the
encoding of a problem. At the same time considering the encoding variety allows us to
verify our intuition that true-CASP is an appropriate modeling and solving choice for the
explored domains. We conducted experiments on encodings falling in each category for all
benchmarks considered.

Theweighted-sequence(WSEQ) domain is a handcrafted benchmark problem. Its key fea-
tures are inspired by the important industrial problem of finding an optimal join order by
cost-based query optimizers in database systems.Lierler et al.(2012) provides a complete
description of the problem itself as well as the formalization namedSEQ++ that became
the encoding used in the present paper.

In the weighted-sequence problem we are given a set of leaves (nodes) and an integer
m – maximum cost. Each leaf is a pair(weight, cardinality)whereweightandcardinality
are integers. Every sequence (permutation) of leaves is such that all leaves but the first are
assigned acolorthat, in turn, associates a leaf with acost(via a cost formula). A colored se-
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quence is associated with thecostthat is a sum of leaves costs. The task is to find a colored
sequence with cost at mostm. We refer the reader to (Lierler et al., 2012) for the details
of pure-ASP encodingSEQ++. The same paper also contains the details on a true-CASP
variant ofSEQ++ in the language ofCLINGCON. We further adapted that encoding to the
EZ language by means of simple syntactic transformations. Here we provide a review of
details of theSEQ++ formalizations using pure-ASP and theEZ language that we find most
relevant to this presentation. The reader can refer toAppendix A for details on the syn-
tax used. The non-domain predicates of the pure-ASP encoding areleafPos, posColor ,
posCost . Intuitively, leafPos is responsible for assigning a position to a leaf,posColor
is responsible for assigning a color to each position,posCost carries information on costs
associated with each leaf. Some rules used to define these relations are given in Figure5.

% Give each leaf a location in the sequence
1{leafPos(L,N ) : location(N )}1← leaf (L)∙
% No sharing of locations
← leafPos(L1,N ), leafPos(L2,N ), location(N ),L1 6= L2∙

% green if (weight(right) + card(right))< (weight(left) + leafCost(right))
posColor (1, green)← leafPos(L1, 0), leafPos(L2, 1),

leafWeightCardinality (L1,WL,CL),
leafWeightCardinality (L2,WR,CR),
leafCost(L2,W 3),
W 1 = WR + CR, W 2 = WL + W 3,
W 1 < W 2∙

% posCost for first coloredPos
posCost(1,W )← posColor (1, green), leafPos(L, 1),

leafWeightCardinality (L,WR,CR),
max total weight(MAX ),
W = WR + CR,W ≤ MAX ∙

posCost(1,W )← not posColor (1, green), leafPos(L1, 0), leafPos(L2, 1),
leafWeightCardinality (L1,WL,CL), leafCost(L2,WR),
max total weight(MAX ),
W = WL + WR, W ≤ MAX ∙

% Acceptable solutions
acceptable ← #sum[nWeight(P ,W ) = W : coloredPos(P)]MAX ,

max total weight(MAX )∙
← not acceptable ∙

Figure 5. Some typical rules of the pure-ASP language formalization ofWSEQ.

The first two rules in Figure5 assign a distinct location to each leaf. The next rule is part
of the color assignment. The following two rules are part of the cost determination. The
final two rules ensure that the total cost is within the specified limit.

The main difference between the pure-ASP and true-CASP encodings is in the treatment
of the cost values of the leaves. We first note that cost predicateposCost in the pure-ASP
encoding is “functional”. In other words, when this predicate occurs in an answer set, its
first argument uniquely determines its second argument. Often, such functional predicates
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in ASP encodings can be replaced by ez-atoms24 in CASP encodings. Indeed, this is the
case in the weighted-sequence problem. Thus in the true-CASP encoding, the definition
of posCost is replaced by suitable ez-atoms, making it possible to evaluate cost values by
CSP techniques. This approach is expected to benefit performance especially when the cost
values are large. Some of the corresponding rules follow:

% posCost for first coloredPos
required(posCost(1) = W )← posColor (1, green), leafPos(L, 1),

leafWeightCardinality (L,WR,CR),W = WR + CR∙
required(posCost(1) = W )← not posColor (1, green),

leafPos(L1, 0), leafPos(L2, 1),
leafWeightCardinality (L1,WL,CL), leafCost(L2,WR),
W = WL + WR∙

% Acceptable solutions
required(sum([posCost/1],≤,MV ))← max total weight(MV )∙

The first two rules are rather straightforward translations of the ASP equivalents. The last
rule uses a global constraint to ensure acceptability of the total cost.

The pure-CSP encoding is obtained from the true-CASP encoding by replacing the defi-
nitions ofleafPos andposColor predicates by constraint atoms. The replacement is based
on the observation thatleafPos andposColor are functional.

% green if (weight(right) + card(right))< (weight(left) + leafCost(right))
is green(1,L1,L2)← leafWeightCardinality (L1,WL,CL),

leafWeightCardinality (L2,WR,CR),
leafCost(L2,W 3),
W 1 = WR + CR, W 2 = WL + W 3,

W 1 < W 2∙
required(posColor (1) = green ← (leafPos(L1) = 0 ∧ leafPos(L2) = 1))←

leaf (L1), leaf (L2), is green(1,L1,L2)∙

As shown by the last rule, color assignment requires the use of reified constraints. It is
important to note that symbol← within the scope ofrequired stands for material implica-
tion. Color names are mapped to integers by introducing additional variables. For example,
variablegreen is associated with value1 by a variable declarationcspvar(green, 1, 1). In-
terestingly, no ez-atoms are needed for the definition ofleafPos . The role of the choice
rule above is implicitly played by the variable declaration

cspvar(leafPos(L), 0,N − 1)← leaf (L), location(N )∙

The incremental scheduling(IS) domain stems from a problem occurring in commercial
printing. In this domain, a schedule is maintained up-to-date with respect to jobs being
added and equipment going offline. A problem description includes a set of devices, each
with predefined number of instances (slots for jobs), and a set of jobs to be produced. The

24 We abuse the term ez-atom and refer to “non-ground” atoms of theEZ language that result in ez-atoms by the
same name.
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penalty for a job being late is computed astd ∙ imp, wheretd is the job’s tardiness and
imp is a positive integer denoting the job’s importance. The total penalty of a schedule is
the sum of the penalties of the jobs. The task is to find a schedule whose total penalty is no
larger than the value specified in a problem instance. We direct the reader to (Balduccini,
2011) for more details on this domain. We start by describing the pure-CSP encoding and
then illustrate how it relates to the true-CASP encoding.

The pure-CSP encoding used in our experiments is the official competition encoding
submitted toASPCOMPby theEZCSPteam. In that encoding, constraint atoms are used for
(i) assigning start times to jobs, (ii) selecting which device instance will perform a job, and
(iii) calculating tardiness and penalties. Core rules of the encoding are shown in Figure6.

% Assignment of start times: cumulative constraint
required(cumulative([st(D)/2],

[operation len by dev(D)/3],
[operation res by dev(D)/3],
N ))←

instances(D ,N )∙
% Instance assignment
required((on instance(J1) 6= on instance(J2)) ∨

(st(D , J2) ≥ st(D , J1) + Len1) ∨
(st(D , J1) ≥ st(D , J2) + Len2)) ←

instances(D ,N ),N > 1,
job device(J1,D), job device(J2,D), J1 6= J2,
job len(J1,Len1), job len(J2,Len2)∙

% Total Penalty
required(sum([penalty/1], =, tot penalty))∙
required(tot penalty ≤ K )← max total penalty(K )∙

Figure 6. Rules of the pure-CSP formalization ofIS.

The ez-atom of the first rule uses a global constraint to specify that the start times must
be assigned in such a way as to ensure that no more thannd jobs are executed at any time,
wherend is the number of instances of a given deviced . The ez-atom of the second rule
uses reified constraints with the∨ connective (disjunction) to guarantee that at most one
job is executed on a device instance at every time. The ez-atom of the third rule uses a
global constraint to define total penalty. The last rule restricts total penalty to be within the
allowed maximum value.

The true-CASP encoding was obtained from the pure-CSP encoding by introducing a
new relationon instance(j , i), stating that jobj runs on device-instancei . The rules for-
malizing the assignment of device instances in the pure-CSP encoding were replaced by
ez-atoms. For example, the second rule from Figure6 was replaced by:

1{on instance(J , I ) : instance of (D , I )}1← job device(J ,D)∙
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required((st(D , J2) ≥ st(D , J1) + Len1) ∨
(st(D , J1) ≥ st(D , J2) + Len2))←

on instance(J1, I ), on instance(J2, I ),
instances(D ,N ),N > 1,

job device(J1,D), job device(J2,D), J1 6= J2,

job len(J1,Len1), job len(J2,Len2)∙

The main difference with respect to the ez-atom of the pure-CSP encoding is the introduc-
tion of a choice rule to select an instanceI for a jobJ . The constraint that each instance
processes at most one job at a time is still encoded using an ez-atom.

Finally, the pure-ASP encoding was obtained from the true-CASP encoding by introduc-
ing suitable new relations, such asstart(j , s) andpenalty(j , p), to replace all remaining
ez-atoms. The rules that replace the first rule in Figure6 follow:

1{start(J , S ) : time(S )}1← job(J )∙

← on instance(J1, I ), on instance(J2, I ), J1 6= J2,

job device(J1,D), job device(J2,D),
start(J1, S1), job len(J1,L1), start(J2, S2),
S1 ≤ S2, S2 < S1 + L1∙

The last two rules in Figure6 are replaced by the rules in the pure-ASP encoding:

tot penalty(TP)← TP [ penalty(J ,P) = P ] TP ∙
← not [penalty(J ,P) = P ]Max ,max total penalty(Max )∙

In the reverse folding (RF) domain, one manipulates a sequence ofn pairwise connected
segments located on a 2D plane in order to take the sequence from an initial configuration
to a goal configuration. The sequence is manipulated by pivot moves: rotations of a segment
around its starting point by 90 degree in either direction. A pivot move on a segment causes
the segments that follow to rotate around the same center. Concurrent pivot moves are
prohibited. At the end of each move, the segments in the sequence must not intersect. A
problem instance specifies the number of segments, the goal configuration, and required
number of moves denoted byt . The task is to find a sequence of exactlyt pivot moves that
produces the goal configuration.

The true-CASP encoding used for our experiments is from the officialASPCOMP2011
submission package of theEZCSPteam. In this encoding, relationpivot(s , i , d) states that
at steps thei th segment is rotated in directiond . The effects of pivot moves are described
by ez-atoms, which allows us to carry out the corresponding calculations with CSP tech-
niques.

pivot(1, I ,D)← first(I ), requiredMove(I ,D)∙
pivot(N 1, I 1,D1)← pivot(N 2, I 2,D2),N 1 = N 2 + 1,

requiredMove(I 1,D1), requiredMove(I 2,D2),
next(I 1, I 2)∙
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% Effect of pivot(t,i,d)
required(tfoldy(S2, I ) = tfoldx (S1,P)− tfoldx (S1, I ) + tfoldy(S1,P))←

step(S1), step(S2), S2 = S1 + 1,

pivot(S1,P , clock),
index (I ), I ≥ P ∙

required(tfoldy(S2, I ) = tfoldx (S1, I )− tfoldx (S1,P) + tfoldy(S1,P))←
step(S1), step(S2), S2 = S1 + 1,

pivot(S1,P , anticlock ),
index (I ), I ≥ P ∙

The first two rules are some of the rules used for determining the pivot rotations. The
determination is based on the technique described in (Balduccini and Lierler, 2012). The
last two rules are part of the calculation of the effects of pivot moves. Note thattfoldx (s , i)
andtfoldy(s , i) denote thex andy coordinates of the start of segmenti at steps .

The pure-ASP encoding was obtained from the true-CASP encoding by adopting an
ASP-based formalization of the effects of pivot moves. This was accomplished by intro-
ducing two new relations,tfoldx (s , i , x ) and tfoldy(s , i , y), stating that the new start of
segmenti at steps is 〈x , y〉. The definition of the relations is provided by suitable ASP
rules, such as:

tfoldy(S + 1, I ,Y 2)← tfoldx (S , I ,X 1), pivot(S ,P ,D), I ≥ P ,

tfoldx (S ,P ,XP), tfoldy(S ,P ,YP),X 0 = X 1− XP ,

rotatedx (D ,X 0,Y 0),Y 2 = Y 0 + YP ∙
rotatedx (clock ,X ,−X )← xcoord(X )∙
xcoord(−2 ∗N ∙ ∙2 ∗N )← length(N )∙

Differently from the previous domains, forRF we were unable to formulate a pure-CSP
variant of the true-CASP encoding. Thus, we resorted to the encoding described in (Dovier
et al., 2011). This encoding leverages a mapping from action languageB (Gelfond and Lif-
schitz, 1998) statements to numerical constraints, which are then solved by a CLP system.

7 Experimental Results

The experimental comparison of the integration schemas was conducted on a computer
with an Intel Core i7 processor at 3GHz and running Fedora Core 16. The memory limit
for each process and the timeout were set to1 GB RAM27 and6, 000 seconds respectively.
A single processor core was used for every experiment.

The version ofEZCSPused in the experiments was 1.6.20b49. This version implements
theblack-box, grey-box, andclear-boxintegration schemas, when suitable API interfaces
are available in the base solver. One answer set solver that provides such interfaces is
CMODELS, which for this reason was chosen as base solver for the experiments. It is worth
noting that the development of the API inCMODELSwas greatly facilitated by the API pro-
vided byMINISAT v. 1.12b supporting non-clausal constraints (Eén and S̈orensson, 2003)
(MINISAT forms the main inference mechanism ofCMODELS). In the experiments, we used

27 The instances that resulted in an out-of-memory were also tested with 4 GB RAM, with no change in the
outcome.
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Figure 7. Performance onWSEQdomain: total times in logarithmic scale
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Figure 8. Performance onWSEQdomain: cumulative view (grey-boxandclear-box)

CMODELSversion 3.83 as the base solver andBPROLOG7.4 as the theory solver.28 Answer
set solverCMODELS 3.83 (with the inference mechanism ofMINISAT v. 1.12b) was also

28 We note that BPROLOG is the default theory solver ofEZCSP. Command-line option--solver
cmodels-3.83 instructs EZCSP to invoke CMODELS 3.83 using theblack-box integration schema.
Command-line options--cmodels-incremental and--cmodels-feedback instructEZCSPto use,
respectively, thegrey-boxandclear-boxintegration schema. In these two cases,CMODELS 3.83 is automati-
cally selected as the base solver.
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used for the experiments with the pure-ASP encodings. Unless otherwise specified, for all
solvers we used their default configurations.

The executables used in the experiments and the encodings can be downloaded, respec-
tively, from

• http://www.mbal.tk/ezcsp/int_schemas/ezcsp-binaries.tgz ,
and
• http://www.mbal.tk/ezcsp/int_schemas/experiments.tgz .

In order to provide a frame of reference with respect to the state of the art in CASP, the
results also include performance information forCLINGCON 2.0.3 on the true-CASP en-
codings adapted to the language ofCLINGCON. We conjecture that the choice of constraint
solver byCLINGCON (namely,GECODE) together with theory propagation is the reason
for CLINGCON’s better performance in a number of the experiments. Yet, in the context of
our experiments, the performance ofCLINGCON w.r.t. EZCSPis irrelevant. Our work is a
comparative study of the impact of the different integration schemas for a fixed selection of
a base and theory solver pair. SystemEZCSPprovides us with essential means to perform
this study.

In all figures presented: CASP Black, CASP Grey, CASP Clear denoteEZCSPimple-
menting respectivelyblack-box, grey-boxandclear-box, and running a true-CASP encod-
ing; Pure-CSP denotesEZCSPimplementingblack-boxrunning a pure-CSP encoding (note
that for pure-CSP encodings there is no difference in performance between the integra-
tion schemas); ASP denotesCMODELS running a pure-ASP encoding; Clingcon denotes
CLINGCON running a true-CASP encoding. Each configuration is associated with the same
color in all figures. A pattern is applied to the filling of the bars whenever the bar goes off-
chart. The numbers in the overlaid boxes report the time in seconds and, in parentheses,
the total number of timeouts and out-of-memory.

We begin our analysis withWSEQ (Figures7 and8). The total times across all the in-
stances for all solvers/encodings pairs considered are shown in Figure7. Because of the
large difference between best and worst performance, a logarithmic scale is used. For uni-
formity of presentation, in the charts out-of-memory conditions and timeouts are both ren-
dered as out-of-time results. The instances used in the experiments are the 30 instances
available viaASPCOMP. Interestingly, answer set solverCMODELSon the pure-ASP encod-
ing has excellent performance, comparable to the best performance obtained with CASP
encodings byEZCSP. Of the CASP encodings, the true-CASP encoding running inblack-
box times out on every instance. Figure8 thus focuses on the cumulative run times of
clear-boxandgrey-box(on the true-CASP encoding). The numbers on the horizontal axis
identify the instances, while the vertical axis is for the cumulative run time, that is, the value
for instancen is the sum of the run times for instances1 . . . n. Cumulative times were cho-
sen for the per-instance figures because they make for a more readable chart when there is
large variation between the run times for the individual instances. As shown in Figure8,
the true-CASP encoding running inclear-boxperformssubstantiallybetter thangrey-box.
This demonstrates that, for this domain, the tight integration schema has an advantage.

In case of theIS domain we considered two sets of experiments. In the first one (Figures9
and10), we used the 50 official instances fromASPCOMP. We refer to these instances as
easy, since the corresponding run times are rather small. Figure9 provides a comparison

http://www.mbal.tk/ezcsp/int_schemas/experiments.tgz
http://www.mbal.tk/ezcsp/int_schemas/ezcsp-binaries.tgz
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Figure 9. Performance onIS domain, easy instances: total times (ASP encoding off-chart)
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Figure 10. Performance onIS domain, easy instances: cumulative view

of the total times. Judging by the total times, tight integration schemas appear to have an
advantage, allowing the true-CASP encoding to outperform the pure-CSP encoding. As
one might expect, the best performance for the true-CASP encoding is from theclear-box
integration schema. In this case the early pruning of the search space made possible by
theclear-boxarchitecture seems to yield substantial benefits. As expected,grey-boxis also
faster thanblack-box, while CMODELS on the pure-ASP encoding runs out of memory in
all the instances.

The second set of experiments for theIS domain (Figures11 and12) consists of30 in-
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Figure 11. Performance onIS domain, hard instances: overall view
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Figure 12. Performance onIS domain, hard instances: cumulative view

stances that we generated to be substantially more complex than the ones fromASPCOMP,
and that are thus calledhard. As discussed below, this second set of experiments reveals
a remarkable change in the behavior of solver/encodings pairs when the instances require
more computational effort. The process we followed to generate the30 hardinstances con-
sisted in (1) generating randomly500 fresh instances; (2) running the true-CASP encoding
with the grey-boxintegration schema on them with a timeout of300 seconds; (3) select-
ing randomly, from those,15 instances that resulted in timeout and15 instances that were
solved in25 seconds or more. The numerical parameters used in the process were selected
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with the purpose of identifying more challenging instances than those from theeasyset
and were based on the results on that set. The execution times reported in Figure11clearly
indicate the level of difficulty of the selected instances (once again,CMODELS runs out
of memory). Remarkably, these more difficult instances are solved more efficiently by the
pure-CSP encoding that relies only on the CSP solver. In fact, the pure-CSP encoding out-
performs every other method of computation (including CLINGCON on true-CASP encod-
ing). More specifically, solving the instances with the true-CASP encoding takes between
30% and50% longer than with the pure-CSP encoding. This was not the isolated effect
of a few instances, but rather a constant pattern throughout the experiment. A possible ex-
planation for this phenomenon is that domainIS is overall best suited to the CSP solving
procedures. It seems natural for the difference in performance to become more evident as
the problem instances become more challenging, when other factors such as overhead play
less of a role. This conjecture is compatible with the difference in performance observed
earlier on the easy instances.

Another remarkable aspect highlighted by Figure12is thatclear-boxis outperformed by
grey-box. This is the opposite of what was observed on the easy instances and highlights
the fact that there is no single-best integration schema, even when one focuses on true-
CASP encodings. We hypothesize this to be due to the nature of the underlying scheduling
problem, which is hard to solve, but whose relaxations (obtained by dropping one or more
constraints) are relatively easy. Under these conditions, the calls executed byclear-boxto
the theory solver are ineffective at pruning the search space and incur a non-negligible
overhead. (The performance ofCLINGCON is likely affected by the same behavior.) In
grey-box, on the other hand, no time is wasted trying to prune the search space of the base
solver, and all the time spent in the theory solver is dedicated to solving the final CSP. The
performance ofblack-boxis likely due to the minor efficiency of its integration schema
compared togrey-box.

The final experiment focuses on theRF domain (Figures13and14). The instances used
in this experiment are the 50 official instances fromASPCOMP. The total execution times
are presented in Figure13. Although the instances for this domain are comparatively easy,
as suggested by theblack-boxandgrey-boxtimes, some of the configurations have high
total execution times. Theclear-boxencoding is also off-chart, due to timeouts on19 in-
stances. This is a substantial difference in performance compared to the other true-CASP
configurations, upon which we expand later in this section. Surprisingly, the total time of
CLINGCON is also close to off-chart. Upon closer inspection, we have found this to be due
to 3 instances for whichCLINGCON runs out of memory. This is an interesting instance of
the trade-off between speed of execution and performance stability, considering that on the
other instancesCLINGCON is very fast. The per-instance execution times forgrey-boxand
black-boxare detailed in Figure14. The figure highlights the very similar performance of
the two schemas, withblack-boxlosing only in the final 10% of the instances in spite of
its higher overhead. This is likely due to the simplicity of theRF problem: most extended
answer sets can be found with little backtracking between base and theory solver, and thus
the difference between the two schemas has little bearing on the execution times. Similarly
to the hard instances of theIS domain, the better performance ofblack-boxandgrey-boxin
comparison toclear-boxcan be explained by the fact that, in this domain, frequent checks
with the theory solver add overhead but are overall ineffective at pruning the search.
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8 A Brief Account on Related Systems

In the introduction we mentioned solversACSOLVER (Mellarkod et al., 2008), CLING-
CON (Gebser et al., 2009), IDP (Wittocx et al., 2008), INCA (Drescher and Walsh, 2011),
DINGO (Janhunen et al., 2011), MINGO (Liu et al., 2012), ASPMT2SMT (Bartholomew and
Lee, 2014), andEZSMT (Susman and Lierler, 2016). In this section we briefly remark on
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Base Solver Theory Solver

ACSOLVER SMODELS(Simons et al., 2002) constraint logic programmingsystems
CLINGCON CLASP (Gebser et al., 2007) GECODE(Schulte and Stuckey, 2008)
IDP MINISAT(ID) (Cat et al., 2014) GECODE(Schulte and Stuckey, 2008)
INCA CLASP (Gebser et al., 2007) its own CP solver

Table 2. Solvers used by state-of-the-art CASP systems

this variety of CASP systems. This is not intended as a detailed comparison between the
systems, but as a quick summary.

At a high-level abstraction, one may easily relate the architectures of theCLINGCON,
ACSOLVER, IDP, andINCA to that ofEZCSP. Given a CASP program, all of these systems
first utilize an answer set solver to compute a part of an answer set for an asp-abstraction
and then utilize a constraint programming system to solve a resulting csp-abstraction. All
of these systems implement theclear-boxintegration schema. Table2 provides a summary
of base solvers and theory solvers utilized by them.

A few remarks are due. Unlike its peers,ACSOLVER does not implement learning as its
base solverSMODELS does not support this technique. The fact that systemINCA imple-
ments its own CP solver, or, in other words, a set of its in house CP-based propagators
allows this system to take advantage of some sophisticated techniques stemming from CP.
In particular, it implements so called “lazy nogood generation”. This technique allows one
to transfer some of the information stemming from CP-based propagations into a propo-
sitional logic program extending the original input to a base solver. We also note that the
latest version ofCLINGCON, as well, bypasses the use ofGECODE by implementing its
own CP-based propagators. All of the above systems are focused on finite domain integer
linear constraints. Some of them allow for global constraints.

SystemDINGO translates CA programs into SMT modulo difference logic formulas and
applies the SMT solverZ3 (De Moura and Bjørner, 2008) to find their models. Rather than
arbitrary integer linear constraints, the system only handles those that fall into the class of
difference logic. On the other hand, the system does not pose the restriction of finite do-
main. TheEZSMT (Susman and Lierler, 2016) solver and theASPMT2SMT (Bartholomew
and Lee, 2014) solvers utilize SMT solvers to process CA programs. Both of these systems
may only deal with tight programs. They allow for arbitrary integer linear constraints. None
of the SMT-based CASP solvers allow for global constraints in their programs due to the
underlying solving technology.

Last but not least, the solverMINGO translates CA programs into mixed integer pro-
gramming expressions and then utilizes IBM ILOGCPLEX32 system to find solutions.

Susman and Lierler (2016) provide an experimental analysis of systems from all of the
families mentioned.

32 http://www.ibm.com/software/commerce/optimization/cplex-optimizer/

http://www.ibm.com/software/commerce/optimization/cplex-optimizer/
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9 Conclusions

In this paper, we have addressed in a principled way the integration of answer set solv-
ing techniques and constraint solving techniques in CASP solvers and, in particular, in the
realm of the constraint answer set solverEZCSP. To begin, we defined logic programs with
constraint atoms (CA programs). To bridge the ASP and the constraint programming as-
pects of such programs, we introduced the notions of asp-abstractions and csp-abstractions,
which allow for a simple and yet elegant way of defining the extended answer sets of CA
programs.

Next, we described the syntax of the CASP language used by the constraint answer set
solverEZCSP, which we callEZ. It is worth noting that this paper contains the first detailed
and principled account of the syntax of theEZ language. We relate programs written in
the EZCSPlanguage and CA programs. The tight relation betweenEZ programs and CA
programs makes it evident that theEZ language is a full-fledged constraint answer set
programming formalism. Recall that theEZCSPsystem originated as an attempt to provide
a simple, flexible framework for modeling constraint satisfaction problems. This yields an
interesting observation: constraint answer set programming can be seen as a declarative
modeling framework utilizing constraint satisfaction solving technology.

In this paper we also drew a parallel between CASP and SMT. We used this connec-
tion to introduce three important kinds of integration of CASP solvers:black-boxintegra-
tion, grey-boxintegration, andclear-boxintegration. We introduced a graph-based abstract
framework suitable for describing theEZCSPsolving algorithm. The idea of using graph-
based representations for backtrack-search procedures was pioneered by the SAT com-
munity. Compared to the use of pseudocode for describing algorithms, such a framework
allows for simpler descriptions of search algorithms, and is well-suited for capturing the
similarities and differences of the various configurations ofEZCSPstemming from different
integration schemas.

Finally, we presented an experimental comparison of the various integration schemas,
using the implementation ofEZCSPas a testbed. For the comparison, we used three chal-
lenging benchmark problems from theThird Answer Set Programming Competition –
2011 (Calimeri et al., 2011). The experimental analysis takes into account how differ-
ences in the encoding of the solutions may influence overall performance by exploiting
the components of the solver in different ways. The case study that we conducted clearly
illustrates the influence that integration methods have on the behavior of hybrid systems.
The main attractive feature of theblack-boxintegration schema is the ease of inception
of a new system. In realm of CASP, one may take existing off-the-shelf ASP and CSP
tools and connect them together by simple intermediate translation functions. This facil-
itates fast implementation of a prototypical CASP solver. One can then move towards a
grey-boxor clear-boxarchitecture in the hope of increased performance when a prototype
system proves to be promising. Yet, our experiments demonstrate that different integration
schemas may be of use and importance for different domain, and that, when it comes to
performance, there is no single-best integration schema. Thus, systematic means ought to
be found for facilitating building hybrid systems supporting various coupling mechanisms.
Just as the choice of a particular heuristic for selecting decision literals is often configurable
in SAT or ASP solvers via command line parameters, the choice of integration schema in
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hybrid systems should be configurable. Experimental results also indicate a strong need
for theory propagation. Standard interfaces in both base and theory systems are required in
order to easily build hybrid systems to support this feature.

Building clear and flexible APIs allowing for various types of interactions between the
solvers seems a necessary step towards making the development of hybrid solvers effec-
tive. This work provides evidence for the need of an effort towards this goal. Many SAT
solvers and SMT solvers already come with APIs that aim at facilitating extensions of
these complex software systems. We argue for this practice to be adopted by other auto-
mated reasoning communities.

Finally, our study was performed in the realm of CASP technology, but it translates
to SMT as well, given the discussed links between the two technologies. Incidentally, this
also brings to the surface the importance of establishing means of effective communication
between the two communities of constraint answer set programming and SMT solving.
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LIERLER, Y. AND TRUSZCZYŃSKI, M. 2011. Transition systems for model generators —
a unifying approach.Theory and Practice of Logic Programming, 27th Int’l. Conference
on Logic Programming (ICLP’11) Special Issue 11,4-5, 629–646.

LIFSCHITZ, V., TANG, L. R., AND TURNER, H. 1999. Nested expressions in logic pro-
grams.Annals of Mathematics and Artificial Intelligence 25, 369–389.
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Appendix A EZ – The Language ofEZCSP

The EZ language is aimed at a convenient specification of a propositional ez-program
E = 〈E ,A, C, γ, D〉. To achieve this, the language supports an explicit specification of
domains and variables, the use of non-ground rules, and a compact representation of lists
in constraints. We begin by describing the syntax of the language. Next, we define a map-
ping fromEZ programs to propositional ez-programs.

Let ΣEZ = 〈CEZ,VEZ,FEZ,REZ〉 be a signature, whereCEZ,VEZ,FEZ, andREZ de-
note pairwise disjoint sets of constant symbols, non-constraint variable symbols, function
symbols, and relation symbols respectively. SetCEZ includes symbols for integers and pre-
defined constants (fd , q , r ), denoting CSP domains. We use common convention in logic
programming and denote non-constraint variable symbols inVEZ by means of upper case
letters. Function and relation symbols are associated with a non-negative integer calledar-
ity. The arity of function symbols is always greater than0. SetFEZ includes pre-defined
symbols that intuitively correspond to arithmetic operators (e.g.,+), reified arithmetic con-
nectives (e.g.,<, =), reified logical connectives (see TableA 1), list delimiters ([ and]) and
names of global constraints (discussed later in this section). SetREZ contains pre-defined
symbolscspdomain , cspvar , required .

The notions of terms, atoms, literals, and rules are defined overΣEZ similarly to ASP,
although the notion of term is slightly expanded. Specifically, a term over signatureΣEZ =
〈CEZ,VEZ,FEZ,REZ〉 is defined as:

1. a constant symbol fromCEZ.
2. a variable symbol fromVEZ.
3. an expression of the form

f (t1, . . . , tk ), (A1)

wheref is a function symbol inFEZ of arity k and〈t1, . . . , tk 〉 are terms from cases
1–3 (If a function symbol is a pre-defined arithmetic operator, arithmetic connective,
or logical connective, then common infix notation is used.)

4. anextensional list, i.e., an expression of the form[t1, t2, . . . , tk ] whereti ’s are terms
from cases 1–3.

5. anintensional list, i.e., an expression of the form[g/k ] whereg ∈ FEZ or (with
slight abuse of notation)g ∈ REZ andk is an integer.

6. a global constraint, i.e., an expression of the formf (λ1, λ2, . . . , λk ), wheref ∈ FEZ
and eachλi is a list.37

Pre-defined arithmetic and logical connectives fromFEZ are dedicated to the specifica-
tion of constraints. The connectives are reified to enable their use within atoms of the form
required(β). Furthermore, the logical connectives enable the specification of so called “rei-
fied constraints” such as:

x ≥ 12 ∨ y < 3, (A2)

37 In constraint satisfaction, global constraints are applied to lists of terms of arbitrary length, while local con-
straints, such asx > y , apply to a fixed number of arguments. For simplicity, in the definition of the language
we disregard special cases of global constraints, whose arguments are not lists.
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Connective ConstraintDomain

∨ Disjunction
∧ Conjunction
\ Exclusivedisjunction
← or→ Implication
↔ Equivalence
! Negation

Table A 1. EZ Logical Connectives

which specifies that either constraintx ≥ 12 or constrainty < 3 should be satisfied by a
solution to a problem containing reified constraint (A2).

An EZ program is a pair〈ΣEZ, Π〉, whereΠ is a set of rules over signatureΣEZ. Ev-
ery EZ program is required to contain exactly one fact, whose head iscspdomain(fd),
cspdomain(q), or cspdomain(r). Following common practice, we denote a program sim-
ply by the set of its rules, and let the signature be implicitly defined.

Similarly to ASP, anon-ground ruleis a rule containing one or more non-constraint vari-
ables. A non-ground rule is interpreted as a shorthand for the set of propositional (ground)
rules obtained by replacing every non-constraint variable in the rule by suitable terms not
containing non-constraint variables. The process of replacing non-ground rules by their
propositional counterparts is calledgroundingand is well understood in ASP (Gebser et al.,
2007; Calimeri et al., 2008). For this reason, in the rest of this section we focus on ground
EZ programs.

We now define a mapping from a (ground)EZ programΠ to a propositional ez-program
E = 〈E ,A, C, γ, D〉. We assume thatγ, a function fromC to constraints, is defined
along the lines of Section2.2 and given. Recall that only one fact formed from relation
cspdomain is allowed in a programΠ. The fact’s head is mapped to the constraint do-
mainD by mappingμD :

μD(Π) =






FD (finite domains) ifcspdomain(fd)∙ ∈ Π
Q if cspdomain(q)∙ ∈ Π
R if cspdomain(r)∙ ∈ Π

Atoms formed from relationcspvar specify the setVPE of variables (recall thatVPE is
the set of constraint variables that appear in csp-abstractions corresponding toE). The
corresponding atoms take two forms,cspvar(v) andcspvar(v , l , u), wherev is a term
from ΣEZ andl , u belong toCEZ ∩ D . The latter form allows one to provide a range for
the variable. Specifically, setVPE is obtained from facts containing the above atoms as
follows:

VPE = {v | cspvar(v)∙ ∈ Π or cspvar(v , l , u)∙ ∈ Π}∙

The constraints that specify the range of the variables are generated by mappingμV :

μV (Π) = {required(v ≥ l) ∙ | cspvar(v , l , u)∙ ∈ Π} ∪
{required(v ≤ u) ∙ | cspvar(v , l , u)∙ ∈ Π}∙
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Next, we address the specification of lists. Let us begin by introducing some needed ter-
minology. If a term is of the form (A1) then we refer tof as afunctorand to〈t1, . . . , tk 〉
as itsarguments.For an atom of the formr(t1, . . . , tk ) we say thatr is its relationand
〈t1, . . . , tk 〉 are its arguments. The expressionterms(f , k , 〈t1, t2, . . . tm)) (with 0 ≤ m ≤
k ) denotes the set of terms fromΣEZ formed by functorf that have arityk and whose
arguments have prefix〈t1, t2, . . . , tm〉. The expressionatoms(r , k , 〈t1, . . . , tk 〉) denotes
the set of atoms formed by relationr that have arityk and whose arguments have prefix
〈t1, t2, . . . , tm〉. The expressionfacts(Π) denotes the facts inΠ. Finally, given a setS ,
lexord(S ) denotes a list[e1, e2, . . . , en ] enumerating the elements ofS in such a way that
ei ≤ ei+1 (where≤ denotes lexicographic ordering39). We can now define mappingsλv

andλr from the two forms of intensional lists to corresponding extensional lists:

• Given an expression of the form[f (t1, t2, . . . , tm)/k ], wheref ∈ FEZ, k is an inte-
ger fromCEZ, ti ’s are terms, and0 ≤ m ≤ k , its extensional representationis the
list:

λv ([f (t1, t2, . . . , tm)/k ]) = lexord(terms(f , k , 〈t1, t2, . . . , tm〉) ∩ VPE )

of all variables with functorf , arity k , and whose arguments have prefix
〈t1, t2, . . . , tm〉. For example, given a set of variables

X1 = {v(1), v(2), v(3),w(a, 1),w(a, 2),w(b, 1)},

the expression[w(a)/2] denotes the listλv (w , 2, 〈a〉) = [w(a, 1),w(a, 2)]. When
m = 0, the expression is abbreviated[f /k ]. For instance, given setX1 as above, the
expression[v/1] denotes[v(1), v(2), v(3)].

• Consider an expression[r(t1, t2, . . . , tm)/k ], wherer is not a pre-defined relation
from REZ and 0 ≤ m ≤ k . Let [a1, a2, . . . , an ] denote listlexord(facts(Π) ∩
atoms(r , k , 〈t1, . . . , tm〉)) and letαk

i denote thek th argument ofai . Then, the ex-
tensional representation,λr ([r(t1, t2, . . . , tm)/k ]), of [r(t1, t2, . . . , tm)/k ] is:

λr ([r(t1, t2, . . . , tm)/k ]) = [αk
1 , αk

2 , . . . , αk
n ]∙

For example, given a relationr ′ defined by factsr ′(a, 1, 3), r ′(a, 2, 1), r ′(b, 5, 7),
the expression[r ′(a)/3] denotes the list[3, 1] and the expression[r ′(a, 2)/3] denotes
[1]. Similarly to the previous case, when the list of arguments is empty, the expres-
sion can be abbreviated as[r/k ]∙ For instance, given a relationr ′′ for which we are
given factsr ′′(a, 3), r ′′(b, 1), r ′′(c, 2), the expression[r ′′/2] denotes〈3, 1, 2〉.

As a practical example of the use of intensional lists, suppose that, above, relationr ′′

denotes the amount of resources required for a job and suppose that we are given facts
d(a, 1), d(b, 1), d(c, 1), specifying that jobsa, b, c have duration1. Additionally, vari-
ablesst(a), st(b), st(c) represent the start time of the jobs. A cumulative constraint40 for
this scenario can be written as

required(cumulative([st/1], [d/2], [r ′′/2], 4)),

39 The choice of a particular order is due to the fact that global constraints that accept multiple lists typically
expect the elements in the same position throughout the lists to be in a certain relation. More sophisticated
techniques for the specification of lists are possible, but in our experience, this method gives satisfactory results.

40 A.1 gives information on cumulative and other global constraints.
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which is an abbreviation of41

required(cumulative([st(a), st(b), st(c)], [1, 1, 1], [3, 2, 1], 4))∙

and means that values should be assigned to variablesst(a), st(b), st(c) so that each job,
of duration1 and requiring amounts of resources3, 2, 1 respectively, can be executed on a
machine that can provide at most4 resources at any given time.

Next, let μR be a function that maps an atom of the formrequired(β) to an atom
required(β′) by:

• Replacing every occurrence of[f (t1, . . . , tm)/k ] in β by λv ([f (t1, . . . , tm)/k ]);
• Replacing every occurrence of[r(t1, . . . , tm)/k ] in β by λr ([f (t1, . . . , tm)/k ]).

The mapping is easily extended to rules and to programs as follows:

μR(a ← B . ) =

{
μ(a)← B . if a is of the formrequired(β)
a ← B . otherwise

whereB denotes the body of a rule.

μR(Π) =
⋃

r∈Π

μR(r)

Finally, let μA(Π) andμC(Π) denote mappings fromΠ to alphabetsA andC, which are
straightforward given the above construction. Thus, given anEZ programΠ, the corre-
sponding propositional ez-program is:

E(Π) = 〈 μV (Π) ∪ μR(Π), μA(Π), μC(Π), γ, μD(Π) 〉∙

A.1 Global Constraints in LanguageEZ

The global constraints supported by theEZ language include:

• all different(V ), whereV is a list of variables. This constraint, available only
in the fd domain, ensures that all the variables inV are assigned unique values.
Typically43, the implementation of the corresponding algorithm found in constraint
solvers is incomplete. Global constraintall distinct(V ), which provides a complete
implementation of the algorithm, is also supported.
• assignment(X ,Y ), whereX andY are lists ofn variables whose domain is1 ∙ ∙n.

The constraint is satisfied if, for everyi , j , Xi = j if and only if Yj = i .
• circuit(V ), whereV is a list ofn variables whose domain is1 ∙ ∙n. The constraint

is satisfied by an assignmentV1 = v1, V2 = v2, . . ., Vn = vn if the directed graph
with nodes1 . . . n and arcs〈1, v1〉, 〈2, v2〉, . . ., 〈n, vn〉 forms a Hamiltonian cycle.

• count(M ,V , ◦,E ), whereM is an integer or variable,V a list of variables,◦ an
arithmetic comparison operator, andE an integer or variable. This constraint is sat-
isfied if the number,c, of elements ofV that equalM is such thatc ◦ E .

41 Note that the first argument is of the type[f (t1, t2, . . . , tm )/k ] while the other two are of type
[r(t1, t2, . . . , tm )/k ], hence the different expansions.

43 See for examplehttp://sicstus.sics.se/sicstus/docs/3.7.1/html/sicstus_33.html

http://sicstus.sics.se/sicstus/docs/3.7.1/html/sicstus_33.html
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• cumulative(S ,D ,R,L), whereS is a list of variables,D andR are lists of non-
negative integers matching the length ofS , andL is an integer or a variable. This
constraint, which is only available in thefd domain, is typically used in scheduling
problems. In that context,S represent the start times of a set of jobs,D provides the
duration of those jobs, andR the resources they require.L is the amount of resources
available at any time step. Intuitively, the constraint assigns start times to the jobs so
that, at any time, no more than an amountL of resources is used.
• disjoint2(X ,W ,Y ,H ), whereX ,Y are lists of variables andW ,H are lists of

integers defining the coordinates and dimensions of rectangles. For example, ifX =
[x1, . . .], Y = [y1, . . .], W = [w1, . . .], H = [h1, . . .], one of the rectangles they
describe has top-left vertex〈x1, y1〉 and bottom-right vertex〈x1 +w1, y1 +h1〉. This
constraint is only available in thefd domain, and assigns values to the variables so
that the corresponding rectangles do not overlap.
• element(I ,V ,E ), whereI is an integer or variable,V a list of variables, andE an

integer or variable. This constraint is satisfied if theI th element ofV is E .
• minimum(M ,V ) andmaximum(M ,V ), whereM is a variable or integer andV

is a list of variables. These constraints are satisfied if minimum or maximum ofV
equalsM .

• scalar product(C ,X , ◦,E ), whereC is a list of integers,X is a list of variables,◦
is an arithmetic comparison operator, andE is an integer or variable. The intuitive
meaning of this constraint is that the scalar product,p, of the elements ofC andX
must be such thatp ◦ E .
• serialized (S ,D), whereS is a list of variables andD is a list of integers, intuitively

denoting start time and duration of jobs. The constraint assigns start times to the
jobs so that their execution does not overlap, and can be viewed as a special case of
cumulative .
• sum(V , ◦,E ), whereV is a list of variables,◦ an arithmetic comparison operator,

andE is an integer or a variable. This constraint assigns value to the variables so
that(

∑
v∈V v) ◦ E is satisfied.
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