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Abstract

In this work we discuss planning performed by the USA-
Advisor decision support system for the Space Shuttle. The
USA-Advisor is a medium size, planning application for use
by NASA flight controllers. This system contains over a
dozen domain dependent and domain independent heuristics.
A number of experimental results are presented, illustrating
how this knowledge helps improve both the quality of plans
as well as overall system performance.

Introduction
This paper is a report on the development of the USA-
Advisor 1 - a decision support system for the Space Shut-
tle flight controllers. The system is an example of the ap-
plication of the answer set programming paradigm (Marek
& Truszczynski 1999). Our goals in creating the USA-
Advisor were two-fold. From a scientific standpoint we
wanted to test if the rapidly developing answer set program-
ming methodologies, algorithms, and systems could be suc-
cessfully applied to the creation of medium size, knowledge
intensive applications. From the standpoint of engineering,
the goal was to design a system to help flight controllers plan
for correct operations of the shuttle in situations where mul-
tiple failures have occurred. While the methods used in this
work are general enough to model any of the subsystems of
the shuttle, for our initial prototype we modeled the Reac-
tion Control System (RCS).

The project consisted of two largely independent parts:
modeling of the RCS and development of a planner for the
RCS domain. In this paper we mainly concentrate on the lat-
ter. More details of the modeling on the RCS can be found
in (Barry & Watson 1999; Balduccini et al. 2001).

In section 2 of the paper we discuss the RCS. Section 3 gives
a general description of the USA-Advisor. In section 4 we
describe the basic version of the planner. Section 5 explains
how the basic planner was extended using control knowl-
edge. Section 6 gives an overview of our results from exper-
iments. Conclusions are given in section 7.

1The USA-Advisor was created with the support of, United
Space Alliance under Research Grant 26-3502-21 and Contract
COC6771311. The authors would like to thank Matt Barry of the
USA Advanced Technology Development Group for his technical
support.

The Reaction Control System
The RCS is the system used to maneuver the Space Shut-
tle while it is in orbit. It consists of jets, fuel tanks, pipes,
and valves used to deliver fuel to the jets, and the associated
circuitry required to control the system.

The RCS is divided into three subsystems: the forward RCS,
the left RCS, and the right RCS. In order for the Space Shut-
tle to perform a given maneuver, a set of jets, belonging to
the correct subsystems and pointing in the correct directions,
must be prepared to fire. Preparing a jet to fire involves pro-
viding an open, non-leaking path for the fuel to flow from
pressurized fuel tanks to the jet. The flow of fuel is con-
trolled by opening and closing valves. Valves are opened
and closed by either having an astronaut flip a switch or by
instructing the computer to issue special commands. In a
very simplified form, the RCS can be viewed as a directed
graph (see figure 1) whose nodes are tanks, jets and pipe
junctions, and whose arcs are labeled by valves. Switches
are connected to valves through fairly complex electrical cir-
cuits.
When everything is operating correctly, there are pre-
scripted plans for each maneuver. When some components
of the system fail, the situation becomes more difficult.
There are many single failures that plans have been created
for, but in general it is impossible to create plans for every
possible situation. Continued correct operation of the RCS
in such circumstances is vital to ensure the safety of the crew
and to allow for completion of the mission. An intelligent
system to assist in verification and generation of plans would
be helpful. It is within this context that the USA-Advisor
fits.

The USA-Advisor
The USA-Advisor consists of a collection of largely inde-
pendent modules, represented by programs of A-Prolog -
a language of logic programs under stable models (answer
sets) semantics (Gelfond & Lifschitz 1988; 1991), and a
graphical Java interface, J . The interface gives a simple
way for the user to enter information about the history of
the RCS, its faults, and the task to be performed. At the
moment there are two possible types of tasks: checking if a
sequence of occurrences of actions satisfies a goal, G, and
finding a plan for G of a length not exceeding some num-
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Figure 1: A simplified view of the RCS

ber of steps, N . Based on this information, J verifies if
the input is complete, selects an appropriate combination of
modules, assembles them into an A-Prolog program, Π, and
passes Π as an input to a reasoning system for computing
stable models (Cholewinski, Marek, & Truszczyński 1996;
Niemelä & Simons 1997; Citrigno et al. 1997) (In the USA-
Advisor this role is currently played by SMODELS2, however
we also plan to investigate performance of other systems.)
In this approach, the task of checking a plan P is reduced to
checking if there exists a model of the program Π ∪ P . A
planning module is used to generate a set of possible plans
and a correctness theorem guarantees that there is a one-to-
one correspondence between the plans and the set of stable
models of the program. Planning is reduced to finding such
models. Finally, the Java interface extracts the appropriate
answer from the SMODELS output and displays it.

The modules in this system are the plumbing module, the
basic and extended valve control modules, the circuit the-
ory module (Balduccini, Gelfond, & Nogueira 2000), and a
planning module. The plumbing module models the plumb-
ing system of the RCS, which connects fuel tanks to the jets.
The basic valve control module describes the effects of ma-
nipulating switches and issuing computer commands on the
valves under the assumption that the corresponding circuits
are not faulty. Otherwise these effects are described by the
extended valve control module. The circuit theory describes
the flow of signals through the circuits.

A planning model of the RCS consists of a collection of
fluents (properties whose value depends on time) and ac-
tions, and a transition diagram defining the effects of these
actions. Since many fluents of the RCS are highly interre-
lated, defining this diagram becomes a non-trivial task. We
solved this problem by using the techniques developed in
theory of actions and change (Gelfond & Lifschitz 1993;
McCain & Turner 1995; Turner 1997) and the power of A-
Prolog rules. To illustrate our approach let us consider a
single action,

flip(Sw,P )

which flips switch Sw in position P and three fluents:

2http://www.tcs.hut.fi/Software/smodels

pressurized by(N,Tnk) - node N is pressurized by
a tank Tnk;
in state(V, P ) - valve V is in valve position P ;
in state(Sw,P ) - switch Sw is in switch position P .

The effects of action flip(Sw,P ) on fluents of the form
in state are defined by causal laws expressed by A-Prolog
rules:

h(in_state(Sw,P),T+1) :-
occurs(flip(Sw,P),T),
not stuck(Sw).

h(in_state(V,P),T) :-
controls(Sw,V),
h(in_state(Sw,P),T),
not stuck(V),
not bad_circuitry(V).

The first rule states that if an action is performed to flip a
switch, Sw, to a position, P , at time T , then, as long as
the switch is not stuck in its current position, it will be in
the new position at the next moment of time3. This is a
typical ‘dynamic’ causal law expressing causal relationship
between actions and fluents. In the second rule, the posi-
tion, P , of a valve, V , which is controlled by a switch, Sw,
is caused to be in the same position as the switch as long
as the valve is not stuck and the circuitry controlling the
valve has no faults. If the circuitry has faults, the position of
the valve will be determined by the extended valve control
module in accordance with the behavior of the damaged cir-
cuit. This law expresses causal relationship between fluents
and is more difficult to express in traditional planning lan-
guages. Defining effects of the flipping action on the fluent
pressurized is even more involved. It requires a recursive
rule

h(pressurized_by(N1,Tnk),T) :-
link(N2,N1,V),
h(in_state(V,open),T),
h(pressurized_by(N2,Tnk),T).

The rule states that if there is a link between nodes N1 and
N2 labeled by valve V in the graph describing the structure,

3Note that in the code presented in this paper, variables starting
with T will always be used to denote time.



the valve is open, and node N2 is being pressurized by a
tank, Tnk, then node N1 is also being pressurized by the
same tank.

The complete program describing the transition diagram of
our system contains about 130 rules. Other rules are used to
describe the initial state of the system including position of
valves, the list of faulty components, etc.

The Basic Planner
In this section we will give a brief description of the Basic
Planning Module of the USA-Advisor. This module estab-
lishes the search criteria used by the program to find a plan,
i.e. a sequence of actions that, if executed, would achieve the
goal. The design of the USA-Advisor allows for the creation
of a variety of such modules.

The structure of the Basic Planning Module described in this
section follows the generate and test approach from (Di-
mopoulos, Nebel, & Koehler 1997; Lifschitz 1999). The
following rules form the heart of the planner. The first rule
states that, for each time point, T , in a given finite interval,
if the goal has not been reached for one of the RCS subsys-
tems, then an action controlling that subsystem should occur
at that time.

1{occurs(A,T):action_of(A,R)}1 :-
T < lasttime,
subsystem(R),
not goal(T,R).

The second rule states that the overall goal has been reached
if, for each subsystem, there is a time at which the goal has
been reached for the subsystem.

goal :- goal(T1,left_rcs),
goal(T2,right_rcs),
goal(T3,fwd_rcs).

:- not goal.

Finally, the last rule above is a constraint that states that for
a model to exist, the overall goal must be achieved.

Since the RCS contains more than 200 actions, with rather
complex effects, and may require long plans, this standard
approach needs to be substantially improved. This is done
by addition of various forms of heuristic, domain-dependent
information. We refer to the Basic Planner expanded by such
heuristics as Smart Planner.

Smart Planner: adding the control knowledge
In this section we will discuss the expansion of the basic
planner by useful heuristic information, including control
knowledge. The usefulness of control knowledge for plan-
ning has been investigated in (Baccus & Kabanza 1996;
Kautz & Selman 1998; Huang et al. 1999; Baccus & Ka-
banza 2000), but comparatively little is known about the in-
fluence of heuristics in answer set planning (see however
(Baral & Tuan 2001)). Such knowledge can be classified
into two categories: domain dependent and domain inde-
pendent. Both types of heuristics work by either limiting the

combinations of actions that can occur or by declaring that
certain situations are illegal. In either case the heuristics help
prune the search space, leading to increased efficiency, and
improving plan quality by eliminating undesired plans.

Some of the control knowledge used in the USA-Advisor
can easily be included for planning in other domains. An
example of such domain independent knowledge is the state-
ment “Do not repeat actions already performed.” Note that,
while this rule does not apply in all domains, in many an
optimal plan will never include the same action twice. This
rule can be easily encoded in A-Prolog as the following con-
straint:

:- action_of(A,R),
not equal(T1,T2),
occurs(A,T1),
occurs(A,T2).

Next consider the following statement: “Do not perform two
different types of actions which achieve the same effect.”
While the general idea expressed in this statement is similar
to the one above, the encoding is quite different:

:- controls(Sw,V),
occurs(flip(Sw,P),T),
commands(CC,V,P),
occurs(CC,T1).

This is due to the fact that in the RCS domain, the only ac-
tions which have the same effect are those of using either
a switch or a computer command to change the position of
a valve. It is much easier to encode the domain specific in-
stance of the general rule than to write the general rule itself.
However we found that the understanding of the general na-
ture of this heuristic makes the encoding much easier.

There are a number of domain specific heuristics in the
USA-Advisor. The first example shown here states that a
switch should not be moved to the gpc (general purpose
computer) position unless the following action is to issue
a computer command to the valve related to that switch.

:- controls(Sw,V),
occurs(flip(Sw,gpc),T),
not issued_commands(V,T+1).

Note that while there are valid plans for the operation of the
RCS which do not obey this rule, for each of them there is
a plan containing exactly the same actions which does obey
it. This allows us to further prune the search space.

The next rule, which is the only one we show here which
does not directly discuss the performance of an action, states
that it is not allowed for a valve to be open if there is no
pressure above it unless it is stuck.

:- link(N1,N2,V),
h(in_state(V,open),T),
not h(pressurized(N1),T),
not stuck(V),
not h(in_state(V,open),0).

This rule is not a physical requirement but rather a prefer-
ence on types of plans.



Table 1: Hard test cases run with Smart Planner

Inst RCSs Steps Actions Rules Atoms Time
1 3 7 20 129950 33147 24.030
2 3 7 20 130105 33143 34.710
3 3 8 23 156500 37215 71.870
4 3 8 24 156463 37214 52.110
5 3 8 23 139047 29138 81.110
6 3 8 24 156437 37215 88.200

Experiments
In this section we give an overview of our experiments with
the two planners used by the USA-Advisor. We used a 933
Mhz Pentium III computer with 128 MB of RAM, running
the NetBSD 1.5 Operating System; SMODELS version 2.26
with input from Lparse version 1.0.2 were used to find the
plans.

By a test instance we mean a collection of system faults to-
gether with a maneuver to be performed by the shuttle. In
the first series of experiments we:

(a) randomly generated a collection of test instances with a
given number of mechanical and electrical faults

(b) run the basic and the smart planners in a loop with
lasttime ranging from 3 to 10. The duration of each iter-
ation of the loop was limited to 10 minutes.

Overall, about 500 test instances were generated in this man-
ner. Figure 2 shows the performance of both planners for
60 instances containing three mechanical and two electrical
faults (the most interesting situation from the standpoint of
the USA experts). As we can see the Smart Planner was
able to find the plans or discover their absence in less than
22 seconds. The Basic Planner required substantially more
time (in some cases the difference exceeded 2 orders of mag-
nitude). On average the Smart Planner was about 10 times
faster. We were surprised to discover that the number of
steps used by both planners did not exceed 5 and that the size
of the grounded version of our program was not large. Other
random experiments run on tests with numbers of faults be-
tween 3 and 8 did not produce any new insights.

The plans produced by the Smart Planner were of reasonably
good quality. They were minimal in the number of steps and
satisfied many requirements of the USA experts which were
incorporated in heuristics of the planner. The unnecessary
actions sometimes produced by the planner were easily de-
tectable. The basic planner did substantially worse. In fact
we discovered that only one plan produced by this planner
in the experiment from figure 2 satisfies the USA experts
criteria for a reasonable plan.

The second series of experiments dealt with our deliberate
attempt to crash the system. We selected a number of test
instances which seemed to correspond to especially difficult
situations. The table 1 gives outcomes of running the Smart
Planner on 6 of such instances. Even though the size of the
grounded program, the length of plans, and the number of
actions involved are substantially larger than those in the

initial experiments, the time is still quite acceptable (USA
wanted planning times of less than 15 minutes). In contrast,
the basic planner was not able to find solutions to any of
these problems - we stopped the planner after 24 hours of
work.

In the table, the first column is the test instance number, the
second gives the number of RCS subsystems involved in the
maneuver (1, 2, or 3), the third is the number of time steps
needed, the fourth is the total number of actions performed,
the fifth and sixth are the number of rules and atoms used
by SMODELS in the grounded code for that test case, and
the seventh column is the time, in seconds, needed to find a
plan.

Conclusion
In this paper we described the planner used by a medium size
decision support system4 written in A-Prolog. The domain
of the planner and its construction can be of interest to the
reader from several different standpoints.

• Since a single action of an astronaut changes the values
of many interrelated fluents of the RCS the description of
effects of this action becomes a nontrivial task. We solved
this problem by using the techniques developed in theory
of actions and change and the power of A-Prolog rules.

• A-Prolog proved to be a language capable of specify-
ing the initial situation, causal and other relations of
the domain, as well as the heuristic information lim-
iting the search space and improving quality of plans.
This contrasts with some of the other representational
approaches which require separate languages for each
of these classes of statements. Domain models writ-
ten in A-Prolog can also be used for other tasks, such
as diagnosis (Balduccini, Galloway, & Gelfond 2001;
Gelfond & Watson 2002), by simply replacing the plan-
ning module with an appropriate (e.g. diagnostic) mod-
ule.

• Answer set planning proved to be a good tool for our pur-
pose. Partly this is due to non-numerical nature of the
problem. But the planner’s ability to mix parallel and se-
quential plans and to efficiently search for them are the
key ingredients in the success of the project.

• The heuristics used in the Smart Planner were easy to en-
code and to use. Our experiments show that they signif-

4The code for the USA-Advisor is available on request from the
authors.
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icantly improve both, quality of plans and efficiency of
search.

• It was interesting to notice that many fluents of the
RCS domain had natural recursive definitions, easily ex-
pressible in A-Prolog. This simplified the representation
but precluded the immediate use of CCALC(McCain &
Turner 1995) style planning with satisfiability solvers. It
will be interesting to see if such solvers could be used
after some modifications of the representation. It is prob-
ably also worth mentioning that non-monotonicity of A-
Prolog played an important role in the formalization of the
domain, e.g. in specifying the inertia axiom, closed world
assumptions used for describing the initial situation, and
other typical default knowledge.
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