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Abstract. The idea of using control knowledge to improve planning has
been widely advocated. In this work we show how such knowledge was
used to improve planning in the USA-Advisor decision support system for
the Space Shuttle. The USA-Advisor is a medium size, real-world plan-
ning application for use by NASA flight controllers. This system contains
over a dozen domain dependent and domain independent heuristics. A
number of experimental results are presented here, illustrating how this
control knowledge helps improve both the quality of plans as well as
overall system performance.

1 Introduction

This paper is a report on the development of a medium size, real-world applica-
tion, the USA-Advisor! - a decision support system for the Space Shuttle flight
controllers.

Our goals in creating the USA-Advisor were two-fold. From a scientific stand-
point the goals were to test if the rapidly developing answer set programming
methodologies, algorithms, and systems could be successfully applied to the cre-
ation of medium size, knowledge intensive applications. From the standpoint of
engineering, the goal was to design a system to help flight controllers plan for
correct operations of the shuttle in situations where multiple failures have oc-
curred. While the methods used in this work are general enough to model any of
the subsystems of the shuttle, for our initial prototype we modeled the Reaction
Control System (RCS).

! The USA-Advisor was created with the support of, United Space Alliance under
Research Grant 26-3502-21 and Contract COC6771311. The authors would like to
thank Matt Barry of the USA Advanced Technology Development Group for his
technical support.



The project consisted of two largely independent parts: modeling of the RCS
and development of a planner for the RCS domain. In this paper we mainly
concentrate on the latter. More details of the modeling of the RCS can be found
in [3].

In section 2 of the paper, the Reaction Control System of the Space Shuttle is
discussed. Section 3 gives a general description of the USA-Advisor system. In
section 4 we describe the basic version of the planner. Section 5 explains how
the the basic planner was extended using control knowledge. Section 6 gives an
overview of the results obtained in our experiments. Conclusions are given in
section 7.

2 The Reaction Control System

The RCS is the system used to maneuver the Space Shuttle while it is in orbit.
It consists of jets, fuel tanks, pipes, and valves used to deliver fuel to the jets,
and the associated circuitry required to control the system.

The RCS is divided into three subsystems: the forward RCS, the left RCS, and
the right RCS. In order for the Space Shuttle to perform a given maneuver,
a set of jets, belonging to the correct subsystems and pointing in the correct
directions, must be prepared to fire. Preparing a jet to fire involves providing
an open, non-leaking path for the fuel to flow from pressurized fuel tanks to
the jet. The flow of fuel is controlled by opening and closing valves. Valves are
opened and closed by either having an astronaut flip a switch or by instructing
the computer to issue special commands. In a very simplified form, the RCS can
be viewed as the directed graph in figure 1 whose nodes are tanks, jets and pipe
junctions, and whose arcs are labeled by valves. Switches are connected to valves
through fairly complex electrical circuits.
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Fig. 1. A simplified view of the RCS



When everything is operating correctly, there are pre-scripted plans for each
maneuver. When some components of the system fail, the situation becomes
more difficult. There are many simple, single failures that plans have been created
for, but in general it is impossible to create plans for every possible situation.
Continued correct operation of the RCS in such circumstances is necessary to
allow for the completion of the mission and to ensure the safety of the crew. An
intelligent system to assist in the verification and generation of plans would be
helpful. It is within this context that the USA-Advisor fits.

3 The USA-Advisor

The USA-Advisor consists of a collection of largely independent modules, rep-
resented by lp-functions?, and a graphical Java interface, J. The interface gives
a simple way for the user to enter information about the history of the RCS,
its faults, and the task to be performed. At the moment there are two possible
types of tasks: checking if a sequence of occurrences of actions satisfies a goal,
@G, and finding a plan for G of a length not exceeding some number of steps, V.
Based on this information, J verifies if the input is complete, selects an appro-
priate combination of modules, assembles them into an A-Prolog? program, IT,
and passes IT as an input to a reasoning system for computing stable models
(In the USA-Advisor this role is currently played by SMODELS%, however we also
plan to investigate performance of other systems.) In this approach, the task of
checking a plan P is reduced to checking if there exists a model of the program
ITU P. A planning module is used to generate a set of possible plans and a cor-
rectness theorem guarantees that there is a one-to-one correspondence between
the plans and the set of stable models of the program. Planning is reduced to
finding such models. Finally, the Java interface extracts the appropriate answer
from the SMODELS output and displays it in a user-friendly format.

The modules in this system are the plumbing module, the basic and extended
valve control modules, the circuit theory module, and a planning module. The
plumbing module models the plumbing system of the RCS, which connects fuel
tanks to the jets. The basic valve control module describes the effects of ma-
nipulating switches and issuing computer commands on the valves under the
assumption that the corresponding circuits are not faulty. Otherwise these ef-
fects are described by the extended valve control module. The circuit theory
describes the flow of signals through the circuits.

A planning model of the RCS consists of a collection of fluents and actions, and
a transition diagram defining the effects of these actions. Since various fluents
of the RCS are highly interrelated, defining this diagram becomes a non-trivial

2 By an lp-function we mean program IT of A-Prolog with input and output signatures
0:(IT) and 0,(IT) and a set dom(II) of sets of literals from o;(II) such that, for any
X € dom(IT), IT U X is consistent, i.e. has an answer set.

3 The language of logic programs under the answer set semantics.

* http://www.tcs.hut.fi/Software/smodels



task. We solved this problem by using the techniques developed in theory of
actions and change and the power of A-Prolog rules. To illustrate our approach
let us consider a single action,

flip(S, P)

which flips switch S in position P and three fluents:
pressurized_by(N,Tnk) - node N is pressurized by a tank Tnk;
in_state(V, P) - valve V is in valve position P;

in_state(S, P) - switch S is in switch position P.

The effects of action flip(Sw, P) on fluents of the form in_state are defined by
causal laws expressed by A-Prolog rules:

h(in_state(Sw,S),T+1) :-
occurs(f1lip(Sw,S),T),
not stuck(Sw).

h(in_state(V,S),T) :-
controls(Sw,V),
h(in_state(Sw,S),T),
not eq(S,auto),
not stuck(V),
not bad_circuitry(V).

The first rule states that if an action is performed to flip a switch, Sw, to a
position, S, at time T, then, as long as the switch is not stuck in its current
position, it will be in the new position at the next moment of time. This is a
typical dynamic causal law expressing causal relationship between actions and
fluents. In the second rule, the position, S, of a valve, V', which is controlled by a
switch, Sw, is caused to be in the same position as the switch as long as the valve
is not stuck and the circuitry controlling the valve had no faults. If the circuitry
had faults, the position of the valve would be determined by the extended valve
control module in accordance with the behavior of the damaged circuit. This
law expresses causal relationship between fluents and is more difficult to express
in traditional planning languages. Defining effects of the flipping action on the
fluent pressurized is even more involved. It requires a recursive rule

h(pressurized_by(N1,Tnk),T) :-
not tank(N1),
link(N2,N1,V),
h(in_state(V,open),T),
h(pressurized_by(N2,Tnk),T).

The rule states that if there is a link between nodes N1 and N2 labeled by valve
V in the graph describing the structure, the valve is open, and node N2 is being



pressurized by a tank, Tnk, then node N1 is also being pressurized by the same
tank.

The complete program, T, describing the transition diagram of our system con-
tains about 130 rules. Other rules are used to describe the initial state of the
system including position of valves, the list of faulty components, etc.

4 The Basic Planner

In this section we will give a brief description of the Basic Planning Module of the
USA-Advisor. This module establishes the search criteria used by the program
to find a plan, i.e. a sequence of actions that, if executed, would achieve the goal.
The modular design of the USA-Advisor allows for the creation of a variety of
such modules.

The structure of the Basic Planning Module described in this section follows the
generate and test approach from [10,17]. The following rules form the heart of
the planner. The first rule states that, for each moment of time from a given
finite interval, if the goal has not been reached for one of the RCS subsystems,
then an action should occur at that time.

1{occurs(A,T) :action_of (A,R)}1 :- time(T),
T < lasttime,
system(R),
not goal(T,R).

The second rule states that the overall goal has been reached if the goal has been
reached on each subsystem at some time.

goal :- time(T1),
time (T2),
time (T3),
goal(T1,left_rcs),
goal(T2,right_rcs),
goal (T3,fwd_rcs).

:— not goal.

Finally, the last rule above is a constraint that states that for a model to exist,
the overall goal must be achieved.

Since the RCS contains more than 200 actions, with rather complex effects, and
may require very long plans, this standard approach needs to be substantially im-
proved. This is done by addition of various forms of heuristic, domain-dependent
information. We refer to the Basic Planner expanded by such heuristics as Smart
Planner.



5 Smart Planner: adding the control knowledge

In this section we will discuss the expansion of the basic planner by useful heuris-
tic information, including control knowledge. The usefulness of control knowledge
for planning in the framework of logic programming has been investigated in [1,
10,16, 15,2, 6]. Such knowledge can be classified into two categories: domain de-
pendent and domain independent knowledge. Both types of heuristics work by
either limiting the combinations of actions that can occur or by declaring that
certain situations are illegal. In either case the heuristics help prune the search
space, leading to increased efficiency, and improving plan quality by eliminating
undesired plans.

Some of the control knowledge used in the USA-Advisor could easily be included
for planning in other domains. An example of such domain independent knowl-
edge is the statement “Do not repeat actions already performed.” Note that
while this rule does not apply in all domains, in many, such as the RCS, an
optimal plan will never include the same action twice. This rule can be easily
encoded in A-Prolog as the following constraint:

:— action_of (A,R),
time (T1),
time (T2),
neq(T1,T2),
occurs(A,T1),
occurs(A,T2).

Next consider the following statement: “Do not perform two different types of
actions which achieve the same effect.” While the general idea expressed in this
statement is similar to the one above, the encoding is quite different:

:— time(T),
time (T1),
occurs(flip(Sw,S),T),
controls(Sw,V),
commands (CC,V,S),
occurs(CC,T1),
not bad_circuitry(V).

This is due to the fact that in the RCS domain, the only actions which have
the same effects are those of using either a switch or a computer command to
change the position of a valve. It is much easier to encode the domain specific
instance of the general rule than to write the general rule itself. However we
found that the understanding of the general nature of this heuristic makes the
encoding much easier.

There are a number of domain specific heuristics in the USA-Advisor. The first
example shown here states that a switch should not be moved to the gpc (general
purpose computer) position unless the following action is to issue a computer
command to the valve related to that switch.



:— next(T,T1),
occurs(flip(Sw,gpc),T),
controls(Sw,V),
not issued_commands(V,T1).

Note that while there are valid plans for the operation of the RCS which do
not obey this rule, for each of them there is a plan containing exactly the same
actions which does obey it. This allows us to further prune the search space.

The next rule, which is the only one we show here which does not directly discuss
the performance of an action, states that it is not allowed for a valve to be open
if there is no pressure above it unless it is stuck.

:— time(T),
link (N1,N2,V),
h(in_state(V,open),T),
not h(pressurized(N1),T),
not stuck(V),
not h(in_state(V,open),0).

The reason for this rule is not a physical requirement but rather a preference on
types of plans.

6 Experiments

In this section we give an overview of our experiments with the two planners
used by the USA-Advisor. We used a 933 Mhz Pentium III computer with 128
MB of RAM, running the NetBSD 1.5 Operating System; SMODELS version 2.26
with input from Lparse version 1.0.2 were used to find the plans.

By a test instance we mean a collection of system faults together with a maneuver
to be performed by the shuttle. In the first series of experiments we:

(a) randomly generated a collection of test instances with a given number of
mechanical and electrical faults

(b) run the basic and the smart planners in a loop with lasttime ranging from
3 to 10. The duration of each iteration of the loop was limited to 10 minutes
of time.

Overall, about 500 test instances were generated in this manner. Figure 2 shows
the performance of both planners for 60 instances containing three mechanical
and two electrical faults (the most interesting situation from the standpoint of
the USA experts). As we can see the Smart Planner was able to find the plans
or discover their absence in less than 22 seconds. The Basic Planner required
substantially more time. In some cases the difference exceeded 2 orders of magni-
tude. At average the Smart Planner was about 10 times faster. We were surprised
to discover that the number of steps used by both planners did not exceed 5 and



that the size of the grounded version of our program was not large. Other ran-
dom experiments run on tests with numbers of faults between 3 and 8 did not
produce any new insights.

The plans produced by the Smart Planner were of reasonably good quality.
They were minimal in the number of steps and satisfied many requirements
of the USA experts which were incorporated in heuristics of the planner. The
unnecessary actions sometimes produced by the planner were easily detectable.
The basic planner did substantially worse. In fact we discovered that only one
plan produced by this planner in the experiment from figure 2 satisfies the USA
experts criteria for a reasonable plan.

The second series of experiments dealt with our deliberate attempt to crash our
system. We selected a number of test instances which seemed to correspond to
especially difficult situations. The table 1 gives outcomes of running the Smart
Planner on 6 of such instances. Even though the size of the grounded program,
the length of plans, and the number of actions involved are substantially larger
than those in the initial experiments, the time is still quite acceptable (i.e. less
than 15 minutes according to the USA requirements). In contrast, the basic
planner was not able to find solutions to any of these problems - we stopped the
planner after 24 hours of work.

It is interesting to note that to achieve this performance we need all of the
Smart Planner heuristics. Even though removal of some of them gave us small
improvements on a few test instances, on others the performance was worsened
by more than an order of magnitude.

Table 1. Hard test cases run with Smart Planner

Inst|RCSs|Steps|Actions| Rules|Atoms| Time
20|129950| 33147|24.030
20(130105| 33143|34.710
23|156500| 37215|71.870
24(156463| 37214|52.110
23|139047| 29138|81.110
24|156437| 37215|88.200

| OY || N =
W W W Ww W w
Q0| 00| 00 00| |

In the table, the first column is the test instance number, the second gives
the number of RCS subsystems involved in the maneuver (1, 2, or 3), the third
is the number of time steps needed, the fourth is the total number of actions
performed during the time steps, the fifth and sixth are the number of rules and
atoms used by SMODELS in the grounded code for that test case, and the seventh
column is the time, in seconds, needed to find a plan.
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7 Conclusion

In this paper we described the planner used by a medium size decision support
system® written in A-Prolog. The domain of the planner and its construction
can be of interest to the reader from several different standpoints.

e Since a single action of an astronaut changes the values of many interrelated
fluents of the RCS the description of effects of this action becomes a non-
trivial task. We solved this problem by using the techniques developed in
theory of actions and change and the power of A-Prolog rules. It is not clear
to us how these effects could be accurately represented by more traditional
STRIPS like action languages.

e A-Prolog proved to be a language capable of specifying the initial situation,
causal and other relations of the domain, as well as the heuristic information
limiting the search space and improving quality of plans. This contrasts
with some of the other representational approaches which require separate
languages for each of these classes of statements.

e Answer set planning proved to be a good tool for our purpose. Partly this
is due to non-numerical nature of the problem. But the planner’s ability to

% The code for the USA-Advisor is available on request from the authors.
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mix parallel and sequential plans and to efficiently search for them are the
key ingredients in the success of the project.

e The heuristics used in the Smart Planner were easy to encode and to use.
Our experiments show that they significantly improve both, quality of plans
and efficiency of search.

e It was interesting to notice that many fluents of the RCS domain had natural
recursive definitions, easily expressible in A-Prolog. This simplified the rep-
resentation but precluded the immediate use of CCALCJ[18] style planning
with satisfiability solvers. It will be interesting to see if such solvers could
be used after some modifications of the representation. It is probably also
worth mentioning that non-monotonicity of A-Prolog played an important
role in the formalization of the domain, e.g. in specifying the inertia axiom,
closed world assumptions used for describing the initial situation, and other
typical default knowledge.
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