
Practical and Methodological Aspects of the Use of

Cutting-Edge ASP Tools

Marcello Balduccini1 and Yulia Lierler2

1 Eastman Kodak Company

marcello.balduccini@gmail.com
2 University of Kentucky

yuliya@cs.utexas.edu

Abstract In the development of practical applications of answer set program-

ming (ASP), encodings that use well-established solvers such as CLASP and DLV

are sometimes affected by scalability issues. In those situations, one can resort to

more sophisticated ASP tools exploiting, for instance, incremental and constraint

ASP. However, today there is no specific methodology for the selection or use of

such tools. In this paper we describe how we used such cutting-edge ASP tools

on challenging problems from the Third Answer Set Programming Competition.

We view this paper as a first step in the development of a general methodology

for the use of advanced ASP tools.

Keywords: answer set programming, solvers, constraint ASP, incremental ASP.

1 Introduction

The Third Answer Set Programming Competition – 2011 [1] (ASPCOMP) included a

Model and Solve track. Within this track the teams were free to choose a specific declar-

ative solver and modeling technique for each problem. Answer set programming (ASP)

solvers were the primary focus. Nowadays, there are a number of well-established ASP

solvers such as CLASP [6], DLV [8], and cutting-edge solvers based on constraint and

incremental ASP (resp., CASP, IASP), such as EZCSP [3] and ICLINGO [5]. Well-

established solvers are robust and their use relies on a well-understood programming

methodology. On the other hand, in some circumstances the encodings for these sys-

tems have scalability issues. The extensions of ASP implemented by the solvers for

CASP and IASP aim at overcoming some of these issues. However, today there is no

specific methodology for the formalization of knowledge with such new tools, or even

for the selection of a suitable tool given the features of a domain.

In this paper we describe how we used CASP and IASP tools to tackle four challeng-

ing ASPCOMP benchmarks (Weight-Assignment, Reverse-Folding, Hydraulic-System-

Planning, and Airport-Pickup). Throughout our description, we provide methodological

considerations, both from the perspective of tool selection and of knowledge representa-

tion. Although the discussion in this paper is still oriented towards the specific problems

we solved, we view this effort as a first, necessary step towards a general methodology

for the use of advanced ASP tools.

Our decisions with respect to tool selection and modeling techniques were based

on problem statement analysis and performance assessments that we conducted on the

training instances available before the competition. Because the number of training in-

stances was rather small – ranging from 5 to 7 – we could not carry out a thorough

pre-competition performance assessment. Nonetheless, the evaluation gave us some

evidence [4] of the performance yielded by our encodings. After the competition we

conducted a post-competition performance assessment described in Section 7.

The structure of this paper is as follows. We begin with a short introduction on ASP,

CASP and IASP. Sections 3, 4, 5, and 6 provide the problem statements and the spec-

ifications of the encodings for the Weight-Assignment, Reverse-Folding, Hydraulic-

System-Planning, and Airport-Pickup benchmarks, respectively. In Section 7 we dis-

cuss performance. In the final section we draw conclusions.

2 Background

Because of space considerations, in this section we only provide a short introduction

on ASP, CASP and IASP, and refer the reader to [7], [3] and [5], respectively for the

syntax and semantics of the corresponding languages.

ASP is a declarative programming paradigm based on the answer set semantics

of logic programs [7]. The idea of ASP is to represent a given problem by a program

whose answer sets correspond to solutions. A common programming methodology is to

design two main parts of a program: generate and test. The former defines a collection

of answer sets, seen as potential solutions. The latter consists of the rules that remove

the non-solutions. To distinguish the language in [7] from its extensions, we talk about

pure ASP, programs, and rules.

CASP extends the syntax and semantics of ASP with constraint processing ele-

ments. It allows for new modeling features and novel computational methods that com-

bine traditional ASP procedures with constraint satisfaction (CSP) and constraint logic

programming (CLP) algorithms. CASP is especially useful in domains that pose con-

straints over large numerical values. In such cases, grounding often becomes a bottle-

neck in the pure ASP approach. EZCSP is an inference engine for CASP that allows

a lightweight integration of ASP and constraint programming. In the EZCSP terminol-

ogy, an extended answer set of a CASP program Π , is a pair consisting of an answer

set of Π where some of the atoms encode CSP constraints, and of a solution to these

CSP constraints. Given a program Π , the EZCSP solver computes one or more of Π’s

extended answer sets. The solver combines off-the-shelf ASP (e.g., CLASP) and CLP

solvers (e.g., BPROLOG, http://www.probp.com/). The architecture is such that

first the ASP solver is used to find an answer set A of a given CASP program Π .

Then the CSP constraints encoded by A are evaluated by the constraint solver. If the

solver determines that the constraints from A are not satisfiable, another answer set is

computed and the process repeats. Otherwise, A and a solution found by the constraint

solver form an extended answer set. If Π is a pure ASP program then EZCSP behaves

as its underlying ASP solver. Conversely, Π may also be a direct encoding of a CSP

theory, and in this case EZCSP behaves as its underlying constraint solver.

In certain domains, a numerical parameter can be identified that reflects the size or

complexity of a candidate solution. IASP extends pure ASP by allowing one to take ad-

vantage of such a parameter (the growth parameter). The programmer is given means

to denote rules that are independent of the growth parameter (the base), rules whose

grounding should be computed incrementally in dependence of the value of the param-

eter (the cumulative part), and rules that should be grounded anew for each different

value of the parameter considered (the volatile part). An incremental answer set solver

such as ICLINGO first attempts to find a solution for a minimum value of the growth

parameter. If unsuccessful, it iteratively (1) increments this value, incrementally grows

the grounding of the cumulative part of the program, (2) re-grounds the volatile part,

and (3) checks again for a solution.

3 Weight-Assignment Benchmark

In the Weight-Assignment Benchmark, a binary tree with n leaves is considered, such

that (1) the leaves are pairs of integers 〈weight, cardinality〉; (2) the right child of an

inner node is a leaf; (3) each inner node is a pair 〈color, weight〉, where color is green,

red, or blue; (4) the inner nodes are numbered from 1 to n − 1; node n − 1 is the root

node; the left child of each inner node i is inner node i − 1. The weight of an inner

node k is computed as follows: (1) if the color of k is green, then weight(k) is the sum

of the weight and cardinality of k’s right child; (2) if the color of k is red, then its weight

is the sum of the weight of its right and left children; (3) if the color of k is blue, then its

weight is the sum of the cardinality of its right child and of the weight of its left child.

The task is to verify that there is a tree formed by the given leaves in accordance with (1-

4) so that the total weight of this tree – the sum of the weights of its inner nodes – is less

than or equal to a given integer maximum weight. Problem instances are specified by

the relations of the form leafWeightCard(l, w, c), num(n), and maxWeight(mv),
where l is a name of the leaf 〈w, c〉, n is a number of leaves, and mv is a maximum

weight. More detailed descriptions of the Weight-Assignment benchmark and also of

other benchmarks discussed in this paper are given on the ASPCOMP website [1].

Because of the abundance of constraints over numerical values, i.e., weights and

cardinalities of the leaves and inner nodes, this benchmarks lends itself to being solved

using EZCSP.

Hybrid ASP-CSP Encoding: let n and mv denote a number of leaves and a maximum

weight in a given weight-assignment problem instance, respectively. We say that a leaf

l occurs at position 1 ≤ p < n in the tree if it is the right child of an inner node p.

Furthermore, a position of an inner node is identified with a number associated with it,

i.e., 1 . . . n − 1. A leaf occurs at position 0 if it is the left child of an inner node 1. We

model the assignment of a leaf to position p by the relation assignedLeafPos(l, p)
that denotes that a leaf with the name l is assigned a position p. Set of rules (1) below

states that each leaf is assigned a unique position. Relation innerNodeColor(k, c)
denotes the fact that inner node k is assigned a color c. Rule (2) states that each inner

node (identified by its position) is assigned a single color.

1{assignedLeafPos(L, P) : position(P)}1← leafWeightCard(L, W, C).
← assignedLeafPos(L, P), assignedLeafPos(L′, P), L 6= L′.

(1)

1{innerNodeColor(P, C) : color(C)}1← position(P), P 6= 0. (2)

The weight of an inner node k is modeled by a CSP variable weight(k), whose value

ranges from 0 to mv. In order to simplify the encoding of the constraints, we use CSP

variable weight(0) to denote the weight of the leaf at position 0. The corresponding

rules are:
cspvar(weight(K), 0, MV)← num(N), K = 0..N − 1, maxWeight(MV).
required(weight(0) = W)← assignedLeafPos(L, 0), leafWeightCard(L, W, C).

The first rule declares the CSP variables of the form weight(k). The other rule encodes

a CSP constraint that determines the value of variable weight(0) to be the weight of the

leaf assigned position 0. The constraints on the weights of the inner nodes are encoded

by statements such as:
required(weight(P) = W + weight(P ′))←

position(P), P 6= 0, P ′ = P − 1, innerNodeColor(P, red),
assignedLeafPos(L, P), leafWeightCard(L, W, C).

(3)

To compute the total weight of a tree, we introduce a set of auxiliary CSP variables of

the form innerWeight(k), where k ranges from 1 to n− 1. For every k in that range,

variable innerWeight(k) equals weight(k):
cspvar(innerWeight(K), 0, MV)← num(N), K = 1..N − 1, maxWeight(MV).
required(innerWeight(K) = weight(K))← num(N), K = 1..N − 1.
required(sum([innerWeight/1],≤, MV))← maxWeight(MV).

The last rule encodes a CSP constraint stating that the sum of the weights of the inner

nodes of the tree must be less than or equal to mv. We denote the program consisting

of the rules discussed so far by Π1(WA).
Encoding Analysis: in program Π1(WA), the generate part consists of the rules in (1)

and (2). The rest of the rules form the test part. Note that generation is formed by pure

ASP rules whereas testing is formulated using rules that contain CSP variables. Recall

the general architecture of the EZCSP system discussed in Section 2. It is not difficult to

see that in the worst-case scenario (for instance, when the problem is unsatisfiable)

EZCSP will generate and evaluate every possible combination of leaf-position/inner

node-color assignments during its search process. To avoid such behavior we restate

the generate part of the program so that the CSP solver of the EZCSP system is respon-

sible for both generate and test. Thus the encoding we discuss next can be viewed as a

CSP formalization of the weight-assignment problem by means of a CASP language.

We denote this encoding by Π2(WA).
CSP Formalization by Means of CASP: we begin by modeling the assignment

of a leaf to a position p by the CSP variable assignedLeaf(p). Since CSP vari-

ables have numerical values, we map the name l of a leaf 〈w, c〉 (given by

leafWeightCard(l, w, c)) to an integer id ranging from 1 to n and add an auxiliary

fact leafId(l, id) to a program. The EZCSP declaration of assignedLeaf(p) is:

cspvar(assignedLeaf(P), 1, N)← position(P), num(N). (4)

The fact that a leaf can only be assigned one position is compactly enforced by means

of a global constraint all different, encoded by

required(all different([assignedLeaf/1])). (5)

where the expression [assignedLeaf/1] denotes the list of the CSP variables formed

by function symbol assignedLeaf with arity 1. Rules (4) and (5) are the counterparts

of (1) in Π1(WA). The statement

cspvar(innerNodeColor(P), 0, 2)← position(P). (6)

declares a CSP variable innerNodeColor(k) for each inner node k; the value of the

variable denotes the color assigned to k that ranges between 0 (representing color red)

and 2 (representing blue). The association between a color and its identifier is encoded

by a set of facts of the form colorId(c, id), where c is red, blue or green, and id is

its identifier. The declaration of innerNodeColor(k) is the counterpart of rule (2). As

in Π1(WA), the weight of an inner node k is modeled by a CSP variable weight(k).
The variable declaration remains the same, but the encoding of the requirements on

weight(k) is different. For instance, rule (3) becomes:

required((innerNodeColor(P) = REDID ∧ assignedLeaf(P) = ID)→
weight(P) = W + weight(P ′))←

position(P), P 6= 0, P ′ = P − 1,
colorId(red, REDID), leafId(L, ID), leafWeightCard(L, W, C).

The rules for innerWeight are reformulated similarly. In order to improve perfor-

mance, the encoding also contains constraints that provide bounds for the value of the

weight of an inner node independently of the color of the node, such as:

required(assignedLeaf(P) = ID → weight(P) ≥
min(W + C, min(W + weight(P ′), C + weight(P ′))))←

position(P), P 6= 0, P ′ = P − 1, leafId(L, ID), leafWeightCard(L, W, C).

4 Reverse-Folding Benchmark

In the Reverse-Folding benchmark, one manipulates a sequence of n pairwise connected

segments located on a 2D plane in order to take the sequence from the initial configura-

tion to the goal configuration specified. The ordering of the sequence and the fact that

the segments are connected to each other allows one to label each end point of a segment

either as a starting point or as an ending point. All segments have unary length, and are

parallel either to the x-axis or to the y-axis. In the initial configuration, the segments are

parallel to the y-axis and oriented so that the sequence extends in the direction of the

positive y-axis. The sequence is manipulated by rotating a segment around its starting

point by 90 degree (in either direction). This action is called pivot move. A pivot move

on a segment causes the segments that follow it to rotate around the same center of ro-

tation. Concurrent pivot moves are prohibited. At the end of a pivot move, the segments

in the sequence must not intersect. In the Reverse-Folding problem, one is given the

number n of segments (relation length), the goal configuration (relation fold(i, x, y),
where 1 ≤ i ≤ n and x, y are the coordinates of the ith starting point, or of the ending

point of the last segment for i = n), and an integer t (relation time). The task is to

find a sequence of exactly t pivot moves, which produces the goal configuration from

the initial configuration, satisfying the constraints cited above. A solution is encoded as

a set of atoms of the form pivot(t, i, r), saying that the tth pivot move rotates the ith

segment either clockwise (r = clock) or counterclockwise (r = anticlock).

Simple Encoding: in writing an encoding that solves this benchmark, the first thing that

became apparent is that a minimum number of necessary pivot moves can be inferred

directly by observing the structure of the goal configuration. If two segments are at

an angle in the goal configuration, it is not difficult to prove that every solution to

the problem instance must contain a pivot move that rotates the second segment of

the pair. In order to infer such moves, we first define a relation segDirection(i, d, o),
which intuitively states that the ith segment in the goal sequence has direction d and

orientation o. For example, the rules for the segments parallel to the x-axis are:

segDirection(I, horiz, plus)← X2 > X1, fold(I, X1, Y), fold(I + 1, X2, Y).
segDirection(I, horiz, minus)← X2 < X1, fold(I, X1, Y), fold(I + 1, X2, Y).

Next, we define relation foldDirection(i, d), intuitively saying that in the goal config-

uration the ith segment is aligned with its predecessor (r = none), or rotated clockwise

or counterclockwise with respect to it (r = clock and r = anticlock, respectively). The

rules for r ∈ {none, clock} are:

foldDirection(I, none)← segDirection(I − 1, D, O), segDirection(I, D, O).
foldDirection(I, clock)← clockFold(D1, O1, D2, O2),

segDirection(I − 1, D1, O1), segDirection(I, D2, O2).
clockFold(vert, plus, horiz, plus). clockFold(horiz, plus, vert, minus). . . .

Finally, relation requiredFold(i, r) says that the ith segment must be rotated clock-

wise or counterclockwise:

requiredFold(I, R)← R 6= none, foldDirection(I, R).

In most cases, performing the pivot moves beginning from the end of the sequence

produces a solution. In this case, the pivot moves can be determined by the rules:

pivot(1, I, R)← first(I), requiredFold(I, R).
pivot(T1, I1, R1)← pivot(T, I2, R2), T1 = T + 1, next(I1, I2)

requiredFold(I1, R1), requiredFold(I2, R2).

where first(i) and next(i1, i2) enumerate the segments that are to be rotated, begin-

ning from the one closest to the end of the sequence. Because a solution to the Reverse-

Folding problem is required to contain exactly the specified number of moves, it may

happen that extra, irrelevant moves need to be generated. This can be achieved by alter-

nating clockwise and counterclockwise rotations of segment 1:

pivot(T1, 1, clock)← numRequiredFolds(R), time(T),
T1 > R, T1 ≤ T, (T1−R) mod 2 = 1.

Relation numRequiredFolds(r) says that r required folds were identified in the goal

configuration. The rule for anticlock is similar. Next, we ensure that there are no over-

lapping segments during the execution of the moves. To achieve this, we project the

effects of each move on the segments and check for an overlap. To reduce the size of

the grounding, we consider separately the effects of the rotations on the x and y coor-

dinates of the end points of the segments. The information is encoded by foldx(t, i, p)
and foldy(t, i, p), saying that the x (resp., y) coordinate of the ith end point before

move t is p. The effect of a move on the x coordinate of a segment is encoded by:

foldx(T1, I, Y − Y 1 + X1)← foldy(T, I, Y), pivot(T, I1, clock), I ≥ I1,
T1 = T + 1, foldx(T, I1, X1), foldy(T, I1, Y 1).

foldx(T1, I, Y 1− Y + X1)← foldy(T, I, Y), pivot(T, I1, anticlock), I ≥ I1,
T1 = T + 1, foldx(T, I1, X1), foldy(T, I1, Y 1).

foldx(T1, I, X)← foldx(T, I, X), pivot(T, I1, R), I < I1, T1 = T + 1.

(7)

The first two rules state the effect of clockwise and counterclockwise rotations on the

segments that follow the point where the rotation is applied. The last rule states that

the x coordinate of the other end points is unchanged. The definition of foldy is similar.

The following denial states that overlaps are not allowed to occur:

← foldx(T, I1, X1), foldy(T, I1, Y 1), foldx(T, I2, X1), foldy(T, I2, Y 1),
I1 < I2, pivot(T − 1, I3, R), I2 > I3.

The two inequalities in the denial are aimed at reducing the size of the grounding, the

former by exploiting symmetry considerations, and the second by preventing the denial

from considering segments that were not affected by the pivot move. Finally, relations

foldx and foldy are used to ensure that the goal configuration is eventually reached:

← time(T), T1 = T + 1, X1 6= X2, foldx(T1, I, X1), fold(I, X2, Y 2).
← time(T), T1 = T + 1, Y 1 6= Y 2, foldy(T1, I, Y 1), fold(I, X2, Y 2).

(8)

The program consisting of the rules discussed so far will be denoted by Π1(RF).
Encoding Analysis: Unfortunately, the presence of the pivot moves identified by

Π1(RF) is a necessary, but not always sufficient, condition to find a solution. In some

cases, executing the pivot moves beginning from the end of the sequence of segments

causes some segments to overlap, but the moves can be re-ordered so that no overlap

exists. In particular, it is often possible to find a solution by postponing one (suitable)

pivot move to the end of the sequence of moves. We call this the delayed-move case.

(To keep this presentation simple, other cases are not discussed.)

The delayed-move case can be handled by adding a choice rule for the selection of

one delayed move and modifying the definition of relation pivot so that the delayed

move is executed at the end of the sequence of moves. One such choice rule is:

0{ delayed(I) : requiredFold(I, D) }1.

Let Π2(RF) denote the modified program. The computation for Π2(RF) is substan-

tially slower than the computation for Π1(RF), with the performance of the grounding

process particularly affected. In Π2(RF) the grounder does not handle efficiently the

rules involving foldx and foldy, whose arguments have rather large numerical do-

mains. Recall that the definitions of foldx and foldy rely on relation pivot, whose

definition in Π2(RF) differs from the one in Π1(RF). Hence, we created a variant

Π3(RF) of Π2(RF) that takes advantage of CASP capabilities of EZCSP by encoding

constraints on foldx and foldy using CSP, such as:

required(foldxγ(T1, I) = foldyγ(T, I)− foldyγ(T, I1) + foldxγ(T, I1))←
pivot(T, I1, clock), T1 = T + 1, I ≥ I1.

5 Hydraulic-System-Planning Benchmark

In the Hydraulic-System-Planning benchmark, a hydraulic system is viewed as a di-

rected graph G. The nodes of G represent tanks, jets, and junctions. Tanks are either

empty or full. Each link between nodes is labeled by a valve. A valve can be opened

(by action switchon). Valves that are stuck cannot be opened. A node of G is called

pressurized in state S if it is a full tank or if there exists a path from some full tank to

this node such that all valves on the edges of this path are open. Furthermore, no path

connecting two tanks exists and every jet is connected to at least one tank. An input for

this benchmark consists of a graph G, a specification of which tanks are full and which

valves are stuck (all valves are initially closed), and a set of goal jets. The goal is to find

a shortest sequence of switchon actions to pressurize the goal jets. In the sequence, no

actions can be executed concurrently.

The challenge in this benchmark is that the length of the sequence of actions must

be minimized. From a methodological standpoint, we approached the problem by first

writing a pure ASP encoding, and then addressing its performance by transforming it

into an ICLINGO program. For later reference, we label various sets of rules as we in-

troduce them. We define an important notion of viable path as a path in G such that no

valve along the path is stuck. Relation viablePath(j, n) formalizes this notion recur-

sively, restricting it to the goal jets for efficiency:

viablePath(J, J)← goal(J).
viablePath(J, N ′)← goal(J), viablePath(J, N), link(N ′, N, V), not stuck(V).

The following rules ensure that there is a viable path to a full tank for every goal jet:

canPressurize(J)← goal(J), full(T), viablePath(J, T).
← goal(J), not canPressurize(J).

Let Π1(HP) denote all of the rules above. Next, we address the planning task in two

steps. In the first step we find the length of the shortest viable paths between each goal

jet and a full tank, and in the second step we determine a sequence of actions that opens

the paths of the given length. We begin by defining the notion of reachability in a given

number of steps, which again we restrict to goal jets for performance:

reachable(J, J, 0)← goal(J).
reachable(J, N ′, S)←

goal(J), reachable(J, N, S − 1), link(N ′, N, V), not stuck(V).

(9)

Using this relation, we can now define the notion of a pressure path of length k between

goal jet j and full tank t, i.e. a viable path of length k between j and t:

pressurePath(J, T, S)← goal(J), full(T), reachable(J, T, S). (10)

We denote the set of rules (9) and (10) by Π2(HP). Next we describe the set of rules

that form Π3(HP). The length of the shortest paths from goal jet j to any full tank is

defined by:

shortestPath(J, Len)←
goal(J), Len = # min[pressurePath(J, T, L) = L : full(T)].

Note that there may be multiple shortest paths for a goal jet. Therefore, we determine a

single shortest path for each jet. We begin by defining the notion of valves that can be

possibly used to open a shortest path for a given jet. We encode this notion recursively

using relation poss use valve(j, n, v, s), which states that at the end of the path from

j to node n of length s, valve v can be possibly used:

poss use valve(J, N, V, S − 1)← goal(J), shortestPath(J, S), full(T), link(T, N, V),
reachable(J, T, S), reachable(J, N, S − 1).

poss use valve(J, N2, V 2, S − 1)← goal(J), poss use valve(J, N1, V 1, S),
reachable(J, N2, S − 1), link(N1, N2, V 2).

The recursion intuitively enumerates the valves moving from a tank towards a goal jet.

The first rule encodes the base case and says that if the shortest paths for jet j have

length s and a full tank t is reachable from j in s steps, then for any node n connected

to t and reachable from j in s − 1 steps, the connecting valve v can be used at the end

of the path from j to n. The second rule states that, if valve v1 can be possibly used at

the end of the path from j to n1 of length s, then for any node n2 reachable from j in

s− 1 steps and directly connected to n1 by valve v2, v2 can be possibly used at the end

of the path to n2 of length s− 1.

The selection of valves to be used is also performed recursively. We begin by con-

sidering, for each jet j, all paths of length 0. We select exactly one valve among the

valves that can be possibly used at the end of each of those paths:

1{ use valve(J, N, V, 0) : poss use valve(J, N, V, 0) }1← goal(J).

Next, given the decision to use valve v at the end of the path from j to n of length s, we

identify the node, n′, connected to n by v, and select exactly one valve among the ones

that can be possibly used at the end of the path from j to n′:

1{ use valve(J, N2, V 2, S + 1) : poss use valve(J, N2, V 2, S + 1)
: link(N2, N1, V 1) : not tank(N2) }1←

goal(J), shortestPath(J, MS), use valve(J, N1, V 1, S), S < MS − 1.

Finally, we generate the corresponding switchon actions. Because the actions can-

not be executed concurrently, we produce a global ordering of the actions. This is

achieved by, first, ordering the goal jets (in lexicographic order according to their name).

Second, we schedule the execution of the actions for the first jet, followed by the actions

for the second jet, and so on. We define relation num prevActions(j, n), which states

that n is the number of actions to be executed before the first action for goal jet j takes

place:

num prevActions(J, NP)← goal(J),
NP = #sum[shortestPath(J1, N) = N : J1 < J].

At this point, the switchon actions for a jet j are scheduled to progressively open the

path beginning from the tank that has been selected to feed j:

switchon(V, S − LS − 1 + NP)← goal(J), shortestPath(J, S),
num prevActions(J, NP), use valve(J, N, V, LS).

This concludes the description of Π3(HP).
Encoding Analysis: It is not difficult to see that the program Π(HP) consisting of

Π1(HP) – Π3(HP) may not scale well. As the size of the graph grows, the number

of possible paths of arbitrary length may grow dramatically, leading to an explosion in

the grounding. However, because the goal is to find a shortest path for each goal jet,

the search performed by Π(HP) could be intuitively done in an incremental fashion.

Among the ASP tools available, ICLINGO[5] offers a simple way to deal with programs

that involve an incremental search, and program Π(HP) lends itself to being extended

to exploit the features of ICLINGO.

IASP Encoding: First, we identify the set Π ′

b
(HP) of rules that define the base of the

program. Π ′

b
(HP) consists of Π1(HP) together with the first rule in (9). The presence

of Π1(HP) is particularly important from the point of view of performance, because it

allows to identify a problem instance that has no solution without performing any iter-

ation of the search. Let s denote the growth parameter. The cumulative part, Π ′

c
(HP),

of the program includes a number of elements. First, Π ′

c
(HP) includes a modification

of the second rule in (9) and rule (10) where these two rules contain an additional con-

dition S = s. This allows us to restrict the grounding of the rules to only the paths of

the length considered by the current iteration of the search. The semantics of the rules

changes so that now they define, respectively, reachability in exactly s steps and the

presence of a pressure path of length s. The overall meaning of the relations remains

unchanged because the cumulative part of an ICLINGO program is implicitly quantified

over all of the possible values of the growth parameter.

Next, we add to Π ′

c
(HP) rules aimed at detecting when the length of the shortest

paths for all goal jets can be computed. This detection was not needed in the pure ASP

program, but is used here to terminate the iterations of the search process:

¬orphan(J, s)← goal(J), S ≤ s, pressurePath(J, T, S).
orphans(s)← goal(J), not ¬orphan(J, s).
all jets fed(s)← not orphans(s).

The key notion defined by the above rules is that of an orphan goal jet. A goal jet j
is orphan of rank s if no pressure path of length s or less exists for j. The second rule

determines if there are still orphans of rank s. The last rule states that all jets fed(s)
holds if no orphans of rank s exist.

Finally, Π ′

c
(HP) includes Π3(HP) modified by adding to each rule the condition

all jets fed(s). This modification ensures that the rules are considered only if pressure

paths of length s or less exist for every goal jet.

The volatile part Π ′

v
(HP) of the program contains the denial ← orphans(s),

which states that it is impossible for the iterative search to terminate at step s if or-

phans of rank s exist. This constraint forces the iterative search to continue until pres-

sure paths have been found for every goal jet. Once these have been found, the rules

in Π ′

c
(HP) select a shortest path for each goal jet and determine a suitable sequence

of switchon operation. By Π ′(HP) we denote the union of Π ′

b
(HP), Π ′

c
(HP), and

Π ′

v
(HP). Answer sets of Π ′(HP) encode solutions to the problem instances.

6 Airport-Pickup Benchmark

In the Airport-Pickup benchmark, one must solve resource-based planning problems

that involve objects moving between locations. More precisely, a city is represented by

a weighted undirected graph G. The nodes of G represent locations where exactly two

of them are airports. Some locations may contain gas stations. The arcs of G represent

direct connections between the locations and are labeled with an integer corresponding

to the amount of gas required to travel between them. The problem also involves a set

of vehicles and a set of passengers. A vehicle can initially be at any location, and can

travel from its current location, l, to any location connected to l as long as it has enough

gas. A problem instance specifies the amount of gas in each vehicle originally. Each

passenger is initially located at an airport, and his goal is to reach the other airport.

Passengers can move between locations only by vehicle. Vehicles can pick up and drop

off passengers, but only one passenger at a time can ride a vehicle. Finally, vehicles can

fill their tanks at a gas station. The goal is to find a sequence of actions that takes each

passenger to its goal destination.

This benchmark is interesting because the large size of the corresponding search

space makes it difficult to solve it efficiently using a single call to a solver. In our

initial evaluation we could not find any such “monolithic” encoding that would scale

to the training instances provided for ASPCOMP. For this reason, we decided to adopt

an approach in which the problem is divided into sub-problems, and multiple calls to

solvers are used. It is important to stress that this approach, although not frequently

discussed in the literature, can be extremely useful in practical applications of ASP.

Our solution of the Airport-Pickup benchmark is based on an architecture consisting

of a main module, tackling the overall search problem, and of a number of auxiliary

modules, to which the main module delegates the solution of various sub-problems.

This allows us to limit the size of the grounding of the programs, and at the same

time makes it possible to use the language/solver best suited for each module. The

main module, Π1(AP), employs an extension of ASP developed for controlling the

interactions among modules [2]. To keep the presentation simple we abstract from the

technical details of the control structure, and describe Π1(AP) as a pure ASP program.

The first task performed by the main module is a preliminary check to ensure that,

in the initial state of the domain, each passenger can be reached by at least one vehicle,

and that the vehicle can then reach the passenger’s destination. (Reachability also takes

into account the amount of gas initially in the vehicle and the amount of gas needed to

travel between locations.) This check is done by formulating a sub-problem Π2(AP, p)
for each passenger p, so that Π2(AP, p) is consistent if-and-only-if p can be reached by

some vehicle and then driven to his destination. The main module’s task is then reduced

to verifying whether all Π2(AP, p)’s are consistent. The passenger that is to be consid-

ered is specified by an atom of the form selected(p). The main rules of Π2(AP, p)
are:

1{ assigned(P, V) : vehicle(V, M) }1← selected(P).
← not pass reachable from start.
← not destination reachable from passenger.

pass reachable from start← p location(S), reach from start(S, G).

The first rule states that exactly one vehicle should be assigned to drive the selected

passenger. The two denials require that the assigned vehicle can reach the passenger

from its initial location and can subsequently drive the passenger to his destination. As

a result, Π2(AP, p) ∪ {selected(p)} has an answer set if and only if passenger p can

be reached by at least one vehicle that satisfies these requirements. The last rule defines

reachability of the passenger in general terms of reachability of a location from the

vehicle’s initial location (with a certain amount of gas left at the end of the trip). Re-

lation destination reachable from passenger is defined in a similar way. Relation

reach from start(s, g) is defined by the rules:

reach from start(S, G)← start(S), gas(G).
reach from start(Y, G− C)← reach from start(X, G), connected(X, Y, C), G ≥ C.
reach from start(X, T)← reach from start(X, G), gasstation(X), tank(T).
start(S)← assigned(P, V), vehicle at(V, S).

The relation is formalized recursively. The first rule encodes the base case, and states

that the start is reachable without using any gas. The next rule encodes the recursive

step, and says that any location connected to the current location is reachable if enough

fuel is left in the vehicle’s tank; the amount of fuel in the tank at the end of the leg

takes into account the cost of driving to the new location. The third rule considers the

availability of a gas station and states that, if the current location is reachable from the

start and has a gas station, then it is reachable from the start with a full tank left at

the end of the trip. The last rule determines the start location of the vehicle currently

assigned to the passenger; the rules for relations gas and tank are similar.

If the preliminary test implemented by Π2(AP, p) succeeds, then Π1(AP) proceeds

with the next phase of the search. In this phase, Π1(AP) maintains the current locations

of passengers and vehicles and the gas level in the tank of each vehicle. The program

selects one passenger p and assigns to him a vehicle v capable of taking him to his

destination. The state of the domain is then updated according to the effects of driving p
to his destination using v. Note that at this stage of the search we are only concerned

with final locations of the objects and gas levels, and abstract from the low-level actions

that need to be performed to drive p to his destination. At this point, the process repeats:

Π1(AP) selects another passenger, assigns him a vehicle, and the search continues.

Whenever no vehicle can be found for driving a currently selected passenger, the

search backtracks. To improve performance, the selection of passengers and vehicles is

guided by a heuristic that prefers to use vehicles that are already at a passenger’s current

location. This is implemented by the rules:

1{ use at passenger, ¬use at passenger }1← ¬all at destination.
← use at passenger, not some already at passenger.
#minimize[use at passenger = 1, ¬use at passenger = 2].

The first rule states that if not all passengers are at their destinations, then it is possible

to select between using vehicles that are at a passenger’s location and vehicles that are

not. The second rule states that it is impossible to require the use of a vehicle that is at

a passenger’s location if no vehicle is at this location. The last rule (from a language

extension of CLASP) states that choosing to use vehicles that are not at a passenger’s

location has a penalty. The selection of a passenger and a vehicle is performed by the

rules:

1{ assigned(P, V) : passenger(P) : not at destination(P)
: vehicle(V, M) : good(V, P) : already at passenger(V, P) }1←

¬all at destination, use at passenger.

1{ assigned(P, V) : passenger(P) : not at destination(P) : vehicle(V, M)
: good(V, P) }1← ¬all at destination, ¬use at passenger.

Both rules state that exactly one pair 〈p, v〉 must be selected. In the first rule, the selec-

tion is among the pairs for which p and v are at the same location. In the second rule,

this restriction is lifted. Next, Π1(AP) verifies the reachability of p from v’s location

(if necessary) and of p’s destination after v has picked up p. The rules for the definition

of reachability are the same as used in Π2(AP). Note that multiple paths may exist that

allow v to drive p to his destination. For this reason, we consider only best paths, i.e.

those that leave the largest amount of gas in v’s tank at the end of the path. Note that if a

solution to the main problem cannot be found by using best paths, then no solution can

be found even if the condition is lifted. Considering explicitly multiple paths, in general,

involves an amount of backtracking that would make performance unacceptable.

At this stage of the search, we focus on finding the amount of gas left that character-

izes the best path. The amount is determined in two steps. First, relation best d1 gas(g)
says that bg is the largest amount of gas left in v’s tank after it has reached p’s location:

best d1 gas(BG)← p location(D), BG = # max[reach from start(D, G) = G].

It should be noted that in the definition of destination reachable from passenger
used in Π2(AP, p), the amount determined by best d1 gas is used as the initial gas

level for the trip to the passenger’s goal location. We then define the similar relation

best dest gas(g):

best dest gas(BG)← destination(D), BG = # max[reach from d1(D, G) = G].

The value g for which best dest gas holds is the amount of gas left in v’s tank after

driving p to the airport along the best path.

Once Π1(AP) has determined a sequence of passenger-vehicle selections that suc-

cessfully takes all passengers to their respective destinations, the sequence of actions to

be performed for each passenger-vehicle pair is determined by means of another pro-

gram, Π3(AP). The program Π3(AP) (i) takes as an input a pair 〈p, v〉 and the current

state of the domain, and (ii) finds the sequence of actions corresponding to the best path

for 〈p, v〉. The program is called iteratively for each passenger-vehicle assignment de-

termined earlier by Π1(AP). Between calls, Π1(AP) updates the state of the domain

according to the sequences generated by Π3(AP).
As in the Hydraulic-System-Planning benchmark, Π3(AP) is written in the lan-

guage of ICLINGO, using the maximum length of the paths considered as the growth

parameter. The search revolves around the notion of extension of input graph G for ve-

hicle v: a directed graph whose nodes are pairs 〈l, g〉, where l is a location and g is an

integer specifying an amount of gas. A pair 〈l, g〉 belongs to the extension E of G if l
can be reached from the current location of v (in the current state of the domain) with

an amount of gas g left in the tank. In Π3(AP), we consider paths in E of increasing

length until we find the best path. The paths are represented by arc(l, lg, n, ng, i), stat-

ing that the ith element of a path is the arc from 〈l, lg〉 to 〈n, ng〉. The base of Π3(AP)
is:

arc(S, SG, X, SG− C, 1)← start(S), gas(SG), connected(S, X, C), SG ≥ C.
arc(S, SG, S, T, 1)← start(S), gas(SG), gasstation(SG), tank(T).

The rules define the first arc of each path in E, with the second rule dealing with the case

in which the vehicle is refueled at the start. The cumulative part of Π3(AP) determines

the ith arc in each path, where i is the growth parameter:

arc(X, G1, Y, G1− C, i + 1)← arc(Z, G0, X, G1, i), connected(X, Y, C), G1 ≥ C.
arc(X, G1, X, T, i + 1)← arc(Z, G0, X, G1, i), gasstation(X), tank(T).

The cumulative part also includes the definition of relation at dest(i), saying that there

exists a path of length i that leads v to the destination location (after picking up p) in

such a way that the intended amount of gas is left in v’s tank:

at dest(i)← arc(X, G, D, BG, i), destination(D), best dest gas(BG).

Relation at dest is the key to detecting when the best path has been found. Finally,

the volatile part of Π3(AP) contains a denial ← not at dest(i). which intuitively

forces the iterations to continue until the best path has been found. Once that occurs,

the corresponding sequence of actions is generated by re-tracing the best path from its

end, with the same approach used in the Hydraulic-System-Planning benchmark. By

Π(AP) we denote Π1(AP)-Π3(AP).

7 Performance Assessment

In order to evaluate how well our tool selection and modeling techniques fared in the

competition, we conducted a series of experiments on the competition instances (made

publicly available after the end of ASPCOMP). All experiments were performed on a

computer with an Intel i7 processor running at 3 GHz, 4 GB RAM and FedoraCore

11. The systems used were GRINGO 3.0.3, CLASP 1.3.7, ICLINGO 3.0.3 (with CLASP

1.3.5), BPROLOG 7.4 and EZCSP 1.6.20b33. Our goal was to compare the performance

of our encodings with that of the pure ASP encodings made available by the ASPCOMP

organizers3 [1] and run using CLASP. Below, we label the pure ASP encodings by Πb(·)
(e.g. Πb(WA) is the pure ASP encoding for the Weight-Assignment benchmark). For

Reverse-Folding benchmark no pure ASP encoding was available. We use Π2(RF)
as the baseline. The timeout for each run was 600 seconds. The average times were

computed by considering only the instances that did not time out.

The results (see Table 1) show that the encodings developed in this paper are

substantially faster than the baseline encodings. In no case our encodings timed out,

whereas the baseline encodings timed out a total of 22 times. The time taken by

our encodings was between 1 and 3 orders of magnitude better than that of the

baseline encodings, which is even more impressive considering that the instances

that timed out were not used in computing the average times. We believe that the

post-competition results clearly demonstrate the superior performance and scalability

yielded by the encodings we developed. Detailed tables can be found on the EZCSP web

page (http://marcy.cjb.net/ezcsp) together with the encodings described in this paper.

8 Conclusions

In this paper we have described our solutions to four challenging ASPCOMP problems.

The solutions involved non-trivial use of solvers for CASP and IASP – selected out

3 In these encodings we replaced all disjunctive rules by suitable choice rules.

WA RF HP AP

Π2(WA) Πb(WA) Π3(RF) Π2(RF) Π ′(HP) Πb(HP) Π(AP) Πb(AP)

Total 3.49 2158.44 88.61 9000.00 2.07 47.25 302.71 7077.21

T/O 0 0 0 15 0 0 0 7

Avg 0.23 143.90 5.91 – 0.16 3.63 20.18 359.65

Table 1. Performance comparison (T/O stands for number of timeouts).

of concerns for the scalability of the pure ASP solutions. Currently no programming

methodology exists for these tools. We hope that our description has provided an out-

line of the methodology we followed and that this, albeit being expressed at this point

in problem-specific terms, may constitute a first step in the development of a general

methodology for the use of such advanced ASP solvers.

Acknowledgments. The idea to use irrelevant moves in the Reverse-Folding bench-

mark is by Selim Erdogan, who also gave valuable suggestions on this paper and was a

member of the EZCSP team at ASPCOMP. Yuliya Lierler was supported by a CRA/NSF

2010 Computing Innovation Fellowship.

References

1. Third answer set programming competition (2011), https://www.mat.unical.it/aspcomp2011/

2. Balduccini, M.: A General Method To Solve Complex Problems By Combining Multiple An-

swer Set Programs. In: ICLP09 Workshop on Answer Set Programming and Other Computing

Paradigms (ASPOCP09) (Jul 2009)

3. Balduccini, M.: Representing Constraint Satisfaction Problems in Answer Set Programming.

In: ICLP09 Workshop on Answer Set Programming and Other Computing Paradigms (AS-

POCP09) (Jul 2009)

4. Balduccini, M., Lierler, Y.: ASP-Based Problem Solving with Cutting-Edge Tools. In: ICLP11

Workshop on Answer Set Programming and Other Computing Paradigms (ASPOCP11). pp.

14–28 (Jul 2011)

5. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: Engineering

an Incremental ASP Solver. In: ICLP. pp. 190–205 (2008)

6. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-Driven Answer Set Solving. In:

Veloso, M.M. (ed.) Proceedings of the Twentieth International Joint Conference on Artificial

Intelligence (IJCAI’07). pp. 386–392 (2007)

7. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.

New Generation Computing 9, 365–385 (1991)

8. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV

System for Knowledge Representation and Reasoning. ACM Transactions on Computational

Logic 7(3), 499–562 (2006)

