
Under consideration for publication in Theory and Practice of Logic Programming 1

Integration Schemas for Constraint Answer Set
Programming: a Case Study

MARCELLO BALDUCCINI
Eastman Kodak Company

(e-mail: marcello.balduccini@gmail.com)

YULIYA LIERLER
University of Nebraska at Omaha

(e-mail: ylierler@unomaha.edu)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Recently, researchers in answer set programming and constraint programming spent significant efforts in
the development of hybrid languages and solving algorithms combining the strengths of these traditionally
separate fields. These efforts resulted in a new research area: constraint answer set programming (CASP).
CASP languages and systems proved to be largely successful at providing efficient solutions to problems
involving hybrid reasoning tasks, such as scheduling problems with elements of planning. Yet, the devel-
opment of CASP systems is difficult, requiring non-trivial expertise in multiple areas. This suggests a need
for a study identifying general development principles of hybrid systems. Once these principles and their
implications are well understood, the development of hybrid languages and systems may become a well-
established and well-understood routine process. As a step in this direction, in this paper we conduct a case
study aimed at evaluating various integration schemas of CASP methods.

1 Introduction

Knowledge representation and automated reasoning are areas of Artificial Intelligence dedi-
cated to understanding and automating various aspects of reasoning. Such traditionally separate
fields of AI as answer set programming (ASP) (Brewka et al. 2011), propositional satisfiabil-
ity (SAT) (Gomes et al. 2008), constraint (logic) programming (CSP/CLP) (Rossi et al. 2008;
Jaffar and Maher 1994) are all representatives of directions of research in automated reason-
ing. The algorithmic techniques developed in subfields of automated reasoning are often suit-
able for distinct reasoning tasks. For example, answer set programming proved to be an ef-
fective tool for formalizing elaborate planning tasks whereas CSP is efficient in solving dif-
ficult scheduling problems. Nevertheless, if the task is to solve complex scheduling problems
requiring elements of planning then neither ASP nor CSP alone is sufficient. In recent years,
researchers attempted to address this problem by developing hybrid approaches that combine
algorithms and systems from different AI subfields. Research in satisfiability modulo theo-
ries (SMT) (Nieuwenhuis et al. 2006) is a well-known example of this trend.

More recent examples include constraint answer set programming (CASP) (Lierler 2012b),
which integrates answer set programming with constraint (logic) programming. Constraint an-

2 M. Balduccini, Yu. Lierler

swer set programming allows to combine the best of two different automated reasoning worlds:
(1) modeling capabilities of ASP together with advances of its SAT-like technology in solv-
ing and (2) constraint processing techniques for effective reasoning over non-boolean con-
structs. This new area has already demonstrated promising activity, including the develop-
ment of the CASP solvers ACSOLVER (Mellarkod et al. 2008), CLINGCON (Gebser et al. 2009),
EZCSP (Balduccini 2009), IDP (Wittocx et al. 2008). Related techniques have also been used in
the domain of hybrid planning for robotics (Schuller et al. 2013). CASP opens new horizons
for declarative programming applications. Yet the developments in this field pose a number of
questions, which also apply to the automated reasoning community as a whole.

The broad attention received by the SMT and CASP paradigms, which aim to integrate and
build synergies between diverse constraint technologies, and the success they enjoyed sug-
gest a necessity of a principled and general study of methods to develop such hybrid solvers.
Lierler (2012b) provides a study of the relationship between various CASP solvers highlight-
ing the importance of creating unifying approaches to describe such systems. For instance, the
CASP systems ACSOLVER, CLINGCON, and EZCSP came to being within two consecutive years.
These systems rely on different ASP and CSP technologies, so it is difficult to clearly articulate
their similarities and differences. In addition, the CASP solvers adopt different communication
schemas among their heterogeneous solving components. The system EZCSP adopts a “black-
box” architecture, whereas ACSOLVER and CLINGCON advocate tighter integration. The crucial
message transpiring from these developments in the CASP community is the ever growing need
for standardized techniques to integrate computational methods spanning multiple research ar-
eas. Currently such an integration requires nontrivial expertise in multiple areas, for instance,
in SAT, ASP and CSP. We argue for undertaking an effort to mitigate difficulties of designing
hybrid reasoning systems by identifying general principles for their development and studying
the implications of various design choices.

As a step in this direction, in this paper we conduct a case study aiming to explore a crucial
aspect in building hybrid systems – the integration schemas of participating solving methods. We
study various integration schemas and their performance, using CASP as our test-bed domain.
As an exemplary subject for our study we take the CASP system EZCSP. Originally, EZCSP

was developed as an inference engine for CASP that allowed a lightweight, black-box, integra-
tion of ASP and CSP. In order for our analysis to be conclusive we found it important to study
the different integration mechanisms using the same technology. Within the course of this work
we implemented “grey-box” and “clear-box” approaches for combining ASP and CSP reason-
ing within EZCSP. In this paper, we evaluate these configurations of EZCSP on two domains –
Weighted Sequence and Incremental Scheduling – from the Model and Solve track of the Third
Answer Set Programming Competition – 2011 (ASPCOMP) (asp 2011). Hybrid paradigms such
as CASP allow for mixing language constructs and computational mechanisms stemming from
different formalisms. Yet, one may design encodings that favor only single reasoning capabilities
of a hybrid system. For this reason, in our study we evaluate different encodings for the proposed
benchmarks that we call “pure ASP”, “true CASP”, and “pure CSP”. As a result we expect to
draw a comprehensive picture comparing and contrasting various integration schemas on several
kinds of encodings possible within hybrid approaches.

We start with a brief review of the CASP formalism. Then we draw a parallel to SMT solving,
aimed at showing that it is possible to transfer to SMT the results obtained in this work for CASP
solving. In Section 3 we review the integration schemas used in the design of hybrid solvers
focusing on the schemas implemented in EZCSP within this project. Section 4 provides a brief

Integration Schemas for Constraint Answer Set Programming: a Case Study 3

introduction to the application domains considered, and discusses the variants of the encodings
we compared. Experimental results and their analysis form Section 5.

2 Review: the CASP and SMT problems

The review of logic programs with constraint atoms follows the lines of (Lierler 2012a). A regular
program is a finite set of rules of the form

a0 ← a1, . . . , al, not al+1, . . . , not am, not not am+1, . . . , not not an, (1)

where a0 is ⊥ or an atom, and each ai (1 ≤ i ≤ n) is an atom. This is a special case of programs
with nested expressions (Lifschitz et al. 1999). We refer the reader to the paper by Lifschitz et
al. (1999) for details on the definition of an answer set of a logic program. A choice rule construct
{a} (Niemelä and Simons 2000) of the LPARSE language can be seen as an abbreviation for a rule
a← not not a (Ferraris and Lifschitz 2005). We adopt this abbreviation.

A constraint satisfaction problem (CSP) is defined as a triple 〈X, D, C〉, where X is a set of
variables, D is a domain of values, and C is a set of constraints. Every constraint is a pair 〈t, R〉,
where t is an n-tuple of variables and R is an n-ary relation on D. An evaluation of the variables
is a function from the set of variables to the domain of values, ν : X → D. An evaluation ν

satisfies a constraint 〈(x1, . . . , xn), R〉 if (v(x1), . . . , v(xn)) ∈ R. A solution is an evaluation
that satisfies all constraints.

Consider an alphabet consisting of regular and constraint atoms, denoted by A and C respec-
tively. By C̃, we denote the set of all literals over C. The constraint literals are identified with
constraints via a function γ : C̃ → C so that for any literal l, γ(l) has a solution if and only if
γ(l) does not have one (where l denotes a complement of l). For a set Y of constraint literals
over C, by γ(Y) we denote a set of corresponding constraints, i.e., {γ(c) | c ∈ Y }. Furthermore,
each variable in γ(Y) is associated with a domain. For a set M of literals, by M+ and MC we
denote the set of positive literals in M and the set of constraint literals over C in M , respectively.

A logic program with constraint atoms is a regular logic program over an extended alphabet
A∪C such that, in rules of the form (1), a0 is⊥ or a0 ∈ A. Given a logic program with constraint
atoms Π, by ΠC we denote Π extended with choice rules {c} for each constraint atom c occurring
in Π. We say that a consistent and complete set M of literals over atoms of Π is an answer set of
Π if

(a1) M+ is an answer set of ΠC and
(a2) MC has a solution.

The CASP problem is the problem of determining, given a logic program with constraint
atoms Π, whether Π has an answer set.

For example, let Π be the program

am← X < 12
lightOn← switch, not am

{switch}
⊥ ← not lightOn.

(2)

Intuitively, this program states that (a) light is on only if an action of switch occurs during the pm
hours and (b) light is on (according to the last rule in the program). Consider a domain of X to

4 M. Balduccini, Yu. Lierler

be integers from 0 till 24. It is easy to see that a set

{switch, lightOn,¬ am,¬X < 12}
forms the only answer set of program (2).

One may now draw a parallel to satisfiability modulo theories (SMT). To do so we first for-
mally define the SMT problem. A theory T is a set of closed first-order formulas. A CNF for-
mula F (a set of clauses) is T -satisfiable if F ∧T is satisfiable in the first-order sense. Otherwise,
it is called T -unsatisfiable. Let M be a set of literals. We sometime may identify M with a con-
junction consisting of all its elements. We say that M is a T -model of F if

(m1) M is a model of F and
(m2) M is T -satisfiable.

The SMT problem for a theory T is the problem of determining, given a formula F , whether F

has a T -model. It is easy to see that in the CASP problem, ΠC in condition (a1) plays the role
of F in (m1) in the SMT problem. At the same time, the condition (a2) is similar in nature to the
condition (m2).

Given this tight conceptual relation between the SMT and CASP formalisms, it is not sur-
prising that solvers stemming from these different research areas share a lot in common in their
design even though these areas have been developing to a large degree independently (CASP be-
ing a much younger field). We start next section by reviewing major design principles/methods
in crafting SMT solvers. We then discuss how CASP solvers follow one or another method. This
discussion allows us to systematize solvers’ design patterns present both in SMT and CASP
so that their relation becomes clearer. Such transparent view on solvers’ architectures immedi-
ately translates findings in one area into another. Thus although the case study conducted in this
research uses CASP technology only, we expect similar results to hold for SMT, and for the
construction of hybrid automated reasoning methods in general.

3 SMT/CASP Integration Schemas

Satisfiability modulo theories (SMT) integrates different theories “under one roof”. Often it also
integrates different computational procedures for processing such hybrid theories. We are in-
terested in these synergic procedures explored by the SMT community over the past decade.
We follow (Nieuwenhuis et al. 2006, Section 3.2) for a review of several integration techniques
exploited in SMT.

In every discussed approach, a formula F is treated as a satisfiability formula where each
of its atoms is considered as a propositional symbol, forgetting about the theory T . Such view
naturally invites an idea of lazy integration: the formula F is given to a SAT solver, if the solver
determines that F is unsatisfiable then F is T -unsatisfiable as well. Otherwise, a propositional
model M of F found by the SAT solver is checked by a specialized T -solver which determines
whether M is T -satisfiable. If so, then it is also a T -model of F , otherwise M is used to build a
clause C that precludes this assignment, i.e., M 6|= C while F ∪ C is T -satisfiable if and only if
F is T -satisfiable. The SAT solver is invoked on an augmented formula F ∪ C. Such process is
repeated until the procedure finds a T -model or returns unsatisfiable. Note how in this approach
two automated reasoning systems – a SAT solver and a specialized T -solver – interleave: a
SAT solver generates “candidate models” whereas a T -solver tests whether these models are in
accordance with requirements specified by theory T . We find that it is convenient to introduce

Integration Schemas for Constraint Answer Set Programming: a Case Study 5

the following terminology for the future discussion: a base solver and a theory solver, where a
base solver is responsible for generating candidate models and theory solver is responsible for
any additional testing required for stating whether a candidate model is indeed a solution.

It is easy to see how the lazy integration policy translates into the realm of CASP. Given a
program with constraint atoms Π, an answer set solver serves the role of a base solver by gen-
erating answer sets of ΠC (that are “candidate answer sets” for Π) and then uses a CLP/CSP
solver as a theory solver to verify whether condition (a2) is satisfied on these candidate an-
swer sets. Constraint answer set solver EZCSP embraces the lazy integration approach in its
design.1 To solve the CASP problem, EZCSP offers a user several options for base and the-
ory solvers. For instance, it allows for the use of answer set solvers CLASP (Gebser et al. 2007),
CMODELS (Giunchiglia et al. 2006), DLV (Citrigno et al. 1997) as base solvers and CLP systems
SICSTUS PROLOG (SICStus 2008) and BPROLOG (Zhou 2012) as theory solvers. Such variety
in possible configurations of EZCSP illustrates how lazy integration provides great flexibility in
choosing underlying base and theory solving technology in addressing problems of interest.

The Davis-Putnam-Logemann-Loveland (DPLL) procedure (Davis et al. 1962) is a backtracking-
based search algorithm for deciding the satisfiability of a propositional CNF formula. DPLL-like
procedures form the basis for most modern SAT solvers as well as answer set solvers. If a DPLL-
like procedure underlies a base solver in the SMT and CASP tasks then it opens a door to several
refinements of lazy integration. We now describe these refinements that will also be a focus of
the present case study.

In the lazy integration approach a base solver is invoked iteratively. Consider the SMT task: a
CNF formula Fi+1 of the i + 1th iteration to a SAT solver consists of a CNF formula Fi of the
ith iteration and an additional clause (or a set of clauses). Modern DPLL-like solvers commonly
implement such technique as incremental solving. For instance, incremental SAT-solving allows
the user to solve several SAT problems F1, . . . , Fn one after another (using single invocation of
the solver), if Fi+1 results from Fi by adding clauses. In turn, the solution to Fi+1 may benefit
from the knowledge obtained during solving F1, . . . , Fi. Various modern SAT-solvers, including
MINISAT (Een and Biere 2005; Een and Sörensson 2003), implement interfaces for incremental
SAT solving. Similarly, answer set solver CMODELS implements an interface that allows the
user to solve several ASP problems Π1, . . . , Πn one after another, if Πi+1 results from Πi by
adding a set of rules whose heads are ⊥. It is natural to utilize incremental DPLL-like procedures
for enhancing the lazy integration protocol: we call this refinement lazy+ integration. In this
approach rather than invoking a base solver from scratch an incremental interface provided by a
solver is used to implement iterative process.

Nieuwenhuis et al. (2006) also reviews such integration techniques used in SMT as on-line
SAT solver and theory propagation. In on-line SAT solver approach, the T -satisfiability of the
(partial) assignment is checked incrementally, while the assignment is being built by the DPLL-
like procedure. This can be done fully eagerly as soon as a change in partial assignment occurs
or at some regular intervals, for instance. Once the inconsistency is detected, a SAT solver is
instructed to backtrack. Theory propagation approach extends the on-line SAT solver technique
by allowing a theory solver not only to verify that a current partial assignment is T -consistent
but also to detect literals in a CNF formula that must hold given current partial assignment. The
CASP solver CLINGCON exemplifies the implementation of the theory propagation integration

1 Balduccini (2009) refers to lazy integration of EZCSP as lightweight integration of ASP and constraint programming.

6 M. Balduccini, Yu. Lierler

schema in CASP by unifying answer set solver CLASP as a base solver and constraint processing
system GECODE. ACSOLVER and IDP systems are other CASP solvers that implement the theory
propagation integration schema.

Three Kinds of EZCSP: To conduct our analysis of various integration schemas and their ef-
fect on the performance of the hybrid systems we used CASP solver EZCSP as a baseline tech-
nology. As mentioned earlier, original EZCSP implements the lazy integration schema. In the
course of this work we developed enhanced interfaces with answer set solver CMODELS that
allowed for the two other integration schemas: lazy+ integration and on-line SAT solver. These
implementations rely on API interfaces provided by CMODELS allowing for varying level of
integration between the solvers. The development of these API interfaces in CMODELS was
greatly facilitated by the API interface provided by MINISAT v. 1.12b supporting non-clausal
constraints (Een and Sörensson 2003). In the following we call

• EZCSP implementing lazy integration with CMODELS as a base solver – a black-box.
• EZCSP implementing lazy+ integration with CMODELS – a grey-box.
• EZCSP implementing on-line SAT solver integration with CMODELS (fully eagerly) – a

clear-box.

In all these configurations of EZCSP we assume BPROLOG to serve in the role of theory solver.

4 Application Domains

In this work we compare and contrast different integration schemas of hybrid solvers on two
application domains that stem from various subareas of computer science. This section provides
a brief overview of these applications. All benchmark domains are from the Third Answer Set
Programming Competition – 2011 (ASPCOMP) (asp 2011), in particular, the Model and Solve
track. We chose these domains for our investigation as they display features that benefit from the
synergy of computational methods in ASP and CSP. Each considered problem contains variables
ranging over a large integer domain thus making grounding required in pure ASP a bottleneck.
On the other hand, the modeling capabilities of ASP and availability of such sophisticated solving
technique as learning makes ASP attractive for designing solutions to these domains. As a result,
CASP languages and solvers become a natural choice for these benchmarks making them ideal
for our investigation.

Three Kinds of CASP Encodings: It is easy to note that hybrid languages such as CASP allow
for mix-and-match constructs and processing techniques stemming from different formalisms.
Yet, any pure ASP encoding of a problem is also a CASP formalization of the same problem.
Similarly, it is possible to encode a problem in such a way that only the CSP solving capabilities
of the CASP paradigm are employed. In this study we considered three kinds of encodings in the
CASP language of EZCSP: pure-ASP encoding; pure-CSP encoding; and true-CASP encoding.

Analysis of these varying kinds of encodings in CASP gives us a better perspective on how
different integration schemas are effected by the design choices made during the encoding of a
problem. At the same time considering the encoding variety allows us to verify our intuition that
true-CASP is an appropriate modeling and solving choice for the explored domains.

The weighted-sequence (WSEQ) domain is a handcrafted benchmark problem. Its key features
are inspired by the important industrial problem of finding an optimal join order by cost-based
query optimizers in database systems. Lierler et al. (2012) provide a complete description of the

Integration Schemas for Constraint Answer Set Programming: a Case Study 7

problem itself as well as the formalization that became “golden standard” in this work, i.e., the
formalization named SEQ++.

In the weighted-sequence problem we are given a set of leaves (nodes) and an integer m –
maximum cost. Each leaf is a pair (weight, cardinality) where weight and cardinality are inte-
gers. Every sequence (permutation) of leaves is such that all leaves but the first are assigned a
color that, in turn, associates a leaf with a cost (via a cost formula). A colored sequence is as-
sociated with the cost that is a sum of leaves’ costs. The task is to find a colored sequence with
cost at most m. We refer the reader to (Lierler et al. 2012) for the details of pure-ASP encoding
SEQ++. The same paper also contains the details on a true-CASP variant of SEQ++ in the lan-
guage of CLINGCON. We further adapted that encoding to the language of EZCSP by means of
simple syntactic transformations. Here we provide a review of details of the SEQ++ formaliza-
tion that we find most relevant to this presentation. The non-domain predicates of the pure-ASP
encoding are leafPos , posColor, posCost. Intuitively, leafPos is responsible for assigning a po-
sition to a leaf, posColor is responsible for assigning a color to each position, posCost carries
information on costs associated with each leaf. The main difference between the pure-ASP and
true-CASP encodings is in the treatment of the cost values of the leaves. We first note that cost
predicate posCost in the pure-ASP encoding is ”functional”. In other words, when this predicate
occurs in an answer set its first argument uniquely determines its second argument. Often, such
functional predicates in ASP encodings can be replaced by constraint atoms in CASP encodings.
Indeed, this is the case in the weighted-sequence problem. Thus in the true-CASP encoding,
predicate posCost is replaced by constraint atoms, making it possible to evaluate cost values
by CSP techniques. This approach is expected to benefit performance especially when the cost
values are large. Predicates leafPos and posColor are also functional. The pure-CSP encod-
ing is obtained from the true-CASP encoding by replacing leafPos and posColor predicates by
constraint atoms.

The incremental scheduling (IS) domain stems from a problem occurring in commercial print-
ing. In this domain, a schedule is maintained up-to-date with respect to jobs being added and
equipment going offline. A problem description includes a set of devices, each with predefined
number of instances (slots for jobs), and a set of jobs to be produced. The penalty for a job being
tardy is computed as td · imp, where td is the job’s tardiness and imp is a positive integer denot-
ing the job’s importance. The total penalty of a schedule is the sum of the penalties of the jobs.
The task is to find a schedule whose total penalty is no larger than the value specified in a prob-
lem instance. We direct the reader to (Balduccini 2011) for a complete description of the domain.
The pure-CSP encoding used in our experiments is the official competition encoding submitted
to ASPCOMP by the EZCSP team. In this encoding, constraint atoms are used for (i) assigning
start times to jobs, (ii) selecting which device instance will perform a job, and (iii) calculating
tardiness and penalties. The true-CASP encoding was obtained from the pure-CSP encoding by
introducing a new relation on instance(j, i), stating that job j runs on device-instance i. This
relation and ASP constructs of the EZCSP language replaced the constraint atoms responsible
for the assignment of device instances in the pure-CSP encoding. The pure-ASP encoding was
obtained from the true-CASP encoding by introducing suitable new relations, such as start(j, s)
and penalty(j, p), to replace all the remaining constraint atoms.

8 M. Balduccini, Yu. Lierler

0�000

1�������

2000�000

3000�000

4000�000

5000�000

6000�000

0� 02 03 04 05 06 0� 0� 0� �0 �� �2 �3 �4 �5 �6 �� �� �� 20 2� 22 23 24 25 26 2� 2� 2� 30

B��	k
�ox Grey
�ox C�e�r
�ox

Figure 1. Performance on WSEQ domain; true-CASP encoding

1���������

1���41����

3��������

�	

�

1���������

2����

��

1�����

1������

1�������

�

�

1���������

1����������

Tot�� Tim� �s�c)

C��P ��ck C��P �r�y C��P C���r P�r�-C�P ��P C�ingcon

Figure 2. Performance on WSEQ domain; total times in logarithmic scale

5 Experimental Results

The experimental comparison of the integration schemas was conducted on a computer with
an Intel Core i7 processor running at 3GHz. Memory limit for each process and time-
out considered were 3 GB RAM and 6, 000 seconds respectively. The version of EZCSP

used in the experiments was 1.6.20b49: it incorporated CMODELS version 3.83 as a base
solver and BPROLOG 7.4 3 as a theory solver. Answer set solver CMODELS 3.83 was also

Integration Schemas for Constraint Answer Set Programming: a Case Study 9

used for the experiments with the pure-ASP encodings. In order to provide a frame of
reference with respect to the state of the art in CASP, the tables for WSEQ and IS in-
clude performance information for CLINGCON 2.0.3 on true-CASP encodings adapted to
the language of CLINGCON. The ezcsp executable used in the experiments and the encod-
ings can be downloaded from http://www.mbalduccini.tk/ezcsp/iclp2013/ezcsp-binaries.tgz and
http://www.mbalduccini.tk/ezcsp/iclp2013/experiments.tgz respectively. In all figures presented:

• CASP Black, CASP Grey, CASP Clear denote EZCSP implementing respectively black-
box, grey-box and clear-box, and running a true-CASP encoding;

• Pure-CSP denotes EZCSP implementing black-box running a pure-CSP encoding (note that
for pure-CSP encodings there is no difference in performance between the integration
schemas);

• ASP denotes CMODELS running a pure-ASP encoding;
• Clingcon denotes CLINGCON running a true-CASP encoding.

We begin our analysis with WSEQ. The instances used in the experiments are the 30 instances
available via ASPCOMP. WSEQ proves to be a domain that truly requires the interaction of the
ASP and CSP solvers. Answer set solver CMODELS on the pure-ASP encoding runs out of mem-
ory on every instance (in the tables, out-of-memory conditions and timeouts are both rendered
as out-of-time results). EZCSP on the pure-CSP encoding reaches the timeout limit on every in-
stance. The true-CASP encoding running in black-box also times out on every instance. As shown
in Figure 1, the true-CASP encoding running in grey-box performs slightly better. The true-CASP
encoding running in clear-box instead performs substantially better. Figure 2 reports the total
times across all the instances for all solvers/encodings pairs considered. Notably, CASP solver
CLINGCON on true-CASP encoding is several orders of magnitude faster than any other config-
uration. This confirms that for this domain tight integration schemas indeed have an advantage.
Recall that CLINGCON implements a tighter integration schema than that of EZCSP clear-box
that, in addition to the on-line SAT solver schema of clear-box, also includes theory propagation.
Answer set solver CLASP serves the role of base solver of CLINGCON whereas GECODE is the
theory solver.

In case of the IS domain we considered two sets of experiments. In the former we used the
50 official instances from ASPCOMP. We refer to these instances as easy. It appears that tight
integration schemas have an advantage, allowing the true-CASP encoding to outperform the
pure-CSP encoding. As one might expect, the best performance for the true-CASP encoding
is obtained with the clear-box integration schema, as shown in Figure 3. Figure 3 provides a
comparison of the total times. In this case the early pruning of the search space made possible by
the clear-box architecture yields substantial benefits. As expected, it is also the case that grey-box
is faster than black-box. As for WSEQ, CLINGCON is the fastest, and CMODELS on the pure-ASP
encoding runs out of memory in all the instances.

The next experiment reveals an interesting change in behavior of solver/encodings pairs as the
complexity of the instances of the IS domain grows. In this test, we used a set of 30 instances
obtained by (1) generating randomly 500 fresh instances; (2) running the true-CASP encoding
with the grey-box integration schema on them with a timeout of 300 seconds; (3) selecting ran-
domly, from those, 15 instances that resulted in timeout and 15 instances that were solved in 25
seconds or more. The numerical parameters used in the process were selected with the purpose
of identifying challenging instances. The overall per-instance execution times reported in Fig-
ure 4 clearly indicate the level of difficulty of the selected instances. Remarkably, these more

10 M. Balduccini, Yu. Lierler

4�4��3�9�

����8���	

��
�����	

�8������	

�					�			

11��3�.�

�3���

�			�			

				�			

�			�			

�				�			

��			�			

�				�			

��			�			

�				�			

4���3���

�				�			

Tota� Tim� s�c)

C�SP ��ack C�SP ���y C�SP C��a� Pu��-CSP �SP C�ingcon

Figure 3. Performance on IS domain, easy instances; total times (ASP encoding off-chart)

Figure 4. Performance on IS domain, hard instances; overall view

difficult instances are solved more efficiently by the pure-CSP encoding that relies only on the
CSP solver, as evidenced by Figure 5. In fact, the pure-CSP encoding outperforms every other
method of computation, including CLINGCON on true-CASP encoding. More specifically, solv-
ing the instances with the true-CASP encoding takes between 30% and 50% longer than with the
pure-CSP encoding. (Once again, CMODELS runs out of memory.)

Integration Schemas for Constraint Answer Set Programming: a Case Study 11

Figure 5. Performance on IS domain, hard instances; total times

6 Conclusions

The case study conducted in this work illustrates the influence that integration methods have
on the behavior of hybrid systems. Each integration schema may be of use and importance for
some domain. Thus systematic means ought to be found for facilitating building hybrid systems
supporting various coupling mechanisms. Building clear and flexible API interfaces allowing for
various types of interactions between the solvers seems a necessary step towards making the
development of hybrid solving systems effective. This work provides evidence for the need of an
effort to this ultimate goal.

References

2011. Third answer set programming competition. https://www.mat.unical.it/aspcomp2011/.
BALDUCCINI, M. 2009. Representing constraint satisfaction problems in answer set programming. In

Proceedings of ICLP’09 Workshop on Answer Set Programming and Other Computing Paradigms (AS-
POCP’09).

BALDUCCINI, M. 2011. Industrial-Size Scheduling with ASP+CP. In 11th International Conference on
Logic Programming and Nonmonotonic Reasoning (LPNMR11), J. P. Delgrande and W. Faber, Eds.
Lecture Notes in Artificial Intelligence (LNCS), vol. 6645. Springer Verlag, Berlin, 284–296.

BREWKA, G., NIEMELÄ, I., AND TRUSZCZYŃSKI, M. 2011. Answer set programming at a glance. Com-
munications of the ACM 54(12), 92–103.

CITRIGNO, S., EITER, T., FABER, W., GOTTLOB, G., KOCH, C., LEONE, N., MATEIS, C., PFEIFER, G.,
AND SCARCELLO, F. 1997. The DLV system: Model generator and application frontends. In Proceedings
of Workshop on Logic Programming (WLP97).

DAVIS, M., LOGEMANN, G., AND LOVELAND, D. 1962. A machine program for theorem proving. Com-
munications of the ACM 5(7), 394–397.

EEN, N. AND BIERE, A. 2005. Effective preprocessing in sat through variable and clause elimination. In
SAT.

12 M. Balduccini, Yu. Lierler

EEN, N. AND SÖRENSSON, N. 2003. An extensible sat-solver. In SAT.
FERRARIS, P. AND LIFSCHITZ, V. 2005. Weight constraints as nested expressions. Theory and Practice

of Logic Programming 5, 45–74.
GEBSER, M., KAUFMANN, B., NEUMANN, A., AND SCHAUB, T. 2007. Conflict-driven answer set solv-

ing. In Proceedings of 20th International Joint Conference on Artificial Intelligence (IJCAI’07). MIT
Press, 386–392.

GEBSER, M., OSTROWSKI, M., AND SCHAUB, T. 2009. Constraint answer set solving. In Proceedings of
25th International Conference on Logic Programming (ICLP). Springer, 235–249.

GIUNCHIGLIA, E., LIERLER, Y., AND MARATEA, M. 2006. Answer set programming based on proposi-
tional satisfiability. Journal of Automated Reasoning 36, 345–377.

GOMES, C. P., KAUTZ, H., SABHARWAL, A., AND SELMAN, B. 2008. Satisfiability solvers. In Handbook
of Knowledge Representation, F. van Harmelen, V. Lifschitz, and B. Porter, Eds. Elsevier, 89–134.

JAFFAR, J. AND MAHER, M. 1994. Constraint logic programming: A survey. Journal of Logic Program-
ming 19(20), 503–581.

LIERLER, Y. 2012a. Constraint answer set programming.
LIERLER, Y. 2012b. On the relation of constraint answer set programming languages and algorithms. In

Proceedings of the AAAI Conference on Artificial Intelligence. MIT Press.
LIERLER, Y., SMITH, S., TRUSZCZYNSKI, M., AND WESTLUND, A. 2012. Weighted-sequence problem:

Asp vs casp and declarative vs problem oriented solving. In Fourteenth International Symposium on
Practical Aspects of Declarative Languages.

LIFSCHITZ, V., TANG, L. R., AND TURNER, H. 1999. Nested expressions in logic programs. Annals of
Mathematics and Artificial Intelligence 25, 369–389.

MELLARKOD, V. S., GELFOND, M., AND ZHANG, Y. 2008. Integrating answer set programming and
constraint logic programming. Annals of Mathematics and Artificial Intelligence.

NIEMELÄ, I. AND SIMONS, P. 2000. Extending the Smodels system with cardinality and weight con-
straints. In Logic-Based Artificial Intelligence, J. Minker, Ed. Kluwer, 491–521.

NIEUWENHUIS, R., OLIVERAS, A., AND TINELLI, C. 2006. Solving SAT and SAT modulo theories:
From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). Journal of the ACM 53(6),
937–977.

ROSSI, F., VAN BECK, P., AND WALSH, T. 2008. Constraint porgramming. In Handbook of Knowledge
Representation, F. van Harmelen, V. Lifschitz, and B. Porter, Eds. Elsevier, 181–212.

SCHULLER, P., PATOGLU, V., AND ERDEM, E. 2013. A Systematic Analysis of Levels of Integration be-
tween Low-Level Reasoning and Task Planning. In Workshop on Combining Task and Motion Planning
at the IEEE International Conference on Robotics and Automation 2013.

SICSTUS. 2008. Sicstus Prolog Web Site. http://www.sics.se/isl/sicstuswww/site/.
WITTOCX, J., MARIËN, M., AND DENECKER, M. 2008. The IDP system: a model expansion system for

an extension of classical logic. In LaSh. 153–165.
ZHOU, N.-F. 2012. The language features and architecture of B-Prolog. Journal of Theory and Practice of

Logic Programming (TPLP) 12, 1–2 (Jan), 189–218.

