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Abstract

Researchers in answer set programming and constraint programming have spent significant efforts
in the development of hybrid languages and solving algorithms combining the strengths of these
traditionally separate fields. These efforts resulted in a new research area: constraint answer set pro-
gramming. Constraint answer set programming languages and systems proved to be successful at
providing declarative, yet efficient solutions to problems involving hybrid reasoning tasks. One of
the main contributions of this paper is the first comprehensive account of the constraint answer set
language and solvaerzCsRk a mainstream representative of this research area that has been used in
various successful applications. We also develop an extension of the transition systems proposed by
Nieuwenhuis et al. in 2006 to capture Boolean satisfiability solvers. We use this extension to de-
scribe theezcspalgorithm and prove formal claims about it. The design and algorithmic details
behindezcspclearly demonstrate that the development of the hybrid systems of this kind is chal-
lenging. Many questions arise when one faces various design choices in an attempt to maximize
system’s benefits. One of the key decisions that a developer of a hybrid solver makes is settling on a
particular integration schema within its implementation. Thus, another important contribution of this
paper is a thorough case study basedaansr, focused on the various integration schemas that it
provides.

Under consideration in Theory and Practice of Logic Programming (TPLP).

1 Introduction

Knowledge representation and automated reasoning are areas of Atrtificial Intelligence
dedicated to understanding and automating various aspects of reasoning. Such tradition-
ally separate fields of Al as answer set programming (AStger, T999 Marek and
[ruszczyiski, MT999 Brewka et al. P0T71), propositional satisfiability (SAT)komes et 4.

* This version of the paper corrects inaccurate claims occurring in Section 2.3 and the beginning of Sec-
tion 3 of the paper that appeared in print at TPLP 17(4): 462-515 (2017). We are grateful to Sara Bi-
avaschi and Agostino Dovier for bringing this issue to our attention. The changes are marked by foot-
notes.
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2008, constraint (logic) programming (CSP/CLYdsSI et al. 2008 Jaffar and Mahgr
1999 are all representatives of distinct directions of research in automated reasoning. The
algorithmic techniques developed in subfields of automated reasoning are often suitable
for distinct reasoning tasks. For example, ASP proved to be an effective tool for formaliz-
ing elaborate planning tasks, whereas CSP/CLP is efficient in solving difficult scheduling
problems. However, when solving complex practical problems, such as scheduling prob-
lems involving elements of planning or defeasible statements, methods that go beyond
traditional ASP and CSP are sometimes desirable. By allowing one to leverage specialized
algorithms for solving different parts of the problem at hand, these methods may yield bet-
ter performance than the traditional ones. Additionally, by allowing the use of constructs
that more closely fit each sub-problem, they may yield solutions that conform better to the
knowledge representation principles of flexibility, modularity, and elaboration tolerance.
This has led, in recent years, to the development of a plethohgtwrid approaches that
combine algorithms and systems from different Al subfields. Constraint logic program-
ming (Jaffar and MahiT994), satisfiability modulo theories (SMTNjetwenhuis ef a).
2006, HEX-programsEiter et al, 2004, and VI-programs((alimerief-al, ?007) are all
examples of this current. Various projects have focused on the intersection of ASP and
CSP/CLP, which resulted in the development of a new field of study, often catled
straint answer set programmi(@ASP) Elkabani et al. 2004 Mellarkod et al, 2008
Constraint answer set programming allows one to combine the best of two different
automated reasoning worlds: (1) the non-monotonic modeling capabilities and SAT-like
solving technology of ASP and (2) constraint processing techniques for effective reason-
ing over non-Boolean constructs. This new area has already demonstrated promising re-
sults, including the development of CASP solvarssoLVER (Mellarkod ef-al, 2008,
CLINGCON (Gebseret al 2009, ezcsp(Balduccinj 20093, 1Dp (MWiffocx et al, 2008,
INCA (Drescher_and WalsP0T7), DINGO (Janhunen et 312017, MINGO (LCiu_ef-all,
20179, AspMT2sMT (Bartholomew and 1 &e?014), and ezsmT (Susman_and Lierler
2016. CASP opens new horizons for declarative programming applications. For instance,
research by BalduccinP0QT1) on the design of CASP languagecsprand on the corre-
sponding solver, which is nowadays one of the mainstream representatives of CASP sys-
tems, yielded an elegant, declarative solution to a complex industrial scheduling problem.
Unfortunately, achieving the level of integration of CASP languages and systems re-
quires nontrivial expertise in multiple areas, such as SAT, ASP and CSP. The crucial mes-
sage transpiring from the developments in the CASP research area is the need for stan-
dardized techniques to integrate computational methods spanning these multiple research
areas. We argue for undertaking an effort to mitigate the difficulties of designing hybrid
reasoning systems by identifying general principles for their development and studying
the implications of various design choices. Our work constitutes a step in this direction.
Specifically, the main contributions of our work are:

1. The paper provides the first comprehensive account of the constraint answer set
solverezcsp(Balduccinj 20093, a long-time representative of the CASP subfield.
We define the language ezcspand illustrate its use on several examples. We also
account for algorithmic and implementation details betdad sp
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2. To present thezcspalgorithm and prove formal claims about the system, we de-
velop an extension of the transition systems proposed by Nieuwenhuis @@ (
for capturing SAT/SMT algorithms. This extension is well-suited for formalizing the
behavior of theezcspsolver.

3. We also conduct a case study exploring a crucial aspect in building hybrid systems —
the integration schemas of participating solving methods. This allows us to shed light
on the costs and benefits of this key design choice in hybrid systems. For the case
study, we us&zcspPas a research tool and study its performance with three integra-
tion schemas: Black-boX, “ grey-box, and “clear-boX. One of the main conclu-
sions of the study is that there is no single choice of integration schema that achieves
best performance in all cases. As such, the choice of integration schema should be
made as easily configurable as it is the choice of particular branching heuristics in
SAT or ASP solvers. The work on analytical and architectural aspects described in
this paper shows how this can be achieved.

We begin this paper with a review of the ASP and CASP formalisms. In Se@tion
we present th&zcsplanguage. In SectioB we provide a broader context to our study
by drawing a parallel between CASP and SMT solving. Then we review the integration
schemas used in the design of hybrid solvers focusing on the schemas implemented in
EzCSPR SectiorB provides a comprehensive account of algorithmic aspe@gzo$r Sec-
tionBintroduces the details of the “integration schema” case study. In particular, it provides
details on the application domains considered, namely, Weighted Sequence, Incremental
Scheduling, and Reverse Folding. The section also discusses the variants of the encodings
we compared. Experimental results and their analysis form Sdgti®actior8 provides a
brief overview of CASP solvers. The conclusions are stated in Se@tion

Parts of this paper have been earlier presented at ASPOCPRAI¢cinj P0093 and
at PADL 2012 Balducciniand Tierler?017).

2 Preliminaries
2.1 Regular Programs

A regular (logic) prograris a finite set of rules of the form
ag < ay, ..., a;, not aji1, ..., Not ay, not not ayi1, ..., not not a,, D

whereqo is L (false) or an atom, and eaeh (1 < ¢ < n) is an atom so that; # q;
I<i<j<Da#a(+1<i<j<m)anda; #a (m+1<i<j<n).
This is a special case of programs with nested expressiafsiiitz_ef al, 1T999. The
expressionyg is the headof a rule @). If ap = L, we often omitL from the notation.
We call such ruleglenials We call the right hand side of the arrow ifi) the body:. If a
body of a rule is empty, we call such rulefactand omit the— symbol. We also ignore
the order of the elements in the rule. For example, aule b, c is considered identical to
a < ¢, b. If B denotes théodyof (), we write BP°* for the elements occurring in the
positivepart of the body, i.e.BP%° = {ay, ..., a;}. We frequently identify the body offlj
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with the conjunction of its elements (in whietvt not is dropped and.ot is replaced with
the classical negation connectivé

ap A NG AN N AT A G A A Gy (2)
Similarly, we often interpret a ruldlj as a clause
apV-oa V... VagVagr V...V an V oamer V..V Day 3)

In the case wheny = L in (@), ao is absent in[). Given a progranil, we write II¢ for
the set of clauses of the forrB)(corresponding to the rules in.

Answer setsAn alphabets a set of atoms. The semantics of logic programs relies on the
notion of answer sets, which are sets of atomditéxal is an atoma or its negation-a.

We say that a set/ of literals iscompleteover alphabet if, for any atoma in o, either

a € M or—-a € M. Itiseasy to see how a sat of atoms over some alphabetcan be
identified with a complete and consistent set of literals evéan interpretation):

{a|lae X}U{-a|aco\ X}

We now restate the definition of an answer set due to Lifschitz eff80Y in a form
convenient for our purposes. Bit(II) we denote the set of all atoms that occuflinThe
reductIlX of a regular progranil with respect to sek of atoms overAt(II) is obtained
from IT by deleting each rulellj such thatX does not satisfy its body (recall that we
identify its body with B)), and replacing each remaining rul® py ap «— B?°°. A setX

of atoms is aranswer sebf a regular progranil if it is subset minimal among the sets of
atoms satisfyingIT1* )<!. For example, consider a program consisting of a single rule

a «— not not a-

This program has two answer sets: eind set{a}. Indeed,(I1”)¢ is an empty set of
clauses so thdt is subset minimal among the sets of atoms that satigfi#s*. On the
other hand(T1{*})¢! consists of a single clause Set{a} is subset minimal among the
sets of atoms that satisfieg {*})<.

A choice ruleconstruc{ a} — B (Niemek and Simong?001) of theLPARSElanguage
can be seen as an abbreviation for a ruke- not not a, B (Eerraris and LifSchitzZZ00%5).
We adopt this abbreviation in the rest of the paper.

Example 1
Consider the regular program

{switch}-
lightOn <« switch, not am-
«— not lightOn-

{am}-

Intuitively, the rules of the program state the following:

(4)

e actionswitchis exogenous,
e lightis ononly if an actionswitchoccurs during the noamhours,
e it is impossible thatight is noton (in other words/ight must beor)).
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e it is either the case that these @®hours or not,
This program’s only answer set{switch, lightOn}.

We now state an important result that summarizes the effect of adding denials to a pro-
gram. For a sef\/ of literals, by M+ we denote the set of positive literals . For
instance{a, ¢,—b}* = {a, c}.

Theorem XProposition 2 from Iifschitz et al, 1999)

For a progranil, a setl” of denials, and a consistent and completeldetf literals over
At(IT), M is an answer set dl U T" if and only if M is an answer set df and M is a
model of "¢,

Unfounded setg-or a literall, by [ we denote its complement. For a conjunction (disjunc-
tion) B of literals, B stands for a disjunction (conjunction) of the complements of literals.
Forinstancea A —b = —a V b. We sometimes associate disjunctions and conjunctions of
literals with the sets containing these literals. For example, conjunetion b and dis-
junction—a V b are associated with the seta, b} of literals. By Bodies(I1, a) we denote
the set of the bodies of all rules of progrdirwith the headu (including the empty body
that can be seen as).

A set U of atoms occurring in a prograii is unfoundedMan Gelder ef a) 1997, ee,
2005 on a consistent se¥/ of literals with respect tdl if for every a« € U and every
B € Bodies(I, a), M N B # () or U N BP°* # (). We say that a consistent and complete
setM of literals overAt(II) is amodelof II if it is a model of [T¢.

We now state a result that can be seen as an alternative way to characterize answer sets
of a program.

Theorem ZTheorem on Unfounded Sets frobneé 200%)

For a progranil and a consistent and complete 3étof literals overA¢(IT), M is an
answer set ofl if and only if M is a model ofll and M contains no non-empty subsets
unfounded onV/ with respect tdlI.

Theorend is essential in understanding key features of modern answer set solvers. It pro-
vides a description of properties of answer sets that are utilized by so called “propagators”
of solvers. Sectiof relies on these properties.

2.2 Logic Programs with Constraint Atoms

A constraint satisfaction problem (CSP) is defined as a tf@leD, C'), whereX is a
set of variablesD is a domain — a (possibly infinite) set of values — afids a set of
constraints. Every constraint is a péir R), wheret is ann-tuple of variables an® is an
n-ary relation onD. When arithmetic constraints are considered, it is common to replace
explicit representations of relations as collections of tuples by arithmetic expressions. For
instance, for a domain of three valugls 2, 3} and binary-relatiorR consisting of ordered
pairs(1,1),(2,2), and(3, 3), we can abbreviate the constraint y, R) by the expression
x = y. We follow this convention in the rest of the paper.

An evaluationof the variables is a function from the set of variables to the domain
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of values,v : X — D. An evaluationv satisfiesa constraint((zi, ..., z,), R) if
(v(z1),...,v(z,)) € R. A solutionis an evaluation that satisfies all constraints.

For a constraint = (¢, R), whereD is the domain of its variables aridis the arity
of ¢, we call theconstraintz = (¢, D* \ R) the complemenbf c. Obviously, an evaluation
of variables int satisfiesc if and only if it does nosatisfye.

For a setM of literals and alphabes, by M| we denote the set of literals over alpha-
betBin M. For example{—a, b, c} (a5} = {0, b}.

A logic program with constraint atonf€A program) is a quadruple

<H’ C7 77 ‘D>7

where

C is an alphabet,

IT is a regular logic program such that @) ¢ C for every rule [) in IT and (ii)
C C A¢(II),

~ is a function fromC to constraints, and

e D is adomain.

We refer to the elements of alphaligts constraintatoms. We call all atoms occurring

in IT but not inC regular To distinguish constraint atoms from the constraints to which
these atoms are mapped, we use bars to denote that an expression is a constraint atom.
For instance|z < 12| and|z > 12| denote constraint atoms. Consider alphahethat
consists of these two constraint atoms and a funetidhat maps atoms ifi; to constraints

as follows:y; (Jz < 12|) maps to an inequality < 12, whereasy, (| > 12|) maps to

an inequalityz > 12. Clearly v1(]z < 12]) maps into an inequality > 12; similarly

v (Jz > 12]) maps into an inequality < 12.

Example 2
Here we present a sample CA program

P1 = (I1,C1,71, Dy, (%)
whereD; is a range of integers frofinto 23 andII; is a regular program
{switch}-
lightOn «— switch, not am-

— not lightOn-

{am}-

— not am, |z < 12|

(6)

— am, |z > 12|
The first four rules oflI; follow the lines of B). The last two rules intuitively state that

e itis impossible that these are nanhours while variable: has a value less thar,
e itis impossible that these amnhours while variable: has a value greater or equal
to12.

Note howz represents specific hours of a day. Also worth noting is the factithats a
global scope. This is different from the traditional treatment of variables in CLP, Prolog,
and ASP.
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LetP = (II,C,~, D) be a CA program. By we denote the set of variables occurring
in the constraintgy(c) | ¢ € C}. For instanceVp, = {z}. By II|C] we denotell
extended with choice rulege} for each constraint atom € C. We call prograniI[C] an
asp-abstractioof P. For example, an asp-abstractiin[C;] of any CA program whose
first two elements of its quadruple afrg and(; consists of rulesB) and the following
choice rules

{lz <12}
{lz = 12[}-

Let M be a consistent set of literals ovat(II). By Kp »; we denote the following con-
straint satisfaction problem

(V, D, {v(c)lc € Mic,c € C} U {y(c)|mc € Mic,c €C}),

whereV is the set of variables occurring in the constraints of the last element of the triple
above. We call this constraint satisfaction problerasp-abstractiomf P with respect
to M. For instance, a csp-abstraction®f w.r.t. {|z > 12|, —-|z < 12|, lightOn}, or

Kp, {lo>12], =|e<12|, lightOn}» IS

It is easy to see thaty consists of the variables that occur in a csp-abstractiofswf.t.
any consistent sets of literals ovét(II).

Let P = (II,C,v, D) be a CA program and/ be a consistent and complete set of
literals overAt(II). We say that\/ is ananswer sedf P if

(@l) M+ is an answer set di[C] and
(a2) the constraint satisfaction probleffp s has a solution.

Let a be an evaluation from the s&} of variables to the seb of values. We say that a
pair (M, o) is anextended answer set P if M is an answer set @ anda is a solution
to KP,M-

Example 3

Consider sample CA progra®, = (II, 1,71, D1) given in @). Consistent and complete
set

My = {switch, lightOn, —am, -z < 12, |z > 12|}

of literals overAt(I1;) is such thatM;" is the answer set dfi; [C;]. The constraint satis-
faction problemip, ,, is presented ind). Pairs

(My,z = 12)
and
(My,z = 23)
are two among twelve extended answer sets of progBm (
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2.3 CA Programs and Weak Answer Sets

In the previous section we introduced CA programs that capture programs that a CASP
solver such asLINGCON processes. Thezcspsolver interprets similar programs slightly
differently. To illustrate the difference we introduce the notion of a weak answer set for a
CA program and discuss the differences with earlier definition.

Let P = (II,C,~, D) be a CA program and be a set of atoms ovett(II). We say
that X is aweak answer seff P if

(wl) X is an answer set df[C] and
(w2) the constraint satisfaction problem

Ve, D, {7(c)lc € Xic}), (8)
has a solution.

Let o be an evaluation from the s¥%> of variables to the seb of values. We say that a
pair (X, «) is anextended weak answer sgt’P if X is an answer set oP anda is a
solution to ).

The key difference between the definition of an answer set and a weak answer set of
a CA program lies in their conditiori@2) andi(u2). (It is obvious that we can always
identify a complete and consistent set of literals with the set of its atoms.) To illustrate the
difference between the two semantics, consider simple CA program:

night — |z < 6]-
am — |z < 12]-

This program has three answer sets and four weak answer sets that we present in the fol-
lowing table.

AnswerSets: Weak Answer Sets:
{night, am, |z < 6|, |z < 12|} {night, am, |z < 6|, |z < 12|}
{—night, am, |z < 6|, |z < 12|} {am,|z < 12|}
{—night, —am,—|z < 6|,—]z < 12|} | 0
{night, |z < 6|}

Note how the last weak answer set listed yields an unexpected solution, as it suggests that
it is currently night but not am hours.
Another sample program is due to Sara Biavaschi and Agostino BDovier

— |z < 12/
— ‘l‘ > 10|'
This program has no answer sets, but has a weak answdl. gaguably, weak answer

sets exhibit aragnosticattitude toward the values of variables associated with constraints
that have no corresponding constraint atoms occurring in the answer sets.

4 This example is new to the online version of the paper. It substitutes the erroneous claim found in the TPLP
version of the paper.
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3 TheEzcsp Language

The origins of the constraint answer set solggcspand of its language go back to the
development of an approach for integrating ASP and constraint programming, in which
ASP is viewed as a specification language for constraint satisfaction prol#amisi¢cinj

20093. In this approach, (i) ASP programs are written in such a way that some of their
rules, and corresponding atoms found in their answer sets, encode the desired constraint
satisfaction problems; (ii) both the answer sets and the solutions to the constraint problems
are computed with arbitrary off-the-shelf solvers. This is achieved by an architecture that
treats the underlying solvers as black boxes and relies on translation procedures for linking
the ASP solver to constraint solver. The translation procedures extract from an answer set
of an ASP program the constraints that must be satisfied and translate them into a constraint
problem in the input language of the corresponding constraint solver. At the core of the
eEzcspspecification language is relationquired, which is used to define the atoms that
encode the constraints of the constraint satisfaction problem.

We start this section by defining the notion of propositional ez-programs and introducing
their semantics via a simple mapping into CA programs under weak answer set semantics.
Then, we move to describing the full language available to CASP practitionerstn ttse
system. The tight relation between ez-programs and CA programs makes the following ev-
ident: although the origins afzcspare rooted in providing a simple, yet effective frame-
work for modeling constraint satisfaction problems, Hresplanguage developed into a
full-fledged constraint answer set programming formalism. This also yields another inter-
esting observation: constraint answer set programming can be seen as a declarative mod-
eling framework utilizing constraint satisfaction solving technology. The MiniZinc lan-
guage Marriott_ef al, 2008 is another remarkable effort toward a declarative modeling
framework supported by the constraint satisfaction technology. It goes beyond the scope
of this paper comparing the expressiveness of the constraint answer set programming and
MiniZinc.

Syntax An ez-atonis an expression of the form

required (),

where is an atom. Given an alphab@t the corresponding alphabet ef-atoms2F4 is
obtained in a straightforward way. For instance, from an alph@pet {|z < 12|, |z >
12|} we obtainCEZ = {required (|z < 12|), required(|z > 12[)}.

A (propositional) ez-prograis a tuple

<E1A76777D>7

where

A andC are alphabets so that, C, CEZ do not share the elements,

E is a regular logic program so that(E) = A U CEZ and atoms fron®Z only
occur in the head of its rules,

v is a function fromC to constraints, and

e D is adomain.
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SemanticsWe define the semantics of ez-programs via a mapping to CA programs under
the weak answer set semantics. ket= (E, A,C,~, D) be an ez-program. B we
denote the CA program

<Ha C7 ’77 D>7
wherell extendsE by two denials

— required(3), not 3

— not required(3), [ ©)

for every ez-atomrequired (3) occurring inE . For a setX of atoms overdt(E) U C and
an evaluatiorx from the setp, of variables to the seb of values, we say that

e X is ananswer seof € if X is aweak answer seif Pg;
e apair(X,a) is anextended answer set £ if (M, «) is an extended weak answer
set of Pg.

Example 4
We now illustrate the concept of an ez-program on our running example of the “light do-
main”. Let A; denote the alphabdtswitch, lightOn, am}. Let E; be a collection of
rules

{switch}-

lightOn «— switch, not am-

— not lightOn-

1
{am}- (10)
required (|z > 12|) «+ not am-
required(|z < 12]) «— am-
whereC{# forms an alphabet of ez-atoms. L&tbe an ez-program
<E17A1acla’yl:D1>' (11)

The first member of the quadrupgi®: is composed of the rules frori) and of the denials

— required(|z > 12]), not |x > 12|
— required(|z < 12|), not |z < 12|

— not required(|z > 12|), |z > 12| (12)
— not required(|z < 12|), |z < 12|
Ez-program€; has one answer set
Ny = {switch, lightOn, required(|xz > 12|), |z > 12|)}
Pairs
(Ny,z = 12) (13)

and(N;, z = 23) are two among twelve extended answer sets of ez-pro§fam

6 Formula @) is an extension of the corresponding formula from the TPLP version of the paper, which only
included the first of the two denials. The latest definition of the semantics of ez programs coincides with the
semantics of these programs introducedBaigiticcinj 20091). The proof of this claim can be obtained in a
straightforward way from the definition of reduct and its minimal models.
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At the core of theezcspsystem is itssolveralgorithm (described in Sectidg), which
takes as an input a propositional ez-program and computes its answer sets. In order to allow
for more compact specifications, tagcspsystem supports an extension of the language
of propositional ez-programs, which we calt. The language is described by means of
examples next. Its definition can be foundAppendixA Also, the part of formalization
of the Weighted Sequence domain presented in SeBtillustrates the use of the so called
reified constraints, which form an important modeling tool of t#lzdanguage.

Example 5
In the EZ language, the ez-prografh introduced inEzample B is specified as follows:

espdomain(fd)-
espvar(z,0,23)-

{switch}-

lightOn «— switch, not am-
«— not lightOn-

{am}-

required(x > 12) « not am-
required(z < 12) « am-

The first rule specifies domain of possible csp-abstractions, which in this case is that of
finite-domains. The second rule states thata variable over this domain ranging between
0 and23. The rest of the program follows the lines @) almost verbatim.
It is easy to see that denidl)(poses the restriction on the form of the answer sets of
ez-programs so that an atom of the foreguired (3) appears in an answer set if and only
if an atom of the fornB appears in it. Thus, when tlEzcspsystem computes answer sets
for theEz programs, it omitg atoms. For instance, for the program of this exangzesp
will output:

{cspdomain(fd), cspvar(zx,0,23), required(xz > 12), switch, lightOn, z = 12}

to encode extended answer $E3)(

Example 6

TheEez language includes support for a number of commonly-used global constraints, such
as all_different and cumulative (more details irBppendix4). For example, a possible
encoding of the classical “Sead/lore=Money” problem is:

cspdomain(fd).
cspuar(s,0,9). espvar(e,0,9). ... espvar(y,0,9).
required (s * 1000 + e x 100 + n * 10 + d+
m*1000+ 0% 100+ r*x 10+ e =
m % 10000 + o % 1000 + n * 100 + e * 10 + y).
required(s # 0). required(m # 0).
required (all_different([s, e, n, d, m, 0,7, y])).
As before, the first rule specifies the domain of possible csp-abstractions. The next set

of rules specifies the variables and their ranges. The remaining rules state the main con-
straints of the problem. Of those, the final rule encodesianifferent constraint, which
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informally requires all of the listed variables to have distinct values. The argument of the
constraint is an extensional list of the variables of the CSP. An extensional list is a list that
explicitly enumerates all of its elements.

A simple renaming of the variables of the problem allows us to demonstrate the inten-
sional specification of lists:

espdomain(fd).
espvar(v(s),0,9). espvar(v(e),0,9). ... cspvar(v(y),0,9).
required(v(s) * 1000 + v(e) * 100 4+ v(n) * 10 + v(d)+

v(m) % 1000 4+ v(0) * 100 + v(r) * 10 + v(e) =

v(m) * 10000 + v(0) * 1000 + v(n) * 100 + v(e) * 10 + v(y)).
required(v(s) # 0). required(v(m) # 0).
required (all_different([v/1])).

The argument of the global constraint in the last rule is intensionaldjst], which is
a shorthand for the extensional list,(d), v(e), v(m),v(n),...], of all variables of the
form v (-).

Example 7
Consider a riddle:

There are either 2 or 3 brothers in the Smith family. There is a 3 year difference between one
brother and the next (in order of age) for all pairs of brothers. The age of the eldest brother is twice
the age of the youngest. The youngest is at least 6 years old.

Figurel presents thez program that captures the rid8laVe refer to this program aB;.

Note how this program contains non-constraint varialdled/, B1, B2, BE, andBY . As
explained inBppendix4, the grounding process that occurs in #iBcspPsystem trans-
forms these rules into propositional (ground) rules using the same approach commonly
applied to ASP programs. For instance, the last rule of programesults in three ground

rules

required(age(1) > 6) — index(1), youngest_brother(1)-
required(age(2) > 6) — index(2), youngest_brother(2)-
required (age(3) > 6) — index(3), youngest_brother(3)-

The ez-program that correspondsitphas a unique extended answer set

({num_brothers(3),
cspvar(age(1),1,80),. .., espvar(age(3),1,80),...},
{(age(1) = 12, age(2) = 9, age(3) = 6})-

The extended answer set states that ther@ arethers, of agé2, 9, and6 respectively.

8 The reader may notice that the program features the use of arithmetic connectives both within terms and as
full-fledged relations. Although, strictly speaking, separate connectives should be introduced for each type of
usage, we abuse notation slightly and use context to distinguish between the two cases.
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% There are either 2 or 3 brothers in the Smith family.
num_brothers(2) < not num_brothers(3).
num_brothers(3) < not num_brothers(2).

indez(1). index(2). index(3).
is_brother(B) «— index(B), index(N), num_brothers(N), B < N-

eldest_brother(1).
youngest_brother(B) «— index(B), num_brothers(B).

espdomain(fd).
cspvar(age(B),1,80) «— index(B), is_brother(B).

% 3 year difference between one brother and the next.
required(age(B1) — age(B2) = 3)) «—
index(B1), index(B2), is_brother(B1),is_brother(B2), B2= Bl1+1-

% The eldest brother is twice as old as the youngest.
required(age(BE) = age(BY ) % 2) «—
index(BE), index(BY), eldest_brother(BE), youngest_brother(BY).

% The youngest is at least 6 years old.
required(age(BY') > 6) «— index(BY), youngest_brother(BY)-

Figure 1. Theez program for the riddle oF zample [

4 Satisfiability Modulo Theories and its Integration Schemas

We are now ready to draw a parallel between constraint answer set programming and sat-
isfiability modulo theories. To do so, we first define the SMT problem by following the
lines of Nieuwenhniset a| 2006 Section 3.1). Atheory T is a set of closed first-order
formulas. A CNF formulaF' (a set of clauses) over a fixed finite set of ground (variable-
free) first-order atoms i§'-satisfiablgf there exists an interpretation, in first-order sense,
that satisfies every formula in setU T'. Otherwise, it is called-unsatisfiable. Lef/ be

a set of ground literals. We say tht is a T-model of F' if

(ml1) M is a model ofF' and
(m2) M, seen as a conjunction of its elementsTissatisfiable

The SMT problem for a theoryl” is the problem of determining, given a formulg,
whether F' has aT-model. It is easy to see that in the CASP probl@ibiC] in condi-
tion[@D) plays the role of’ in (MI)in the SMT problem. At the same time, conditita®)
is similar to conditior{m2).

Given this tight conceptual relation between the SMT and CASP formalisms, it is not
surprising that solvers stemming from these different research areas share several design
traits even though these areas have been developing to a large degree independently (CASP
being a younger field). We now review major integration schemas/methods in SMT solvers
by following (Nietwenhuis et al 2006 Section 3.2). During the review, we discuss how
different CASP solvers account for one or another method. This discussion allows us to
systematize design patterns of solvers present both in SMT and CASP so that their relation
becomes clearer. Such a transparent view on architectures of solvers immediately translates
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findings in one area to the other. Thus, although the case study conducted as part of our
research uses CASP technology only, we expect similar results to hold for SMT, and for
the construction of hybrid automated reasoning methods in general. To the best of our
knowledge there was no analogous effort — thorough evaluation of effect of integration
schemas on performance of systems —in the SMT community.

In every approach discussed, a formilds treated as a satisfiability formula, where
each atom is considered as a propositional symbadettingabout the theoryl’. Such a
view naturally invites an idea dézyintegration: the formuld is given to a SAT solver, if
the solver determines thétis unsatisfiable theA’ has noT-model. Otherwise, a proposi-
tional modelM of F' found by the SAT solver is checked by a specialiZédolver, which
determines whetheaV/ is T-satisfiable. If so, then it is also’B-model of F', otherwiseM
is used to build a clausé€ that precludes this assignment, i.&f, = C while F' U C has
a T-model if and only if ' has aT-model. The SAT solver is invoked on an augmented
formula F'U C. This process is repeated until the procedure findsraodel or returns un-
satisfiable. Note how in this approach two automated reasoning systems — a SAT solver and
a specializedl’-solver — interleave: a SAT solver generates “candidate models” whereas
a T-solver tests whether these models are in accordance with requirements specified by
theory T'. We find that it is convenient to introduce the following terminology for the fu-
ture discussion: &asesolver and aheorysolver, where the base solver is responsible for
generating candidate models and theorysolver is responsible for any additional testing
required for stating whether a candidate model is indeed a solution. In this paper we refer
to lazy evaluation ablack-boxto be consistent with the terminology often used in CASP.

It is easy to see how thiglack-boxintegration policy translates to the realm of CASP.
Given a CA progran, an answer set solver serves the role of base solver by generat-
ing answer sets of the asp-abstractiorfofthat are “candidate answer sets” fB) and
then uses a CLP/CSP solver as a theory solver to verify whether con@iis satisfied
on these candidate answer sets. Originally, constraint answer set satvepembraced
the black-boxintegration approach in its desig?.To solve a CASP problem vialack-
box approachgzcspoffers a user various options for base and theory solvers. Table
shows some of the currently available solvers. The variety of possible configurations of
ezcspillustrates howblack-boxintegration provides great flexibility in choosing under-
lying base and theory solving technology in addressing problems of interest. In principle,
this approach allows for a simple integration of constraint programming systems that use
MiniZinc and FlatZin&® as their front-end description languages. Implementing support
for this interface is a topic of future research.

The Davis-Putnam-Logemann-Loveland (DPLL) procediBevis_ef al, 1962 is a
backtracking-based search algorithm for deciding the satisfiability of a propositional CNF
formula. DPLL-like procedures form the basis for most modern SAT solvers as well as an-
swer set solvers. If a DPLL-like procedure underlies a base solver in the SMT and CASP
tasks then it opens a door to several refinementdaaik-boxintegration. We now describe
these refinements.

10 (Baldiiceinj ZO0YS refers toblack-boxintegration ofezcspaslightweightintegration of ASP and constraint
programming.
T pftpe /A Minizine_org!
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| Base Solers | Theory Solers |

SMODELS (Simons ef d|.2002)
CLASP (Gehser efa| 2007)
CMODELS (Giunchiglia_et-al, 2006

SICSrus PROLOG (Carlsson and Mildng 20712
BPROLOG(Zhaot, 2012

Table 1. Base and theory solvers supporteé&bgspr

In the black-boxintegration approach a base solver is invoked iteratively. Consider the
SMT task: a CNF formuld’; ., of thei + 1t iteration to a SAT solver consists of a CNF
formula F; of the it iteration and an additional clause (or a set of clauses). Modern DPLL-
like solvers commonly implement such techniquéresementasolving. For instance, in-
cremental SAT-solving allows the user to solve several SAT probléms ., F,, one after
another (using a single invocation of the solver}'jf ; results fromF; by adding clauses.

In turn, the solution toF; ; may benefit from the knowledge obtained during solving
Fi,..., F;. Various modern SAT-solvers, includingiNISAT (EEn_and Bierg?200%5 EEn
and_Sirenssan2003, implement interfaces for incremental SAT solving. Similarly, the
answer set solveTMODELS implements an interface that allows the user to solve several
ASP problemdl,, ..., II, one after another, ifl,, ; results fromlI; by adding a set of de-
nials. It is natural to utilize incrementaPLL-like procedures for enhancing théack-box
integration protocol: we call this refinemegtey-boxintegration. In this approach, rather
than invoking a base solver from scratch, an incremental interface provided by a solver is
used to implement the iterative process. CASP satzerspimplementgyrey-boxintegra-

tion using the above mentioned incremental interfacetapDELS.

Nieuwenhuis et al. 4006 also review such integration techniques used in SMoras
line SAT solverandtheory propagatianNe refer to on-line SAT solver integrationegar-
boxhere. In this approach, tHE-satisfiability of the “partial” assignment is checked, while
the assignment is being built by the DPLL-like procedure. This can be done fully eagerly as
soon as a change in the partial assignment occurs, or with a certain frequency, for instance
at some regular intervals. Once the inconsistency is detected, the SAT solver is instructed to
backtrack. The theory propagation approach extendsl#ae-boxtechnique by allowing a
theory solver not only to verify that a current partial assignmenf/isconsistent” but also
to detect literals in a CNF formula that must hold given the current partial assignment.

The CASP solvecLINGCON exemplifies the implementation of the theory propagation
integration schema in CASP. It utilizes answer set sotuexsp as the base solver and
constraint processing systeBECODE (Schulfe_and_Stuck2w008 as the theory solver.
TheAcsoLVERandIDP systems are other CASP solvers that implement the theory propa-
gation integration schema. In the scope of this work, the CASP seia@sPwas extended
to implement theslear-boxintegration schema usingMODELS. It is worth noting that alll
of the above approaches consider the theory solver as a black box, disregarding its inter-
nal structure and only accessing it through its external API. To the best of our knowledge,
no systematic investigation exists of integration schemas that also take advantage of the
internal structure of the theory solver.
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An important point is due here. Some key details abouigtieg-boxandclear-boxin-
tegration schemas have been omitted in the presentation above for simplicity. To make
these integration schemas perform efficiently, learning — a sophisticated solving technique
stemming from SAThang efal.?007) — is used to capture the information (explanation)
retrieved due to necessity to backtrack upon theory solving. This information is used by
the base solver to avoid similar conflicts. SectioRpresents the details on the integration
schemas formally and points at the key role of learning.

5 TheEzcsP Solver

In this section, we describe an algorithm for computing answer sets of CA programs. A
specialization of this algorithm to ez-programs is used irethespsystem. For this reason,

we begin by giving an overview of the architecture of #mcspsystem. We then describe
the solving algorithm.

5.1 Architecture

EZ Extended
Program Answer Sets

Legal ASP Propositional
rogram ez-program

(= )

Solutions

Translator

&EZCSP System /

Figure 2. Architecture of thezcspsystem

Prolog
[ASP Solver] [ s PIOg=T P Solver

Figure @ depicts the architecture of the system, while the narrative below elaborates
on the essential details. Both are focused on the functioning of zlesp system while
employing theblack-boxintegration schema.

The first step of the execution azcsp(corresponding to there-processatomponent
in the figure) consists in running a pre-processor, which translates andagaiogram
into a syntactically legal ASP program. This is accomplished by replacing the occurrences
of arithmetic functions and operatorssiequired (3) atoms by auxiliary function symbols.

For example, an atomequired(v > 2) is replaced byrequired(gt(v,2)). A similar pro-
cess is also applied to the notation for the specification of lists. For instance, an atom
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required (all_different([z, y])) is translated intoequired (all_different (list(z,y))). The
Groundercomponent of the architecture transforms the resulting program into its proposi-
tional equivalent, a regular program, using an off-the-shelf grounder sk as 0 (Geh-

ser efal.?007). This regular program is then passed to #ze sp Solvercomponent.

The Ezcsp Solvercomponent iterates ASP and constraint programming computations
by invoking the corresponding components of the architecture. SpecificalSIReSolver
component computes an answer set of the regular program using an off-the-shelf ASP
solver, such asMoDELS or cLASP.P If an answer set is found, tlezcspsolver runs the
CLP Translatorcomponent, which maps the csp-abstraction corresponding to the com-
puted answer set to a Prolog program. The program is then passed @Pti&olver
component, which uses the CLP solver embedded in a Prolog interpreter, e.g. SICStus
or BPROLOG™ to solve the CSP instance. For example, for the sample program presented
in Exzample B, theEzcspsystem produces the answerSet

{cspdomain(fd), cspvar(z,0,23), required(xz > 12), switch, lightOn}-

The csp-abstraction of the program with respect to this answer set is translated into a Prolog
rule:

solve([z, Vz]) : — Vop >0, V, <23, V, >12, labeling([Vz])-

In this case, the CLP solver embedded in the Prolog interpreter will find feasible assign-
ments for variablel/,. The head of the rule is designed to return a complete solution and
to ensure that the variable names used inghgrogram are associated with the corre-
sponding values. The interested reader can refeBatd(iccinj 20093 for a complete
description of the translation process.

Finally, the EzCcspP Solver component gathers the solutions to the respective csp-
abstraction and combines them with the answer set obtained earlier to form extended
answer sets. Additional extended answer sets are computed iteratively by finding other
answer sets and the solutions to the corresponding csp-abstractions.

5.2 Solving Algorithm

We are now ready to present our algorithm for computing answer sets of CA programs.
In earlier work, Lierler 2014 demonstrated how the CASP languageNGCcoN (Gehséer
efal, 2009 as well as the essential subset of the CASP langé#gef ACSOLVER (Mel2
larkod ef al, 2008 are captured by CA programs. Based on those results, the algorithm
described in this section can be immediately used as an alternative to the procedures im-
plemented in systemsLINGCON andACSOLVER.

Usually, software systems are described by means of pseudocode. The faztdhat
system follows an “all-solvers-in-one” philosophy combined with a variety of integration
schemas complicates the task of describing it in this way. For example, one configuration

13 The ASP solver to be used can be specified by command-line options.

14 The Prolog interpreter is also selectable by command-line options.

15 For illustrative purposes, we show the atom required(z > 12) in place of the ASP atom obtained from
the pre-processing phase.
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of EzcsPmay invoke answer set solverLASP via black-boxintegration for enumerating
answer sets of an asp-abstraction of CA program, whereas another may awmoke
ELS via grey-boxintegration for the same task. Thus, rather than committing ourselves to
a pseudocode description, we follow a path pioneered by Nieuwenhuis Z08H.(In
their work, the authors devised a graph-based abstract framework for describing backtrack
search procedures for Satisfiability and SMT. Lierl@d14) designed a similar abstract
framework that captures trezcspalgorithm in two cases: (a) wheszcspinvokes an-
swer set solveBMODELS via black-boxintegration for enumerating answer sets of asp-
abstraction program, and (b) whemcsprinvokes answer set solverLAsp via black-box
integration.

In the present paper we introduce a graph-based abstract framework that is well suited
for capturing the similarities and differences of the various configuratioegz o§pstem-
ming from different integration schemas. The graph-based representation also allows us to
speak of termination and correctness of procedures supporting these configurations. In this
framework, nodes of a graph representing a solver capture its possible “states of compu-
tation”, while edges describe the possible transitions from one state to another. It should
be noted that the graph representation is too high-level to capture some specific features of
answer set solvers or constraint programming tools used within diffemagpPconfigura-
tions. For example, the graph incorporates no information on the heuristic used to select a
literal upon which a decision needs to be made. This is not an issue, however: stand alone
answer set solvers have been analyzed and compared theoretically in the lité&kafiake (
efal, 2006, (Giunchiglha ef al,. 2008 (Lierler and Truszczyski, 2017 as well as empir-
ically in biennial answer set programming competitioB®bser et al 2007, (Denecker
ef al, P00Y, (Calimerief al, Z0T7). At the same timegzcspPtreats constraint program-
ming tools as “black-boxes” in all of its configurations.

5.2.1 AbstraceEzcspP

Before introducing the transition system (graph) capable of capturing a varieasr
procedures, we start by developing some required terminology. To make this section more
self-contained we also restate some notation and definitions from earlier sections. Recall
that for a setM of literals, by M+ we denote the set of positive literals M. For a CA
programP = (I1,C, v, D), a consistent and complete gt of literals overA#(II) is an
answer setf P if

(@l) M is an answer set di[C] and
(a2) the constraint satisfaction probleffp s has a solution.

As noted in Sectio1 we can view denials as clauses. Given a de6igby G we will
denote a clause that correspondgtpe.qg.,(< not pm)° denotes a clausem. We may
sometime abuse the notation and refer to a clause as if it were a denial. For instance, a
clausepm may denote a denial- not pm.

We now introduce notions for CA programs that parallel "entailment” for the case of
classical logic formulas. Le®? = (I1, C, v, D) be a CA program. We say th& asp-entails
a denialG over At(IT) when for every complete and consistent&eof literals overA¢(I1)
such thatM * is an answer set dfl[C], M satisfiesG'. In other words, a denial is asp-
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entailed if any set of literals that satisfies the condifial) of the answer set definition is
such that it satisfies this denial. CA progréhcp-entailsa denialG over At(II) when (i)

for every answer se¥/ of P, M satisfiesG " and (i) there is a complete and consistent set
N of literals overA¢(II) such thatV * is an answer set dfi[C] and NV does not satisfy.
Notice that if a denial5 is such that a CA prograr®® cp-entailsG, then? does not asp-
entail G. We say thafP entailsa denialG whenP either asp-entails or cp-entai(s. For

a consistent seV of literals overA¢(IT) and a literall, we say thatP asp-entaild with
respect taV, if for every complete and consistent gt of literals overA¢(IT) such that
M is an answer set di[C] andN C M, € M.

Example 8

Recall progrant?; = (II,C1,v1, D1) from Exzample Q. It is easy to check that denial

«— not lightOn- (or, in other words clausg&ghtOn) is asp-entailed b{P;. Also, P; asp-

entails literalsswitch and—am with respect to seflightOn} (and also with respect tb).
Let regular progranil, extend progranil; from Ezample B by rules

{pm}-
— not pm, |z > 12|
— |z <12

Consider a CA prograr®, that differs fromP; only by substituting its first membé&r; of
quadruple(ITy, Cy,v1, D1) by II5. Denial«— not pm (or clausepm) is cp-entailed byP,.
Indeed, the only answer set of this progranipe:, —|z < 12|, |z > 12[}. This set satisfies
(< not pm)©, in other words, clausgm. Consider sef—pm, -|z < 12|, |z > 12|} that
does not satisfy claugen. Set of atomg—pm, =|z < 12|, |z > 12|}t = {|z > 12|} is
an answer set dfi;[Cy].

For a CA progranP = (I, C, v, D) and a set" of denials, byP[I'] we denote the CA pro-
gram(ITUT', C, v, D). The following propositions capture important properties underlying
the introduced entailment notions.

Proposition 1

For a CA progranP = (II,C,, D) and a sel" of denials overAt(II) if P asp-entails
every denial il then (i) program3I[C] and(ITUT")[C] have the same answer sets; (i) CA
programsP andP[I'] have the same answer sets.

Proof

We first show that condition (i) holds. From Theord@and the fact thaP asp-entails
every denial ifT" it follows that programgI[C] and(IT U T')[C] have the same answer sets.
Condition (ii) follows from (i) and the fact thak'p 1, = Kp(r), s for any answer set/ of
IT[C] (and, consequently, fgiT U T')[C]). O

Proposition 2
For a CA progrant? = (II,C,~, D) and a sef" of denials overA¢(II) if P cp-entails
every denial il then CA program¢ andP[I'] have the same answer sets.
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Proof
Let P be a CA progran{ll, C,~, D). It is easy to see that (&[C]UT = (ITUT)[C] and
(b) Kp.mr = Kp(r),m-

Right-to-left: TakeM to be an answer set d0. By the definition of an answer set,
(i) M is an answer set dfl[C] and (ii) the constraint satisfaction problef#s ,, has a
solution. SinceP cp-entails every denial ifi, we conclude tha/ is a model ofl'“. By
Theoreml, M+ is an answer set dfi[C] U T'. From (a) and (b) we derive thdf is an
answer set oP[T].

Left-to-right: TakeM to be an answer set @?[I']. By the definition of an answer set,
(i) M is an answer set ¢l UT")[C] and (i) the constraint satisfaction proble# 1y »/
has a solution. From (i) and (a) it follows thaf ™ is an answer set dff[C] U T'. By
Theorendl, M is an answer set dfi[C]. By (b) and (ii) we derive that)/ is an answer
setofP. [

Proposition 3

For a CA progran = (II,C, v, D) and a sef" of denials overd¢(II) if P entails every
denial inT" then (i) every answer set ¢fI U I")[C] is also an answer set ®f[C]; (ii) CA
programsP andP[I'] have the same answer sets.

Proof
Condition (i) follows from Theorendl and the fact thafIT)[C] and (IT U T")[C] only differ
in denials.

We now show that condition (ii) holds. SEtis composed of two disjoint sel§ andI';
(i.e.,I' =Ty UT;), wherel'; is the set of all denials that are asp-entailedbgndTI’; is
the set of all denials that are cp-entailed/yBy Propositiorl (ii), CA programsP and
P[I'1] have the same answer sets. By Proposiip8A programsP[I';] andP[[; U T's]
have the same answer sets. It immediately follows that CA progfamsd P[I'; U I's]
have the same answsets. []

For an alphabet, a recordrelative too is a sequencé/ composed otlistinct literals
overo or symbol_L, some literals are possibly annotated by the symbolvhich marks
them asdecisiorliterals such that:

1. the set of literals inV/ is consistent o/ = M'l, where the set of literals if’ is
consistent andontains,

2. if M = M'IAM", then neithei nor itsduall is in M’, and

3. if L occursinM, thenM = M’L andM’ does not contair_.

We often identify records with the set of its members disregarding annotations.

For a CA progran® = (I, C,~, D), a staterelative toP is either a distinguished state
Failstateor a triple M||T'||A where M is a record relative tod¢(II); " and A are each
a set of denials that are entailed By Given a statel||T'||A if neither a literall nor [
occurs inM, then! is unassignedby the state; if L does not occur iri/ as well as for any
atomg it is not the case that bothand—a occur in M, then this state isonsistentFor a
stateM ||T'||A, we callM, T', andA the atomic permanentandtemporaparts of the state,
respectively. The role of the atomic part of the state is to track decisions (choices) as well
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Decide M||T[|A = M I?||T||A if [is unassigned by/ and is consistent
Fail MIITIIA = Failstate i { % i(:Soirrlltzlci)r?sS ir?;egégrs"ijon literals
Backtrack P2 QlitliA = P IT|IA i { g ij)nct)aiii;nr?(?r(ljseizitsegr; TiTedraIs.
ASP-Propagate M||T||A = M l||T||A if P’ U A] asp-entaild with respect ta\f
CP-Propagate M||T||A = M L||T||A if Kp,m has no solution

Learn M||IT||A = M||ITU{R}|A if P UA]entails denialk andR ¢ T U A
Learr: M||T||A = M|T||AU{R} if P[I'UA]entailsdenialR andR ¢ " UA
Restart M|IT|A = 0||T)|A if M #0

Restart. M||T||A = 0|10 if M #0

Figure 3. The transition rules of the graphp.

as inferences that the solver has made. The permanent and temporal parts are responsible
for assisting the solver in accumulating additional information — entailed denials by a given
program — that becomes apparent during the search process.

ASP-P ti
0//0][0 opagate

ASP-Propagate
lightOn]|0]]0 —opag

ASP-Propagate
lightOn switch||0||0 2opag

ASP-Propagate
lightOn switch —am||0]|0 _{opag

lightOn switch —am —|z < 12| [|0]|0 Degide

CP-Propagate
lightOn switch —am —|z < 12| =|z > 12|°|0]|0 :>p g

lightOn switch —am —|z < 12| =|z > 12| L1||0||0 BacgraCk

lightOn switch —am —|z < 12| |z > 12| ||0]|0

Figure 4. Sample path in gragzp, .

We now define a grapbz, for a CA prograniP. Its nodes are the states relativéRo
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These nodes intuitively correspond to states of computation. The edges of theeggaph
are specified by nine transition rules presented in Fiufiehese rules correspond to pos-
sible operations by thezcspsystem that bring it from one state of computation to another.
A path in the graplezp is a description of a process of search for an answer set dhe
process is captured via applications of transition rules. The@rarroduced later in this
section makes this statement precise.

Example 9

Recall CA progranP; = (I1y,C1,v1, D1) introduced inEzample B. Figured presents a
sample path izp, with every edge annotated by the name of a transition rule that justifies
the presence of this edge in the graph.

Now we turn our attention to an informal discussion of the role of each of the transition
rules inEzp.

5.2.2 Informal account on transition rules

We refer to the transition ruleBecide Fail, Backtrack ASP-PropagateCP-Propagatef
the graprez, asbasic

The unique feature of basic rules is that they only concern the atomic part of a state.
Consider a stat® = M||T'||A. An application of any basic rule results in a state whose
permanent and temporal parts remain unchangedl'iandA respectively (unless it is the
case ofFail).

Decide An application of the transition rul@ecideto S results in a state whose atomic
part has the fornd/ 2. Intuitively this rule allows us to pursue evaluation of assignments
that assume value of literalto be true. The fact that this literal is marked Aysuggests

that we can still reevaluate this assumption in the future, in other words to backtrack on
this decision.

Fail The transition rulé-ailspecifies the conditions on atomic paftof stateS suggesting
that Failstatas reachable frond/ . Intuitively, if our computation brought us to such a state
transition toFailstateconfirms that there is no solution to the problem.

Backtrack The transition rulBacktrackspecifies the conditions on atomic part of the state
suggesting when it is time to backtrack and what the new atomic part of the state is after
backtracking. Rulesail and Backtrackshare one property: they are applicable only when
states are inconsistent.

ASP-Propagate The transition ru#sP-Propagatspecifies the condition under which a
new literal [ (without a decision annotation) is added to an atomic part. Such rules are
commonly callecoropagatorsNote that the condition cASP-Propagate

P[T U A] asp-entaild with respect tal/ (14)

is defined over a program extended by permanent and temporal part. This fact illustrates the
role of these entities. They carry extra information aquired/learnt during the computation.
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Also condition [[2) is semantic. It refers to the notion of asp-entailment, which is defined

by a reference to the semantics of a program. Propagators used by software systems typ-
ically use syntactic conditions, which are easy to check by inspecting syntactic properties
of a program. Later in this section we present instances of such propagators, in particular,
propagators that are used within thecspsolver.

CP-Propagate The transition rul-Propagatspecifies the condition under which sym-
bol L is added to an atomic part. Thus it leads to a state that is inconsistent suggesting that
the search process is either ready to fail or to backtrack. The conditi@rRd?ropagate

Kp y has no solution

represents a decision procedure that establishes whether the CSP pfgblgrhas solu-
tions or not.

We now turn our attention to non-basic rules that concern permanent and temporal parts
of the states of computation.

Learn Recall the definition of the transition rulearn
M|T||A = M| TU{R}|A if P[I"UA]entails deniaR andR ¢ T U A

An application of this rule to a state ||T'|| A, results in a state whose atomic and temporal
parts stay unchanged. The permanent part is extended by a &ehmuitively the effect

of this rule is such that from this point of computation the “permanent” denial becomes
effectively a part of the program being solved. This is essential for two reasons. First, if
the learnt denial? is cp-entailed theAlUT U A andITUT U A U {R} are programs

with different answer sets. In turn, the ruleSP-Propagatenay be applicable to some
state N||I' U {R}||A and not toN||T'||A. Similarly, due to the fact that only “syntactic”
instances 0ASP-Propagateare implemented in solvers, the previous statement also holds
for the case whelR is asp-entailed.

Learrd The role of the transition rul&earrt is similar to that ofLearn but the learnt
denials by this rule are not meant to be preserved permanently in the computation.

Restart and RestarfThe transition ruleRestartallows the computation to start from
“scratch” with respect to atomic part of the state. The transition Réstart forces the
computation to start from “scratch” with respect to not only atomic part of the state but
also all temporally learnt denials. These restart rules are essential in understanding the key
differences between various integration strategies that are of focus in this paper.

5.2.3 Formal properties afzp

We call the statd||()||() — initial. We say that a node in the graphsemi-terminaff no
rule other tharLearn Learrf, Restart Restart is applicable to it (or, in other words, if no
single basic rule is applicable to it). We say that a pathzp is restart-safevhen, prior to
any edgee due to an application dRestarbr Restart on this path, there is an edgédue
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to an application oflearnsuch that: (i) edge’ precedes; (ii) ¢’ does not precede any
other edge:” # e due toRestarbr Restart. We say that a restart-safe patls maximal
if (i) the first state int is an initial state, and (ii} is not a subpath of any restart-safe path

t'# t.

Example 10

Recall CA progran; = (I1y,Cy,v1, D1) introduced inEzample B. Trivially a sample
path inEzp, in FigureB is a restart-safe path. A nontrivial example of restart-safe path in
Ezp, follows

0[1019 regm

ASP-Propagate
0][{ < not switch}||0 —opag

(15)

lightOn||{< not switch}||0 Regtart

0]|{< not switch}||0-
Similarly, a path that extends the path above as follows
Learn
=

ASP-Propagate
O||{< not switch, — am}||0 —opag

lightOn||{< not switch, < am}||0 Restart

O||{< not switch, — am}||0

is restart-safe.
A simple path inEzp, that is not restart-safe

ASP-P t
0/(0][0 opagate

lightOn||0]|0
0[1010-

Indeed, condition (i) of the restart-safe definition does not hold. Another example of a not
restart-safe path is a path that extends P&t 4s follows

Restart
=

ASP-Propagate
1 pag

lightOn||{< not switch}||0 Regtart

0]|{< not switch}||0-

Indeed, condition (i) of the restart-safe definition does not hold for the second occurrence
of the Restarkedge.
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The following theorem captures key properties of the graph. They suggest that the
graph can be used for deciding whether a program with constraint atoms has an answer set.

Theorem 3
For any CA progranP:

(a) every restart-safe path iz, is finite, and any maximal restart-safe path ends with
a state that is semi-terminal,

(b) for any semi-terminal stat/||T'||A of Ezp reachable from initial statel/ is an
answer set oP,

(c) stateFailstatas reachable from initial state iazp by a restart-safe path if and only
if P has no answer set.

On the one hand, part (a) of Theoré@rasserts that, if we construct a restart-safe path
from initial state, then some semi-terminal state is eventually reached. On the other hand,
parts (b) and (c) assert that, as soon as a semi-terminal state is reached by following any
restart-safe path, the problem of deciding whether CA progpdras answer sets is solved.
Sectionb3 describes the varying configurations of #ecspsystem.

Example 11

Recall Exzample B. Since the last state in the sample path presented in Figure gemi-
terminal, Theoren® asserts that the set of literals composed of the elements of this semi-
terminal state forms the answer set of CA progrBm Indeed, this set coincides with the
answer sef\f; of P; presented iFzample B.

In our discussion of the transition ruleSP-Propagatee mentioned how thezcspsolver
accounts only for some transitions due to this rule.Ret (II,C, v, D) be a CA program.
By EzsMp we denote an edge-induced subgraplepf, where we drop the edges that
correspond to the application of transition rul&SP-Propagataot accounted by the fol-
lowing two transition rules (propagator&hit Propagatend Unfounded

Cvie (CuTruA),
Unit PropagateM ||T'||A = M I||T'||A{ M is consistent,
MEC

M is consistent, and there is literlasothat
Unfounded M ||T||A = M I||T||A{ 1€ U forasetU, which is
unfounded onV/ w.rt. II[C]UT U A

These two propagators rely on properties that can be checked by efficient procedures. The
conditions of these transition rules are such that they are satisfied dR[y'if) A] asp-
entails! w.r.t. M. In other words, the transition ruldsnit Propagater Unfoundedare
applicable only in states whe#®SP-Propagatés applicable. The other direction is not

true. TheorenB holds if we replaceezp by EzSMp in its statement. The proof of this
theorem relies on the statement of Theoignand is given at the end of this subsection.
Graphezsmp is only one of the possible subgraphs of the generic gehthat share

its key properties stated in Theor&@nThese properties show that graphsmp gives rise

to a class of correct algorithms for computing answer sets of programs with constraints.
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It provides a proof of correctness of every CASP solver in this class and a proof of termi-
nation under the assumption that restart-safe paths are considered by a solver. Note how
much weaker propagators, such @sit Propagatend Unfounded than ASP-Propagate
are sufficient to ensure the correctness of respective solving procedures. We picked the
graphezsmp for illustration as it captures the essential propagators present in modern
(constraint) answer set solvers and allows a more concrete view aehéramework.
Yet the goal of this work is not to detail the variety of possible propagators of (constraint)
answer set solvers but master the understanding of hybrid procedures that include this tech-
nology. Therefore in the rest of this section we turn our attention back tezpegraph
and use this graph to formulalbdack-box grey-box andclear-boxconfigurations of the
CASP solveEezcsp

The rest of this subsection presents a proof of Thed@aswell as a proof of the similar
theorem for the grapBzsmp.

Proof of Theoren®
(a) LetP be a CA programlIL,C,~, D).

We first show that any path iazp that does not contaiRestart or Restartedges is
finite. We name this stateme8&tatement 1.

Consider any pathin Ezp that does not contaiRestart or Restaredges.

For any listN of literals, by|N| we denote the length aV. Any stateM||T'||A has
the form Mo If* My ... 1% M,|IT||A, wherelf ... i are all decision literals ofi/; we
define a(M||T'||A) as the sequence of nonnegative integéds|, |M|,...,|M,|, and
«(Failstaté = co. For any two statesy and.S’, of Ezp, we understand(S) < a(S’) as
the lexicographical order. We note that, for any statgl’|| A, the value ofx is based only
on the first componenty/, of the state. Second, there is a finite number of distinct values
of « for the states oEzp due to the fact that there is a finite number of distiftts over
P. We now define relatiosmallerover the states ofzp. We say that statd/||T'||A is
smallerthan statel/’||I'||A” when either

1. cIV, or
2.'=T",andA Cc A/, or
3. T =T",A=A,anda(M||T||A) < a(M'||T"||A).

It is easy to see that this relation is anti-symmetric and transitive.

By the definition of the transition rules @&zp, if there is an edge frond/||T||A to
M'||TY||A” in EZp formed by any basic transition rule or rulé®arnor Learrf, then
M]||T||A is smaller than staté/’||T”||A’. Observe that (i) there is a finite number of dis-
tinct values of, and (ii) there is a finite number of distinct denials entailedyhen, it
follows that there is only a finite number of edgegjmand, thus, Statement 1 holds.

We call a subpath from statg to stateS’ of some path irezp restartingwhen (i) an
edge that followsS is due to the application of ruleearn (ii) an edge leading t8"” is due
to the application of ruleRestart or Restartand (iii) on this subpath, there are no other
edges due to applications &karn Restart, or Restart but the ones mentioned above.
Using Statement 1, it follows that any restarting subpath is finite.

Consider any restart-safe patlin Ezp. We construct a path' by dropping some finite
fragments fromr. This is accomplished by replacing each restarting subpathfoim
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stateS to stateS’ by an edge fronf to S’ that we callArtificial. It is easy to see that an
edge inr’ due toArtificial leads from a state of the forid ||T'|| A to a state)| [T U { C'}||A,
where( is a denial. Indeed, within a restarting subpath an edge due taealeoccurred
introducing denialC. StateM ||T'||A is smaller than the stafé|T" U { C'}||A’. At the same
time, r’ contains no edges due to applicationsRefstart or Restartindeed, we eliminated
these edges in favor of edges callédificial. Thus by the same argument as in the proof
of Statement 15’ contains a finite number of edges. We can now concludertisafinite.

It is easy to see that maximal restart-safe path ends with a state that is semi-terminal.
Indeed, assume the opposite: there is a maximal restart-safé,paltich ends in a non
semi-terminal staté. Then, some basic rule applies to stdte€Consider path’ consisting
of patht and a transition due to a basic rule applicablg tdlote that:’ is also a restart-safe
path, and that is a subpath of’. This contradicts the definition of maximal.

(b) Let M||T||A be a semi-terminal state so that none of the Basic rules are applicable.
From the fact thaDecideis not applicable, we conclude thaf assigns all literals oit/ is
inconsistent.

We now show thatV/ is consistent. Proof by contradiction. Assume théatis incon-
sistent. Then, sincé&ail is not applicable, M contains a decision literal. Consequently,
M||T||A is a state in whiclBacktrackis applicable. This contradicts our assumption that
M||T||A is semi-terminal.

Also, M+ is an answer set dil[C]. Proof by contradiction. Assume thaf* is not an
answer set ofI[C]. It follows that that)/ is not an answer set ¢?. By Propositior3, it
follows that}M is not an answer set ¢[I' U A] and M * is not an answer dff[C] UT U A.
Recall thatP[I" U A] asp-entails a literal with respect to)M if for every complete and
consistent sed!’ of literals overAt(IT) such thatM'" is an answer set di[C] UT U A
andM C M’', 1 € M'. SinceM is complete and consistent set of literals oye(II) it
follows that there is no complete and consistent/&étof literals overAt¢(II) such that
M C M’ andM'* is an answer set dfl[C] U T' U A. We conclude thaP[I’ U A] asp-
entails any literal. Takel to be a complement of some literal occurringfifi It follows
that ASP-Propagatis applicable in staté/ ||I'|| A allowing a transition to stat&/ [||T'||A.
This contradicts our assumption tht||T'||A is semi-terminal.

CSPKp, u has a solution. This immediately follows from the application condition of
the transition ruleCP-Propagatand the fact that the stafd ||T'||A is semi-terminal.

From the conclusions that/ ™ is an answer set dfl[C] and K» ) has a solution we
derive that)/ is an answer set @P.

(c) We start by proving an auxiliary statement:

Statement 2: For any CA progrdf and a path from an initial state to. . . 1, ||T||A in
EZp, every answer seX for P satisfied; if it satisfies all decision Iiteral@A with j < i.

By induction on the length of a path. Since the property trivially holds in the initial state,
we only need to prove that all transition rulesazfy preserve it.

Consider an edgd/||[T'||A = S where S is either a fail state or state of the form
M'||T||A', M is a sequencd ... [; such that every answer s&t of P satisfied); if it
satisfies all decision Iiteravf with j < i.

Decide Fail, CP-Propagate Learhearrt, Restart Restart. Obvious.

ASP-PropagateM’||[T"||A’ is M l;+1]|T'||A. Take any answer séf of P such thatX
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satisfies all decision IiteraII?A with j < k + 1. From the inductive hypothesis it follows
that X satisfiesM. ConsequentlyM C X since X is a consistent and complete set of
literals. From the definition oASP-PropagateP asp-entaildy 1 with respect toM/. We
also know thatX ™ is an answer set dil[C]. Thus,/;+1 € X.

Backtrack M has the formP |* @ where Q contains no decision literalds’||T||A’
has the formP 7;||T||A. Take any answer sef of P such thatX satisfies all decision
literals [* with j < i. We need to show thak | I;. By contradiction. Assume that
X [ ;. By the inductive hypothesis, singg does not contain decision literals, it follows
that X satisfiesP 2 @, thatis,M. This is impossible becausé is inconsistent. Hence,
X E1.

Left-to-right: SinceFailstateis reachable from the initial state by a restart-safe path,
there is an inconsistent staté||T'|| A without decision literals such that there exists a path
from the initial state td// ||T'|| A. By Statement 2, any answer sef®&atisfies\/. SinceM
is inconsistent we conclude thBthas no answer sets.

Right-to-left: From (a) it follows that any maximal restart-safe path is a path from initial
state to some semi-terminal stateBy (b), this states cannot be different fronfrailstate
becausé® has no answer sets. []

Theorem 4
For any CA progranP,

(a) every restart-safe path BEzsmp is finite, and any maximal restart-safe path ends
with a state that is semi-terminal,

(b) for any semi-terminal stat® ||T'||A of EzsMp reachable from initial statdy is an
answer set oP,

(c) stateFailstateis reachable from initial state iBzSmp by a restart-safe path if and
only if P has no answer sets.

Proof
Let P be a CA program{IL, C,~, D).
(a) This part is proved as part (a) in proof of Theof@m

(b) Let M||T'||A be a semi-terminal state so that none of the basic rules are applicable
(Unit Propagat@nd Unfoundedare basic rules). As in proof of part (b) in Theor@wwe
conclude thatl/ assigns all literals and is consistent. Also, C&P », has a solution.

We now illustrate that)/* is an answer set dff[C]. Proof by contradiction. Assume
that M * is not an answer set @f[C]. It follows that that)/ is not an answer set 6%. By
Propositior, it follows that M/ is not an answer set @' U A] and M * is not an answer
of II[C] UT U A. By Theorent, it follows that either)M is not a model ofI[C]UT U A
or M contains a hon-empty subset unfoundediénv.r.t. TI[C] UT U A. In case the former
holds we derive that the rul&nit Propagatés applicable in the statd/||T'||A. In case
the later holds we derive that the rul&nfoundeds applicable in the stat&/||T'||A. This
contradicts our assumption thaf||T'||A is semi-terminal.

From the conclusions that/ * is an answer set dfl[C] and Kp ), has a solution we
derive that) is an answer set @P.
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(c) Left-to-right part of the proof follows from Theore(c, left-to-right) and the fact that
EZSMp is a subgraph ofzp.
Right-to-left part of the proof follow the lines of Theordic, right-to-left). [

5.3 Integration Configurations ofezcsp

We can characterize the algorithm of a specific solver that utilizes the transition rules of
the graprezp by describing a strategy for choosing a path in this graph.

black-box A configuration ofezcspthat invokes an answer set solver \ikck-box
integration for enumerating answer sets of an asp-abstraction program is captured by the
following strategy in navigating the graz

1. Restarhever applies,

2. rule CP-Propagataever applies to the states where one of these rules are applicable:
Decide Backtrack Fail, ASP-Propagate

3. Learrt may apply anytime with the restriction that the demialearnt by the appli-
cation of this rule is such th& asp-entailsR,

4. single application of.earnfollows immediately after an application of the rule
CP-Propagate-urthermore, the deniak learnt by the application of this rule is
such thatP cp-entailsR,

5. Restartfollows immediately after an application of the rulearn Restart does not
apply under any other condition.

It is easy to see that the specifications of the strategy above forms a subgraph of the
graphezp. Let us denote this subgraph B)z%. Theorem3 holds if we replac&zp by
EZ} in its statement:

Theorem 5
For any CA progranp,

a) every restart-safe path irz?, is finite, and any maximal restart-safe path ends with
y p P y p
a state that is semi-terminal,
b) for any semi-terminal stat&/||T'||A of Ez% reachable from initial statel/ is an
y P
answer set oP,
(c) stateFailstatds reachable from initial state '|E1z§7> by a restart-safe path if and only
if P has no answer sets.

Proof
Let P be a CA program{IL,C, v, D).
(a) This part is proved as part (a) in proof of Theof@m
(b) Graphezb, is the subgraph afzp. Atthe same time it is easy to see that any non semi-
terminal state irezp is also a non semi-terminal statea'm%. Thus, claim (b) follows from
Theoreni (b).
(c) Left-to-right part of the proof follows from Theore(c, left-to-right) and the fact that
EZ is a subgraph ofzp.

Right-to-left part of the proof follows the lines of Theordhfc, right-to-left). [
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grey-box A configuration ofezcspthat invokes an answer set solver gi@y-boxinte-

gration for enumerating answer sets of asp-abstraction program is captured by the strategy
in navigating the graptezy that differs from the strategy diflack-boxin rules 1 and 5

only. Below we present only these rules.

1. Restart never applies,
5. Restarfollows immediately after an application of the rulearn Restartdoes not
apply under any other condition.

clear-box A configuration ofezcspthat invokes an answer set solver elaar-boxinte-
gration for enumerating answer sets of asp-abstraction program is captured by the follow-
ing strategy in navigating the gra@zp

o Restart and Restarhever apply.

Similar to theblack-boxcase, the specifications of teey-boxandclear-boxstrategies
form subgraphs of the grafz,». Theoren® holds if we replac&z, by these subgraphs.
We avoid stating formal proofs as they follow the lines of proof for Thediem

We note that the outlined strategies provide only a skeleton of the algorithms imple-
mented in these systems. Generally, any particular configurati@rosPcan be captured
by some subgraph &z,. The provided specifications bfack-box grey-box andclear-
boxscenarios allow more freedom than specific configuratiorszafspdo. For example,
in any setting ozcspit will never follow an edge due to the transitidecidewhen the
transition ASP-Propagates available. Indeed, this is a design choice of all available an-
swer set solvers thazcsris based upon. The provided skeleton is meant to highlight the
essence of key differences between the variants of integration approaches. For instance, it
is apparent that any application Riestart forces us to restart the search process by for-
getting about atomic part of a current state as well as some previously learnt clauses. The
black-boxintegration architecture is the only one allowing this transition.

As discussed earlier, the schematic raeP-Propagatis more informative than any real
propagator implemented in any answer set solver. These solvers are only able to identify
some literals that are asp-entailed by a program with respect to a state. Thus if a program
is extended with additional denials a specific propagator may find additional literals that
are asp-entailed. This observation is important in understanding the benefRabtzrt
provides in comparison tRestart. Note that applications of these rules highlight the dif-
ference betweehlack-boxandgrey-box

6 Application Domains

In this work we compare and contrast different integration schemas of hybrid solvers on
three application domains that stem from various subareas of computer scieglted-
sequencéLierieretal, 2017, incremental schedulin@alduccinj 20T7), reverse folding

The weighted-sequence domain is a handcrafted benchmark, whose key features are in-
spired by the important industrial problem of finding an optimal join order by cost-based
guery optimizers in database systems. The problem is not only practically relevant but
proved to be hard for current ASP and CASP technology as illustrateldangr_et ai,
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20172. The incremental scheduling domain stems from a problem occurring in commercial
printing. CASP offers an elegant solution to it. Theverse foldingoroblem is inspired
by VLSI design — the process of creating an integrated circuit by combining thousands of
transistors into a single chip.

This section provides a brief overview of these applications. All benchmark domains are
from the Third Answer Set Programming Competition — 2@A$pcomp (Calimerief al,
2017), in particular, theModel and Solvearack. We chose these domains for our investi-
gation for several reasons. First, these problems touch on applications relevant to various
industries. Thus, studying different possibilities to model and solve these problems is of
value. Second, each one of them displays features that benefit from the synergy of com-
putational methods in ASP and CSP. Each considered problem contains variables ranging
over a large integer domain thus making grounding required in pure ASP a bottleneck. Yet,
the modeling capabilities of ASP and availability of such sophisticated solving techniques
such as learning makes ASP attractive for designing solutions to these domains. As a re-
sult, CASP languages and solvers become a natural choice for these benchmarks making
them ideal for our investigation.

Three Kinds of CASP Encodings:Hybrid languages such as CASP combine constructs
and processing techniques stemming from different formalisms. As a result, depending on
how the encodings are crafted, one underlying solver may be used more heavily than the
other. For example, any ASP encoding of a problem is also a CASP formalization of it.
Therefore, the computation for such encoding relies entirely on the base solver and the
features and performance of the theory solver are irrelevant to it. We call thisrecaASP
encoding. At the other end of the spectrum auee-CSRencodings: encodings that consist
entirely of ez-atoms. From a computational perspective, such an encoding exercises only
the theory solver. (From a specification perspective, the use of CASP is still meaningful, as
it allows for a convenient, declarative, and at the same time executable specification of the
constraints.) In the middle of the spectrum &e-CASRencodings, which, typically, are
non-stratified and include collections of ez-atoms expressing constraints whose solution is
non-trivial.

An analysis of these varying kinds of encodings in CASP gives us a better perspective
on how different integration schemas are affected by the design choices made during the
encoding of a problem. At the same time considering the encoding variety allows us to
verify our intuition that true-CASP is an appropriate modeling and solving choice for the
explored domains. We conducted experiments on encodings falling in each category for all
benchmarks considered.

Theweighted-sequencéwseqQ domain is a handcrafted benchmark problem. Its key fea-
tures are inspired by the important industrial problem of finding an optimal join order by
cost-based query optimizers in database systemser et al.(2017 provides a complete
description of the problem itself as well as the formalization naseg++ that became
the encoding used in the present paper.

In the weighted-sequence problem we are given a set of leaves (nodes) and an integer
m — maximum cost. Each leaf is a pgweight, cardinality)vhereweightand cardinality
are integers. Every sequence (permutation) of leaves is such that all leaves but the first are
assigned &olorthat, in turn, associates a leaf witlcast(via a cost formula). A colored se-
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guence is associated with thestthat is a sum of leaves costs. The task is to find a colored
sequence with cost at most. We refer the reader td_ierler et al, 2017 for the details

of pure-ASP encodingeqQ++. The same paper also contains the details on a true-CASP
variant of SEQ++ in the language ofLINGCON. We further adapted that encoding to the
Ez language by means of simple syntactic transformations. Here we provide a review of
details of theseQ++ formalizations using pure-ASP and the language that we find most
relevant to this presentation. The reader can ref@&ppendix A for details on the syn-

tax used. The non-domain predicates of the pure-ASP encodirig@af&os, posColor,
posCost. Intuitively, lea f Pos is responsible for assigning a position to a leafsColor

is responsible for assigning a color to each positj@isCost carries information on costs
associated with each leaf. Some rules used to define these relations are given iB.Figure

% Give each leaf a location in the sequence

1{leafPos(L, N) : location(N)}1 < leaf (L)-

% No sharing of locations

«— leafPos(L1, N), leafPos(L2, N), location(N), L1 # L2-

% green if (weight(right) + card(right}: (weight(left) + leafCost(right))
posColor(1, green) < leafPos(L1,0), leafPos(L2,1),
leafWeightCardinality (L1, WL, CL),
leafWeightCardinality (L2, WR, CR),
leafCost(L2, W3),
W1= WR+ CR, W2= WL+ W3,
W1l< W2

% posCost for first coloredPos

posCost(1, W) < posColor(1, green), leafPos(L, 1),
leafWeightCardinality (L, WR, CR),
maz_total_weight( MAX),
W=WR+ CR,W < MAX-

posCost(1, W) « not posColor(1, green), leafPos(L1,0), leafPos(L2,1),
leafWeightCardinality (L1, WL, CL), leafCost(L2, WR),
maz_total_weight ( MAX),
W = WL+ WR, W < MAX-

% Acceptable solutions

acceptable — #sum[nWeight(P, W) = W : coloredPos(P)|MAX,
maz_total_weight (MAX)-

«— not acceptable-

Figure 5. Some typical rules of the pure-ASP language formalizatiovsefQ.

The first two rules in FigurB assign a distinct location to each leaf. The next rule is part
of the color assignment. The following two rules are part of the cost determination. The
final two rules ensure that the total cost is within the specified limit.

The main difference between the pure-ASP and true-CASP encodings is in the treatment
of the cost values of the leaves. We first note that cost predieatéost in the pure-ASP
encoding is “functional”. In other words, when this predicate occurs in an answer set, its
first argument uniquely determines its second argument. Often, such functional predicates
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in ASP encodings can be replaced by ez-atdmis CASP encodings. Indeed, this is the

case in the weighted-sequence problem. Thus in the true-CASP encoding, the definition
of posCost is replaced by suitable ez-atoms, making it possible to evaluate cost values by
CSP techniques. This approach is expected to benefit performance especially when the cost
values are large. Some of the corresponding rules follow:

% posCost for first coloredPos

required (posCost(1) = W) « posColor(1, green), leafPos(L, 1),
leafWeightCardinality (L, WR, CR), W = WR + CR-

required (posCost(1) = W) « not posColor(1, green),
leafPos(L1,0), leafPos(L2,1),
leafWeightCardinality (L1, WL, CL), leafCost(L2, WR),
W = WL+ WR-

% Acceptable solutions
required (sum([posCost /1], <, MV)) « max_total _weight(MV)-

The first two rules are rather straightforward translations of the ASP equivalents. The last
rule uses a global constraint to ensure acceptability of the total cost.

The pure-CSP encoding is obtained from the true-CASP encoding by replacing the defi-
nitions oflea f Pos andposColor predicates by constraint atoms. The replacement is based
on the observation thata f Pos andposColor are functional.

% green if (weight(right) + card(right): (weight(left) + leafCost(right))
is_green(1, L1, L2) « leafWeightCardinality(L1, WL, CL),
leafWeightCardinality (L2, WR, CR),
leafCost(L2, W3),
W1l= WR+ CR, W2= WL+ W3,
W1l< W2
required (posColor(1) = green «— (leafPos(L1) =0 A leafPos(L2) = 1)) «
leaf (L1), leaf (L2), is_green(1l, L1, L2)-

As shown by the last rule, color assignment requires the use of reified constraints. It is
important to note that symbe}- within the scope ofequired stands for material implica-

tion. Color names are mapped to integers by introducing additional variables. For example,
variablegreen is associated with valueby a variable declarationspvar(green, 1, 1). In-
terestingly, no ez-atoms are needed for the definitiofe@fPos. The role of the choice

rule above is implicitly played by the variable declaration

cspvar(leafPos(L),0, N — 1) « leaf (L), location(N)-

Theincremental scheduling(1s) domain stems from a problem occurring in commercial
printing. In this domain, a schedule is maintained up-to-date with respect to jobs being
added and equipment going offline. A problem description includes a set of devices, each
with predefined number of instances (slots for jobs), and a set of jobs to be produced. The

24 We abuse the term ez-atom and refer to “non-ground” atoms afzHanguage that result in ez-atoms by the
same name.
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penalty for a job being late is computed k- imp, wheretd is the job’s tardiness and
imp is a positive integer denoting the job’s importance. The total penalty of a schedule is
the sum of the penalties of the jobs. The task is to find a schedule whose total penalty is no
larger than the value specified in a problem instance. We direct the readiaifiu¢cinij
207171 for more details on this domain. We start by describing the pure-CSP encoding and
then illustrate how it relates to the true-CASP encoding.

The pure-CSP encoding used in our experiments is the official competition encoding
submitted toaspcompPby theezcspteam. In that encoding, constraint atoms are used for
(i) assigning start times to jobs, (ii) selecting which device instance will perform a job, and
(iii) calculating tardiness and penalties. Core rules of the encoding are shown in Bigure

% Assignment of start times: cumulative constraint
required (cumulative([st(D) /2],
[operation_len_by_dev(D)/3],
[operation_res_by_dev(D)/3],
N))
instances(D, N)-
% Instance assignment
required ((on_instance(J1) # on_instance(J2)) V
(st(D,J2) > st(D,J1) + Lenl) V
(st(D,J1) > st(D, J2) + Len2)) «
instances(D,N), N > 1,
job_device(J1, D), job_device(J2, D), J1 # J2,
job_len(J1, Len1), job_len(J2, Len2)-
% Total Penalty
required (sum([penalty /1], =, tot_penalty))-
required (tot_penalty < K) < maz_total_penalty (K)-

Figure 6. Rules of the pure-CSP formalization &f

The ez-atom of the first rule uses a global constraint to specify that the start times must
be assigned in such a way as to ensure that no moreithfbs are executed at any time,
whereng is the number of instances of a given deviteThe ez-atom of the second rule
uses reified constraints with theconnective (disjunction) to guarantee that at most one
job is executed on a device instance at every time. The ez-atom of the third rule uses a
global constraint to define total penalty. The last rule restricts total penalty to be within the
allowed maximum value.

The true-CASP encoding was obtained from the pure-CSP encoding by introducing a
new relationon_instance(j, 1), stating that joly runs on device-instance The rules for-
malizing the assignment of device instances in the pure-CSP encoding were replaced by
ez-atoms. For example, the second rule from Fiffunas replaced by:

1{on_instance(J, I) : instance_of (D, I)}1 «— job_device(J, D)-
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required ((st(D, J2) > st(D, J1) + Lenl) V
(st(D,J1) > st(D, J2) + Len2)) —
on_instance(J1,I), on_instance(J2,T),
instances(D,N), N > 1,
job_device(J1, D), job_device(J2, D), J1 # J2,
job_len(J1, Lenl), job_len(J2, Len2)-

The main difference with respect to the ez-atom of the pure-CSP encoding is the introduc-
tion of a choice rule to select an instantéor a job J. The constraint that each instance
processes at most one job at a time is still encoded using an ez-atom.

Finally, the pure-ASP encoding was obtained from the true-CASP encoding by introduc-
ing suitable new relations, such a&rt(j, s) andpenalty(j, p), to replace all remaining
ez-atoms. The rules that replace the first rule in FigLialow:

1{start(J,S) : time(S)}1 « job(J)-

— oninstance(J1,I), on_instance(J2,I),J1 # J2,
job_device(J1, D), job_device(J2, D),
start(J1,81), job_len(J1, L1), start(J2, 52),
S1< 52,82 < S1+ L1

The last two rules in FigurB are replaced by the rules in the pure-ASP encoding:

tot_penalty(TP) < TP [ penalty(J,P) = P | TP-
— not [penalty(J, P) = P]Maz, maz_total_penalty(Maz)-

In thereverse folding (RF) domain, one manipulates a sequence @irwise connected
segments located on a 2D plane in order to take the sequence from an initial configuration
to a goal configuration. The sequence is manipulated by pivot moves: rotations of a segment
around its starting point by 90 degree in either direction. A pivot move on a segment causes
the segments that follow to rotate around the same center. Concurrent pivot moves are
prohibited. At the end of each move, the segments in the sequence must not intersect. A
problem instance specifies the number of segments, the goal configuration, and required
number of moves denoted byThe task is to find a sequence of exactlyivot moves that
produces the goal configuration.

The true-CASP encoding used for our experiments is from the ofidiacomp2011
submission package of tlzcspteam. In this encoding, relatigrivot(s, i, d) states that
at steps the i** segment is rotated in directioh The effects of pivot moves are described
by ez-atoms, which allows us to carry out the corresponding calculations with CSP tech-
nigues.

pivot(1,I, D) « first(I), requiredMove(I, D)-

pivot(N1,I1, D1) « pivot(N2,12,D2), N1 = N2+ 1,
requiredMove (11, D1), requiredMove(12, D2),
next(11,12)-
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% Effect of pivot(t,i,d)

required (tfoldy(S2,T) = tfoldz(S1, P) — tfoldx(S1,I) + tfoldy(S1, P)) «—
step(S1), step(S52), 82 =851 +1,
pivot(S1, P, clock),
index(I),I > P-

required (tfoldy (52, I) = tfoldx(S1,I) — tfoldx(S1, P) + tfoldy(S1, P)) «
step(S1), step(S52),52 = S51+1,
pivot(S1, P, anticlock),
index(I),I > P-

The first two rules are some of the rules used for determining the pivot rotations. The
determination is based on the technique describeBaid{iccini and Lierler?0173. The

last two rules are part of the calculation of the effects of pivot moves. Noteftiat (s, 4)
andtfoldy(s, i) denote ther andy coordinates of the start of segmerdt steps.

The pure-ASP encoding was obtained from the true-CASP encoding by adopting an
ASP-based formalization of the effects of pivot moves. This was accomplished by intro-
ducing two new relationstfoldz (s, 7, ) andtfoldy(s, i, y), stating that the new start of
segment; at steps is (x, y). The definition of the relations is provided by suitable ASP
rules, such as:

tfoldy(S + 1,1, Y2) « tfoldz(S,1,X1), pivot(S,P,D),I > P,
tfoldz (S, P, XP), tfoldy(S, P, YP), X0 = X1 — XP,
rotatedz (D, X0,Y0), Y2= Y0+ YP-

rotatedz (clock, X, —X ) «— zcoord(X)-

zcoord(—2 % N - -2 % N) « length(N)-

Differently from the previous domains, f&F we were unable to formulate a pure-CSP
variant of the true-CASP encoding. Thus, we resorted to the encoding descrilbrEiai(

efal, 20T7). This encoding leverages a mapping from action languhieelfond and Lif-
Schifz, M998 statements to numerical constraints, which are then solved by a CLP system.

7 Experimental Results

The experimental comparison of the integration schemas was conducted on a computer
with an Intel Core i7 processor at 3GHz and running Fedora Core 16. The memory limit
for each process and the timeout were sét&B RAM™ and6, 000 seconds respectively.

A single processor core was used for every experiment.

The version ofEzcspused in the experiments was 1.6.20b49. This version implements
the black-box grey-box andclear-boxintegration schemas, when suitable API interfaces
are available in the base solver. One answer set solver that provides such interfaces is
CMODELS, which for this reason was chosen as base solver for the experiments. It is worth
noting that the development of the APIimoDELSwas greatly facilitated by the API pro-
vided byMINISAT v. 1.12b supporting non-clausal constrairsii and_srenssan2003
(MINISAT forms the main inference mechanismmiODELS). In the experiments, we used

27 The instances that resulted in an out-of-memory were also tested with 4 GB RAM, with no change in the
outcome.
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CMODELSVersion 3.83 as the base solver @mROLOG7.4 as the theory solv&. Answer
set solvercMODELS 3.83 (with the inference mechanism @fNISAT v. 1.12b) was also

28 We note thatBPROLOG is the default theory solver oEzcsp Command-line option--solver
cmodels-3.83 instructs ezcsp to invoke CMODELS 3.83 using theblack-box integration schema.
Command-line options-cmodels-incremental and--cmodels-feedback instructezcspto use,
respectively, th@rey-boxandclear-boxintegration schema. In these two case®ODELS 3.83 is automati-
cally selected as the base solver.
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used for the experiments with the pure-ASP encodings. Unless otherwise specified, for all
solvers we used their default configurations.

The executables used in the experiments and the encodings can be downloaded, respec-
tively, from

o hitp:/Amww.mbal tk/ezesp/int_schemas/ezcsp-hinaries. igz
and
o hitp:/imww _mbai tk/ezcspl/int_schemas/experiments gz

In order to provide a frame of reference with respect to the state of the art in CASP, the
results also include performance information fanNGcoN 2.0.3 on the true-CASP en-
codings adapted to the languagecafNGCON. We conjecture that the choice of constraint
solver by CLINGCON (namely,GECODE together with theory propagation is the reason
for CLINGCON's better performance in a number of the experiments. Yet, in the context of
our experiments, the performance@fINGCON w.r.t. EZCSPis irrelevant. Our work is a
comparative study of the impact of the different integration schemas for a fixed selection of
a base and theory solver pair. Systercspprovides us with essential means to perform
this study.

In all figures presented: CASP Black, CASP Grey, CASP Clear dexsmtspPimple-
menting respectiveliplack-box grey-boxandclear-box and running a true-CASP encod-
ing; Pure-CSP denotezcsrimplementingolack-boxrunning a pure-CSP encoding (note
that for pure-CSP encodings there is no difference in performance between the integra-
tion schemas); ASP denotes/ODELS running a pure-ASP encoding; Clingcon denotes
CLINGCON running a true-CASP encoding. Each configuration is associated with the same
color in all figures. A pattern is applied to the filling of the bars whenever the bar goes off-
chart. The numbers in the overlaid boxes report the time in seconds and, in parentheses,
the total number of timeouts and out-of-memory.

We begin our analysis witiwseqQ (Figuresld and8). The total times across all the in-
stances for all solvers/encodings pairs considered are shown in HFigBecause of the
large difference between best and worst performance, a logarithmic scale is used. For uni-
formity of presentation, in the charts out-of-memory conditions and timeouts are both ren-
dered as out-of-time results. The instances used in the experiments are the 30 instances
available visasPcoMR Interestingly, answer set solvemoDELSon the pure-ASP encod-
ing has excellent performance, comparable to the best performance obtained with CASP
encodings byzcsr Of the CASP encodings, the true-CASP encoding runnirtgaock-
box times out on every instance. Figuiehus focuses on the cumulative run times of
clear-boxandgrey-box(on the true-CASP encoding). The numbers on the horizontal axis
identify the instances, while the vertical axis is for the cumulative run time, that is, the value
for instancen is the sum of the run times for instances . n. Cumulative times were cho-
sen for the per-instance figures because they make for a more readable chart when there is
large variation between the run times for the individual instances. As shown in Fgure
the true-CASP encoding running @tear-boxperformssubstantiallybetter thargrey-box
This demonstrates that, for this domain, the tight integration schema has an advantage.

In case of thes domain we considered two sets of experiments. In the first one (FiBures
and[D), we used the 50 official instances froxgPcomr We refer to these instances as
easy since the corresponding run times are rather small. Figym®vides a comparison
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of the total times. Judging by the total times, tight integration schemas appear to have an
advantage, allowing the true-CASP encoding to outperform the pure-CSP encoding. As
one might expect, the best performance for the true-CASP encoding is fractetiredoox
integration schema. In this case the early pruning of the search space made possible by
theclear-boxarchitecture seems to yield substantial benefits. As expapghoxs also
faster tharblack-box while cMODELS on the pure-ASP encoding runs out of memory in
all the instances.

The second set of experiments for tisedomain (Figure§1 and@2) consists oB0 in-
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stances that we generated to be substantially more complex than the onesfrommvp,

and that are thus callefgiard As discussed below, this second set of experiments reveals

a remarkable change in the behavior of solver/encodings pairs when the instances require
more computational effort. The process we followed to generatéth@rdinstances con-

sisted in (1) generating randomigo fresh instances; (2) running the true-CASP encoding
with the grey-boxintegration schema on them with a timeout30b seconds; (3) select-

ing randomly, from thosel5 instances that resulted in timeout atidinstances that were
solved in25 seconds or more. The numerical parameters used in the process were selected
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with the purpose of identifying more challenging instances than those froraasyset

and were based on the results on that set. The execution times reported inMHiglearly
indicate the level of difficulty of the selected instances (once agailQDELS runs out

of memory). Remarkably, these more difficult instances are solved more efficiently by the
pure-CSP encoding that relies only on the CSP solver. In fact, the pure-CSP encoding out-
performs every other method of computatiamc(uding cCLINGCON on true-CASP encod-

ing). More specifically, solving the instances with the true-CASP encoding takes between
30% and50% longer than with the pure-CSP encoding. This was not the isolated effect
of a few instances, but rather a constant pattern throughout the experiment. A possible ex-
planation for this phenomenon is that domésris overall best suited to the CSP solving
procedures. It seems natural for the difference in performance to become more evident as
the problem instances become more challenging, when other factors such as overhead play
less of a role. This conjecture is compatible with the difference in performance observed
earlier on the easy instances.

Another remarkable aspect highlighted by FigiiBés thatclear-boxis outperformed by
grey-box This is the opposite of what was observed on the easy instances and highlights
the fact that there is no single-best integration schema, even when one focuses on true-
CASP encodings. We hypothesize this to be due to the nature of the underlying scheduling
problem, which is hard to solve, but whose relaxations (obtained by dropping one or more
constraints) are relatively easy. Under these conditions, the calls executéshbypoxto
the theory solver are ineffective at pruning the search space and incur a non-negligible
overhead. (The performance ofINGCON is likely affected by the same behavior.) In
grey-box on the other hand, no time is wasted trying to prune the search space of the base
solver, and all the time spent in the theory solver is dedicated to solving the final CSP. The
performance oblack-boxis likely due to the minor efficiency of its integration schema
compared tgrey-box

The final experiment focuses on tke domain (Figuref3 and4). The instances used
in this experiment are the 50 official instances frasPcoMR The total execution times
are presented in FigulB. Although the instances for this domain are comparatively easy,
as suggested by tHa#ack-boxand grey-boxtimes, some of the configurations have high
total execution times. Thelear-boxencoding is also off-chart, due to timeouts hin-
stances. This is a substantial difference in performance compared to the other true-CASP
configurations, upon which we expand later in this section. Surprisingly, the total time of
CLINGCON s also close to off-chart. Upon closer inspection, we have found this to be due
to 3 instances for whiclktLINGCON runs out of memory. This is an interesting instance of
the trade-off between speed of execution and performance stability, considering that on the
other instancesLINGCON is very fast. The per-instance execution timesdiay-boxand
black-boxare detailed in Figur®4. The figure highlights the very similar performance of
the two schemas, withlack-boxlosing only in the final 10% of the instances in spite of
its higher overhead. This is likely due to the simplicity of #eproblem: most extended
answer sets can be found with little backtracking between base and theory solver, and thus
the difference between the two schemas has little bearing on the execution times. Similarly
to the hard instances of the domain, the better performanceldfck-boxandgrey-boxin
comparison telear-boxcan be explained by the fact that, in this domain, frequent checks
with the theory solver add overhead but are overall ineffective at pruning the search.
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8 A Brief Account on Related Systems

In the introduction we mentioned solvergSOLVER (Mellarkod et -al, 2008, CLING-

CON (Gebser_ef a| 2009, 1Dp (Wiffocx ef-al, 2008, INCA (Drescher and Wals0T1),
DINGO (Janhiinen ef 3l70T1), MINGO (LitLefall, 012, ASPMT2SMT (Bartholomew and

Cee 2014, andezsMT (Susman_and Tierle20TH. In this section we briefly remark on
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[ | Base Soler | Theory Soler [

ACSOLVER | SMODELS(Simonsefa|. 2007 | constraint logic programmingystem

CLINGCON | CLASP (Gebsereta|2007) GECODE(Schulte and Stucke 008
IDP MINISAT(ID) (Cafefal, ?0T4 | GEcoDE(Schulfeand Siucke?008
INCA CLASP ((Gehser ef a| 2007) its own CP soler

Table 2. Solvers used by state-of-the-art CASP systems

this variety of CASP systems. This is not intended as a detailed comparison between the
systems, but as a quick summary.

At a high-level abstraction, one may easily relate the architectures afithesCcoNn,
ACSOLVER, IDP, andINCA to that ofEzcsr Given a CASP program, all of these systems
first utilize an answer set solver to compute a part of an answer set for an asp-abstraction
and then utilize a constraint programming system to solve a resulting csp-abstraction. All
of these systems implement tbiear-boxintegration schema. TabBprovides a summary
of base solvers and theory solvers utilized by them.

A few remarks are due. Unlike its peers;SOLVER does not implement learning as its
base solvesMODELS does not support this technique. The fact that systeoa imple-
ments its own CP solver, or, in other words, a set of its in house CP-based propagators
allows this system to take advantage of some sophisticated techniques stemming from CP.
In particular, it implements so called “lazy nogood generation”. This technique allows one
to transfer some of the information stemming from CP-based propagations into a propo-
sitional logic program extending the original input to a base solver. We also note that the
latest version ofCLINGCON, as well, bypasses the use ®ECODE by implementing its
own CP-based propagators. All of the above systems are focused on finite domain integer
linear constraints. Some of them allow for global constraints.

SystenDINGO translates CA programs into SMT modulo difference logic formulas and
applies the SMT solver3 (De Moura and Bjarne 2008 to find their models. Rather than
arbitrary integer linear constraints, the system only handles those that fall into the class of
difference logic. On the other hand, the system does not pose the restriction of finite do-
main. TheezsMT (Susman and LierleP?0T# solver and theasPMT2SMT (Bartholomewy
and T e220T4) solvers utilize SMT solvers to process CA programs. Both of these systems
may only deal with tight programs. They allow for arbitrary integer linear constraints. None
of the SMT-based CASP solvers allow for global constraints in their programs due to the
underlying solving technology.

Last but not least, the solverINGO translates CA programs into mixed integer pro-
gramming expressions and then utilizes IBM IL@BLEX® system to find solutions.

Susman and LierleiZQ16 provide an experimental analysis of systems from all of the
families mentioned.

32 http:/Annn ibm_com/software/commerce/optimizafion/cplex-optimizer/
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9 Conclusions

In this paper, we have addressed in a principled way the integration of answer set solv-
ing techniques and constraint solving techniques in CASP solvers and, in particular, in the
realm of the constraint answer set solggcsr. To begin, we defined logic programs with
constraint atoms (CA programs). To bridge the ASP and the constraint programming as-
pects of such programs, we introduced the notions of asp-abstractions and csp-abstractions,
which allow for a simple and yet elegant way of defining the extended answer sets of CA
programs.

Next, we described the syntax of the CASP language used by the constraint answer set
solverezcsp, which we callez. It is worth noting that this paper contains the first detailed
and principled account of the syntax of th& language. We relate programs written in
the Ezcsplanguage and CA programs. The tight relation betweemprograms and CA
programs makes it evident that tiEz language is a full-fledged constraint answer set
programming formalism. Recall that tlrg cspsystem originated as an attempt to provide
a simple, flexible framework for modeling constraint satisfaction problems. This yields an
interesting observation: constraint answer set programming can be seen as a declarative
modeling framework utilizing constraint satisfaction solving technology.

In this paper we also drew a parallel between CASP and SMT. We used this connec-
tion to introduce three important kinds of integration of CASP solvealeck-boxintegra-
tion, grey-boxintegration, andlear-boxintegration. We introduced a graph-based abstract
framework suitable for describing tlEzcspPsolving algorithm. The idea of using graph-
based representations for backtrack-search procedures was pioneered by the SAT com-
munity. Compared to the use of pseudocode for describing algorithms, such a framework
allows for simpler descriptions of search algorithms, and is well-suited for capturing the
similarities and differences of the various configurationszf spstemming from different
integration schemas.

Finally, we presented an experimental comparison of the various integration schemas,
using the implementation afzcspPas a testbed. For the comparison, we used three chal-
lenging benchmark problems from tHehird Answer Set Programming Competition —
2011 (Calmeri_et al, PZ0T1). The experimental analysis takes into account how differ-
ences in the encoding of the solutions may influence overall performance by exploiting
the components of the solver in different ways. The case study that we conducted clearly
illustrates the influence that integration methods have on the behavior of hybrid systems.
The main attractive feature of tHdack-boxintegration schema is the ease of inception
of a new system. In realm of CASP, one may take existing off-the-shelf ASP and CSP
tools and connect them together by simple intermediate translation functions. This facil-
itates fast implementation of a prototypical CASP solver. One can then move towards a
grey-boxor clear-boxarchitecture in the hope of increased performance when a prototype
system proves to be promising. Yet, our experiments demonstrate that different integration
schemas may be of use and importance for different domain, and that, when it comes to
performance, there is no single-best integration schema. Thus, systematic means ought to
be found for facilitating building hybrid systems supporting various coupling mechanisms.
Just as the choice of a particular heuristic for selecting decision literals is often configurable
in SAT or ASP solvers via command line parameters, the choice of integration schema in
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hybrid systems should be configurable. Experimental results also indicate a strong need
for theory propagation. Standard interfaces in both base and theory systems are required in
order to easily build hybrid systems to support this feature.

Building clear and flexible APIs allowing for various types of interactions between the
solvers seems a necessary step towards making the development of hybrid solvers effec-
tive. This work provides evidence for the need of an effort towards this goal. Many SAT
solvers and SMT solvers already come with APIs that aim at facilitating extensions of
these complex software systems. We argue for this practice to be adopted by other auto-
mated reasoning communities.

Finally, our study was performed in the realm of CASP technology, but it translates
to SMT as well, given the discussed links between the two technologies. Incidentally, this
also brings to the surface the importance of establishing means of effective communication
between the two communities of constraint answer set programming and SMT solving.
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Appendix A Ez — The Language ofezcsp

The Ez language is aimed at a convenient specification of a propositional ez-program
& = (E,A,C,~,D). To achieve this, the language supports an explicit specification of
domains and variables, the use of non-ground rules, and a compact representation of lists
in constraints. We begin by describing the syntax of the language. Next, we define a map-
ping fromEz programs to propositional ez-programs.

LetXgz = (Cez, VEz, FEZ, REZ) bE a signature, wher€gz, Vez, Fez, andRgz de-
note pairwise disjoint sets of constant symbols, non-constraint variable symbols, function
symbols, and relation symbols respectively. gt includes symbols for integers and pre-
defined constantgd, ¢, r), denoting CSP domains. We use common convention in logic
programming and denote non-constraint variable symbolg-iy by means of upper case
letters. Function and relation symbols are associated with a non-negative integeacalled
ity. The arity of function symbols is always greater tltarSet Fgz includes pre-defined
symbols that intuitively correspond to arithmetic operators (e-J.reified arithmetic con-
nectives (e.g.«<, =), reified logical connectives (see Taldl), list delimiters ( and]) and
names of global constraints (discussed later in this section)kSgtontains pre-defined
symbolscspdomain, cspvar, required.

The notions of terms, atoms, literals, and rules are definedXwersimilarly to ASP,
although the notion of term is slightly expanded. Specifically, a term over signagyre-
<CEZ7 Vez, Fgz, REZ> is defined as:

1. a constant symbol fror6gz.
2. avariable symbol fronVgz.
3. an expression of the form

flt, .. te), (A1)

wheref is a function symbol inFgz of arity k£ and(t,, . . ., t;) are terms from cases
1-3 (If a function symbol is a pre-defined arithmetic operator, arithmetic connective,
or logical connective, then common infix notation is used.)

4. anextensional listi.e., an expression of the forf, o, . . ., t] wheret,’s are terms
from cases 1-3.

5. anintensional listi.e., an expression of the forfg/k] whereg € Fgz or (with
slight abuse of notation) € Rgz andk is an integer.

6. aglobal constraint, i.e., an expression of the fé(ty, Ao, ..., A\;), wheref € Fgz
and each; is a list®

Pre-defined arithmetic and logical connectives frégy, are dedicated to the specifica-
tion of constraints. The connectives are reified to enable their use within atoms of the form
required (). Furthermore, the logical connectives enable the specification of so called “rei-
fied constraints” such as:

x>12Vy <3, (A2)
37 In constraint satisfaction, global constraints are applied to lists of terms of arbitrary length, while local con-

straints, such as > y, apply to a fixed number of arguments. For simplicity, in the definition of the language
we disregard special cases of global constraints, whose arguments are not lists.
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| Connectie| ConstrainDomain |

Disjunction
Conjunction
Exclusivedisjunction

or— Implication
Equivalence
Negation

Trpo><

Table A 1. ez Logical Connectives

which specifies that either constraint> 12 or constrainty < 3 should be satisfied by a
solution to a problem containing reified constralagy.

An EZ program is a pai{Xgz,II), wherell is a set of rules over signatubezz. Ev-
ery Ez program is required to contain exactly one fact, whose headpigdomain(fd),
espdomain(q), or espdomain(r). Following common practice, we denote a program sim-
ply by the set of its rules, and let the signature be implicitly defined.

Similarly to ASP, anon-ground rulés a rule containing one or more non-constraint vari-
ables. A non-ground rule is interpreted as a shorthand for the set of propositional (ground)
rules obtained by replacing every non-constraint variable in the rule by suitable terms not
containing non-constraint variables. The process of replacing non-ground rules by their
propositional counterparts is callgdoundingand is well understood in ASIFsEbser et a).

2007, Calimeri_ef al, ?Z008. For this reason, in the rest of this section we focus on ground
EZ programs.

We now define a mapping from a (grourel) programiI to a propositional ez-program
£ = (E,A,C,~,D). We assume tha, a function fromC to constraints, is defined
along the lines of SectioB2 and given. Recall that only one fact formed from relation
cspdomain is allowed in a progranil. The fact's head is mapped to the constraint do-
main D by mappingup:

FD (finite domains)  ifespdomain(fd)- € 11
wp () = Q if cspdomain(q)- € 11
R if cspdomain(r)- € 11

Atoms formed from relatiortspvar specify the seVp, of variables (recall thaVp, is

the set of constraint variables that appear in csp-abstractions correspondihgTioe
corresponding atoms take two formspuvar(v) and espvar(v, [, u), wherewv is a term
from Xgz andl, u belong toCgz N D. The latter form allows one to provide a range for
the variable. Specifically, séfp, is obtained from facts containing the above atoms as
follows:

Vp, = {v]| cspvar(v)- € IL of cspvar(v, l, u)- € II}-
The constraints that specify the range of the variables are generated by mapping

py () = {required(v > 1) - | espvar(v,l,u)- € II} U
{required(v < u) - | cspvar(v, I, u)- € II}-
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Next, we address the specification of lists. Let us begin by introducing some needed ter-
minology. If a term is of the formE&T) then we refer tgf as afunctorand to{t, ..., t)

as itsargumentsFor an atom of the form(¢y, ..., &) we say that- is its relationand
(t1,..., t) are its arguments. The expressienms(f, k, (t1, t2, ... tm)) (With 0 < m <

k) denotes the set of terms fromgz formed by functorf that have arityk and whose
arguments have prefi&,, tz, . .., t,). The expressiomtoms(r, k, (t1, ..., t;)) denotes
the set of atoms formed by relationthat have arityt and whose arguments have prefix
(t1, t2, ..., tm). The expressiorfacts(IT) denotes the facts ifl. Finally, given a sefS,
lezord(S) denotes a lisfey, ea, . . ., e,] enumerating the elements 8fin such a way that
e; < eir1 (Where< denotes lexicographic orderif). We can now define mappings,
and ), from the two forms of intensional lists to corresponding extensional lists:

e Given an expression of the forffi(t,, ta, . . . , tm) / k], Wheref € Fgz, k is an inte-
ger from Cgz, t;'s are terms, an@ < m < k, its extensional representatidgthe
list:

Ao ([f (t1, B2y -« o, tm) /K]) = lexord(terms(f, k, (t1, t2, ..., tm)) N Vp,)

of all variables with functorf, arity k£, and whose arguments have prefix
(t1, ta, ..., tmn). FOr example, given a set of variables

X3 ={v(1),v(2),v(3),w(a,1),w(a,2),w(b, 1)},

the expressiofw(a)/2] denotes the lish, (w, 2, (a)) = [w(a, 1), w(a,2)]. When
m = 0, the expression is abbreviatgd k]. For instance, given séf; as above, the
expressiorjv/1] denoteguv (1), v(2), v(3)].

e Consider an expressidn(ty, ta, . . ., t ) /k], wherer is not a pre-defined relation
from Rgz and0 < m < k. Let [a1, ag,..., a,] denote listlezord (facts(II) N
atoms(r, k, (t1,...,t,))) and leta* denote the:*" argument ofa,;. Then, the ex-
tensional representation,.([r(t1, ta, - - - , tm)/k]), Of [r(t1, t2, - . ., tm) /K] iS:

Ae([r(ts tay s ) /K]) = [0F, 0k, ... k).

For example, given a relatiorf defined by facts’(a, 1, 3),7'(a,2,1),r'(b,5,7),

the expressiofr’(a)/3] denotes the ligB, 1] and the expressidn’(«, 2) /3] denotes

[1]. Similarly to the previous case, when the list of arguments is empty, the expres-
sion can be abbreviated ps/k]- For instance, given a relatiari’ for which we are
given factsr’’(a, 3), (b, 1), 7" (¢, 2), the expressiofr”’ /2] denoteg3, 1, 2).

As a practical example of the use of intensional lists, suppose that, above, retation
denotes the amount of resources required for a job and suppose that we are given facts
d(a,1),d(b,1),d(c, 1), specifying that jobs:, b, ¢ have durationl. Additionally, vari-
ablesst(a), st(b), st(c) represent the start time of the jobs. A cumulative constfaior

this scenario can be written as

required (cumulative([st/1],[d /2], [r" /2],4)),

39 The choice of a particular order is due to the fact that global constraints that accept multiple lists typically
expect the elements in the same position throughout the lists to be in a certain relation. More sophisticated
techniques for the specification of lists are possible, but in our experience, this method gives satisfactory results.

40 7 gives information on cumulative and other global constraints.
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which is an abbreviation &f
required (cumulative([st(a), st(b), st(c)], [1,1,1],[3,2,1],4))-

and means that values should be assigned to varial{ley st(b), st(c¢) so that each job,
of durationl and requiring amounts of resource®, 1 respectively, can be executed on a
machine that can provide at mastesources at any given time.

Next, let ur be a function that maps an atom of the forayuired(5) to an atom
required (') by:

e Replacing every occurrence gf(t1, ..., tm)/kl in B by A, ([f (t1, - - -, tm)/E]);
e Replacing every occurrence pf(ty, . .., t)/k] in B by A ([f (1, ..., tm) /K]).

The mapping is easily extended to rules and to programs as follows:

wu(a) < B. if ais of the formrequired (3)

urla = B.) = { a«— B. otherwise

whereB denotes the body of a rule.

pr(l) = | ua(r)
rell
Finally, let uu.4 (IT) and u¢ (IT) denote mappings frofl to alphabets4 andC, which are
straightforward given the above construction. Thus, givereamprogramII, the corre-
sponding propositional ez-program is:

E(M) = ( pv () U pr(Il), pa(Il), pc(), v, pp(II) )-

A.1 Global Constraints in Languag&z
The global constraints supported by #elanguage include:

o all_different(V), where V is a list of variables. This constraint, available only
in the fd domain, ensures that all the variableslinare assigned unique values.
Typically™, the implementation of the corresponding algorithm found in constraint
solvers is incomplete. Global constrairit_distinct( V'), which provides a complete
implementation of the algorithm, is also supported.

e assignment(X, YY), whereX andY are lists ofn variables whose domain is -n.
The constraint is satisfied if, for evetyj, X; = j ifand only if Y; = 4.

e circuit( V'), whereV is a list of n variables whose domain is- -n. The constraint
is satisfied by an assignmeft = v, Vo = w,, ..., V,, = v, if the directed graph
with nodesl ... n and arcg1, v1), (2, »2), .. ., (n, v,) forms a Hamiltonian cycle.

e count(M,V, o, E), where M is an integer or variable} a list of variablesp an
arithmetic comparison operator, afidan integer or variable. This constraint is sat-
isfied if the number¢, of elements ofl” that equalM is such that o E.

41 Note that the first argument is of the tygé(t1,t2,...,tm)/k] while the other two are of type
[r(t1, t2, ..., tm)/k], hence the different expansions.
43 See for examplBItp://SICSTLS SicS SA/SICSIIS/ANCS/3 -/ T/NIMI/SICSTHS 33 hfml
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cumulative(S, D, R, L), whereS is a list of variables,D and R are lists of non-
negative integers matching the length$fand L is an integer or a variable. This
constraint, which is only available in thfé¢ domain, is typically used in scheduling
problems. In that contexf represent the start times of a set of jobsprovides the
duration of those jobs, anl the resources they requirkis the amount of resources
available at any time step. Intuitively, the constraint assigns start times to the jobs so
that, at any time, no more than an amourdf resources is used.

disjoint2(X, W, Y, H), whereX, Y are lists of variables andi, H are lists of
integers defining the coordinates and dimensions of rectangles. For exaniple, if
[#1,..., Y = [y1,...], W = [wn,...], H = [l,...], one of the rectangles they
describe has top-left verteyx, , y;) and bottom-right vertexz; + wy, y1 + h1). This
constraint is only available in th& domain, and assigns values to the variables so
that the corresponding rectangles do not overlap.

element(I, V, E), wherel is an integer or variablel/ a list of variables, an& an
integer or variable. This constraint is satisfied if tH& element ofV is E.

minimum (M, V') andmazimum(M, V'), whereM is a variable or integer ant

is a list of variables. These constraints are satisfied if minimum or maximubn of
equalsi.

scalar_product(C, X , o, E), where(C'is a list of integersX is a list of variablese

is an arithmetic comparison operator, afids an integer or variable. The intuitive
meaning of this constraint is that the scalar prodpctf the elements of’ and X

must be such thato E.

serialized (S, D), whereS is a list of variables and is a list of integers, intuitively
denoting start time and duration of jobs. The constraint assigns start times to the
jobs so that their execution does not overlap, and can be viewed as a special case of
cumulative.

sum(V, o, E), whereV is a list of variablesp an arithmetic comparison operator,
and E is an integer or a variable. This constraint assigns value to the variables so
that(}",. v) o E is satisfied.
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