
Noname manuscript No.
(will be inserted by the editor)

Marcello Balduccini · Michael Gelfond ·
Monica Nogueira

Answer Set Based Design of Knowledge
Systems

Received: date / Accepted: date

Abstract The aim of this paper is to demonstrate that A-Prolog is a powerful
language for the construction of reasoning systems. In fact, A-Prolog allows to
specify the initial situation, the domain model, the control knowledge, and the
reasoning modules. Moreover, it is efficient enough to be used for practical tasks
and can be nicely integrated with programming languages such as Java. An exten-
sion of A-Prolog (CR-Prolog) allows to further improve the quality of reasoning
by specifying requirements that the solutions should satisfy if at all possible. The
features of A-Prolog and CR-Prolog are demonstrated by describing in detail the
design of USA-Advisor, an A-Prolog based decision support system for the Space
Shuttle flight controllers.

Keywords Knowledge Representation, Answer Set Programming, Reasoning,
Planning, Diagnosis, Logic Programming

PACS 68T30· 68T35· 68T20

1 Introduction

In recent years, A-Prolog – a knowledge representation language based on the
answer set semantics [28] – was shown to be a useful tool for knowledge rep-

M. Balduccini·M. Gelfond
Computer Science Department
Texas Tech University
Lubbock, TX 79409 USA
E-mail: marcello.balduccini@ttu.edu,mgelfond@cs.ttu.edu

M. Nogueira
Center for Logistics and Digital Strategy
Kenan Institute of Private Enterprise
Kenan-Flagler Business School
The University of North Carolina at Chapel Hill
Chapel Hill, NC 27599 USA
E-mail: monica.nogueira@unc.edu

2

resentation and reasoning [42,25,10]. The language is expressive and has a well
understood methodology of representing defaults, causal properties of actions and
fluents, various types of incompleteness, etc.

In this paper we describe an A-Prolog based methodology for modeling of and
reasoning about complex dynamic systems. We show that A-Prolog can be used
to specify all the elements of the model: the specification of the initial situation,
the causal laws that rule the evolution of the domain, the reasoning modules, and
the control knowledge used to guide the reasoning processes.

We also show how our methodology can be enhanced, using a recently developed
extension of A-Prolog called CR-Prolog [7,9], to allow the specification of re-
quirements that the solutions found by the reasoning modules should satisfy if at
all possible. The addition of such requirements substantially improves the quality
of reasoning.

We describe our methodology by showing its application to building USA-
Advisor, a decision support system for the Reaction Control System (RCS) of
the Space Shuttle. This application builds on a previous investigation [46,14,30],
where a substantially smaller part of RCS was represented in Prolog and used to
check correctness of plans.

The RCS is the Shuttle’s system that has primary responsibility for maneuvering
the aircraft while it is in space. It consists of fuel and oxidizer tanks, valves and
other plumbing needed to provide propellant to the maneuvering jets of the Shut-
tle. It also includes electronic circuitry: both to control the valves in the fuel lines
and to prepare the jets to receive firing commands. Overall, the system is rather
complex, in that it includes12 tanks,44 jets,66 valves,33 switches, and around
160computer commands (computer-generated signals).

When an orbital maneuver is required, the astronauts must configure the RCS
accordingly. This involves changing the position of several switches, which are
used to open or close valves or to energize the proper circuitry. Normally, the
sequences of actions required to configure the RCS are pre-determined before the
beginning of the mission and the astronauts simply have to search for the sequence
in a manual. However, faults (e.g. the inability to move a switch) may make these
pre-scripted sequences of actions inapplicable. The number of possible sets of
failures is too large to plan in advance for all of them. In this case, the astronauts
communicate the problem to the ground flight controllers, who come up with a
new sequence of actions to perform the desired task. The main challenge of this
step is to find plans that achieve the desired results without causing any possibly
dangerous side effect.

USA-Advisor can be viewed as a part of a decision support system for Shuttle
flight controllers. It is an intelligent system capable of verifying and generating
plans that prepare the RCS for a given maneuver. As such, it can be used when
the flight controllers have to come up with a plan for an emergency situation. Of
course, it can also be used “off-line” to pre-determine, before the beginning of the
mission, the plans for possible fault conditions.

The main issues involved in building the USA-Advisor are:

3

– Modeling the RCS as a dynamic domain: this includes representing informa-
tion at very different levels of detail. For instance, on one level we need to
describe the effects of the valve positions on the plumbing system. In another
level we specify the electrical circuits used to control the valves.

– Representing knowledge in several separate modules and combining the ap-
propriate modules depending on the task given to the system – notice that one
of the modules had been independently developed before the start of the USA-
Advisor project.

– Developing a planning module containing a large amount of heuristic infor-
mation (which substantially improves quality of the plans and efficiency of the
search).

The research on USA-Advisor has been partially funded by United Space Al-
liance (USA), the company responsible for managing various systems of the Space
Shuttle, including the RCS. USA-Advisor is currently being developed by the pro-
grammers at USA, who are working on formalizing models of other systems of
the Shuttle, as well as creating a graphical interface suitable for use by the flight
controller.

2 A-Prolog

A-Prolog is a knowledge representation language with roots in the research on
the semantics of logic programming languages and non-monotonic reasoning [27,
28]. Over time, several extensions of the original language have been proposed
[18,39,38,25,20,17]. In this work, we used an extension of A-Prolog along the
lines of [25] and [39].

By the termbasic A-Prologwe identify the language introduced in [27], and later
extended with epistemic disjunction [28,26]. The term basic A-Prolog programs
used later is intended as a synonym ofdisjunctive program.

The syntax of A-Prolog is determined by a typed signatureΣ consisting of types,
typed object constants, and typed function and predicate symbols. We assume that
the signature contains symbols for integers and for the standard functions and
relations of arithmetic. Terms are built as in first-order languages.

By simple arithmetic termsof Σ we mean its integer constants. Bycomplex arith-
metic termsof Σ we mean terms built from legal combinations of arithmetic func-
tions and simple arithmetic terms (e.g.3+2 ·5 is a complex arithmetic term, but
3+ · 2 5 is not).

Atoms are expressions of the formp(t1, . . . , tn), wherep is a predicate symbol
with arity n andti ’s are terms of suitable types. Atoms formed by arithmetic re-
lations are calledarithmetic atoms. Atoms formed by non-arithmetic relations are
calledplain atoms. We allow arithmetic terms and atoms to be written in notations
other than prefix notation, according to the way they are traditionally written in
arithmetic (e.g. we write3 = 1+2 instead of= (3,+(1,2))).

Literals are atoms and negated atoms, i.e. expressions of the form¬p(t1, . . . , tn).
Literals p(t1, . . . , tn) and¬p(t1, . . . , tn) are calledcomplementary. By l we denote
the literal complementary tol .

4

Definition 1 A basic ruler (of A-Prolog) is a statement of the form:

h1 OR h2 OR . . . OR hk← l1, l2, . . . lm,not lm+1,not lm+2, . . . , ln. (1)

where l1, . . . , lm are literals, and hi ’s and lm+1, . . . , ln are plain liter-
als. We call h1 OR h2 OR . . . OR hk the head of the rule (head(r));
l1, l2, . . . lm,not lm+1,not lm+2, . . . , ln is its body(body(r)), andpos(r), neg(r) de-
note, respectively,{l1, . . . , lm} and{lm+1, . . . , ln}.

The informal reading of the rule (in terms of the reasoning of a rational agent
about its own beliefs) is “if you believel1, . . . , lm and have no reason to believe
lm+1, . . . , ln, then believe one ofh1, . . . ,hk.” The connective “not” is calleddefault
negation.

A rule such thatk = 0 is calledconstraint, and is considered a shorthand of:

⊥← not⊥, l1, l2, . . . lm,not lm+1,not lm+2, . . . , ln.

Definition 2 A basic A-Prolog programis a pair〈Σ ,Π〉, whereΣ is a signature
andΠ is a set of basic rules.

Whenever possible, we denote programs by their second element. The correspond-
ing signature is denoted byΣ(Π). The terms, atoms and literals of a programΠ
are denoted respectively byterms(Π), atoms(Π) andliterals(Π).

Notice that the definition of the syntax of basic A-Prolog does not allow the use of
variables. Rules containing variables (denoted by capital letters) are thus viewed
as shorthands for the set of their ground instantiations, obtained by substituting the
variables with all the terms of appropriate type from the signature of the program.
The approach is justified for the so called closed domains, i.e. domains satisfying
the domain closure assumption [44] that all objects in the domain of discourse
have names in the language of the program. The semantics of basic A-Prolog for
open domains can be found in [11,33].

The semantics of basic A-Prolog is defined in two steps. The first step consists
in giving the semantics of programs that do not contain default negation. We will
begin by introducing some terminology.

An atom is innormal formif it is an arithmetic atom or if it is a plain atom and
its arguments are either non-arithmetic terms or simple arithmetic terms. Notice
that atoms that are not in normal form can be mapped into atoms in normal form
by applying the standard rules of arithmetic. For example,p(4+ 1) is mapped
into p(5). For this reason, in the following definition of the semantics of basic
A-Prolog, we assume that all literals are in normal form unless otherwise stated.

A literal l is satisfiedby a consistent set of plain literalsS(denoted byS² l) if:

– l is an arithmetic literal and is true according to the standard arithmetic inter-
pretation;

– l is a plain literal andl ∈ S.

5

If l is not satisfied byS, we writeS 6² l . An expression notl , wherel is a plain
literal, is satisfied byS if S 6² l . A set of literals is satisfied byS if each element of
the set is satisfied byS.

We say that a consistent set of plain literalsS is closed under a programΠ not
containing default negationif, for every rule

h1 OR h2 OR . . . OR hk← l1, l2, . . . lm

of Π such that the body of the rule is satisfied byS, {h1,h2, . . . ,hk}∩S 6= /0.

Definition 3 (Answer Set of a program without default negation)A consistent
set of plain literals,S, is ananswer set of a programΠ not containing default
negationif S is closed under all the rules ofΠ andS is set-theoretically minimal
among the sets satisfying the first property.

Programs without default negation and whose rules have at most one literal in the
head are calleddefinite. It can be shown that definite programs have at most one
answer set. The answer set of a definite programΠ is denoted byans(Π).

The second step of the definition of the semantics consists in reducing the compu-
tation of answer sets of basic A-Prolog programs to the computation of the answer
sets of programs without default negation, as follows.

Definition 4 (Reduct of a basic A-Prolog program)Let Π be an arbitrary basic
A-Prolog program. For any setSof plain literals, letΠS be the program obtained
from Π by deleting:

– each rule,r, such thatneg(r)\S 6= /0;
– all formulas of the form notl in the bodies of the remaining rules.

Definition 5 (Answer Set of a basic A-Prolog program)A set of plain literals,
S, is ananswer set of a basic A-Prolog programΠ if it is an answer set ofΠS.

An interesting extension [25] of basic A-Prolog consists in the introduction of
constructs that simplify representation and reasoning with sets of terms and with
functions from such sets to natural numbers.

In this paper, we extend basic A-Prolog by adding to its-atomsfrom [25], which
allow to concisely represent subsets of sets of atoms. The resulting language will
be calledA-Prolog. Its syntax is defined as follows.

Definition 6 A s-atomis a statement of the form:

{X : p(X)} ⊆ {X : q(X)} (2)

whereX is the list of all free variables occurring in the correspondingplain atom.

Informally, the statement says thatp is a subset ofq. In A-Prolog, literals and s-
atoms are disjoint sets. Literals and s-atoms are calledextended literals. Rules are
defined as follows.

Definition 7 A rule (of A-Prolog) is a statement of the form (1), wherel i ’s are as
before, and either (1)k = 1 andh1 is a s-atom, or (2) allhi ’s are plain literals.

6

The reader may have noticed that, like in [25], negated atoms,¬p, are not allowed
to occur in s-atoms. However, differently from there, we allow negated atoms to
be used everywhere else in the program.

Notice that the combination of sets with classical and default negations introduces
some subtleties. Consider the following informal argument. Suppose we are given
a statement{X : p(X)} ⊆ {X : q(X)} and we knowq(a) and¬q(b), but have
no information aboutq(c). Clearly,p(a) satisfied the condition. But can we about
¬p(b)? And what aboutp(c) or¬p(c)?

To restrict ourselves to cases in which the meaning of s-atoms is unambiguous,
we give the following definition of A-Prolog program.

Definition 8 An A-Prolog programis pair 〈Σ ,Π〉, whereΣ is a signature,Π is
a set of A-Prolog rules, andfor every atomr(X) that occurs in the scope of an
s-atom,Π contains the rule:

¬r(X)← not r(X).

(which encodes the Closed World Assumption onr(X)).

Thanks to this restriction, the meaning of s-atoms in our programs is unambigu-
ous. Going back to the previous example, and assuming the Close World Assump-
tion for p andq is part of the program, it can be shown that, for everyx, p(x) if
q(x) and¬p(x) otherwise.

To define the semantics of A-Prolog, we introduce the following terminology. Let
Σ be a signature andS be a set of plain literals fromΣ . A s-atom (2) fromΣ is
true inS if, for any sequencet of ground terms fromΣ , eitherp(t) 6∈ Sor q(t) ∈ S.

The following definition is similar to the notion of reduct introduced earlier.

Definition 9 (Set-Elimination) Let Π be an arbitrary A-Prolog program. For any
consistent setSof plain literals, the set-elimination ofΠ with respect toS(denoted
by se(Π ,S)) is the program obtained fromΠ by:

– removing fromΠ all the rules whose bodies contain s-atoms not satisfied by
S;

– removing all remaining s-atoms from the bodies of the rules;
– replacing rules of the formls← Γ , wherels is an s-atom not satisfied byS, by

rules← Γ ;
– replacing each remaining rule

{X : p(X)} ⊆ {X : q(X)}← Γ

by a set of rules of the formp(t)← Γ for eachp(t) from S.

We are now ready to define the notion of answer set of an A-Prolog program.

Definition 10 (Answer Set of an A-Prolog program)A consistent set of plain
literalsS from the signature of programΠ is ananswer setof Π if it is an answer
set ofse(Π ,S).

7

A-Prolog rules of the form

{X : p(X)} ⊆ {X : q(X)}← Γ (3)

are calledselection rules. It can be noted that selection rules are closely related to
the choice rules

m{p(X) : q(X)}n← Γ (4)

introduced in [45,39]. Proposition5 of [25] makes this connection precise.
Adapted to the language used here, the proposition states the following.

Proposition 1 For every programΠ such that:

1. Π contains a rule
{p(X) : q(X)}← Γ ;

2. no other rule ofΠ containsp in the head,

let Π++ be the program obtained fromΠ by replacing the choice rule with selec-
tion rule (3). Then,Sis an answer set ofΠ iff Sis an answer set ofΠ++.

One limitation of our definition of A-Prolog with respect to the language of [45,
39] is that it does not allow the specification of bounds, i.e. of the lower and upper
number of elements of the subset defined by{X : p(X)} ⊆ {X : q(X)}. For
simple bounds such as those used in this paper (we use only an upper bound of
1) we will use simple constraints, and avoid the introduction of the f-atoms from
[25]. For example, imposing a maximum limit of1 on the cardinality of the set
(assuming that the arity ofp is 1) can be achieved by means of the constraint:

← p(X1), p(X2),X1 6= X2.

To simplify the notation, from now on we use the statement:

m{p(X) : q(X)}n← Γ .

wherem and n, if present, are0 and 1 respectively, as an abbreviation of (3)
together with the appropriate constraints to limit the cardinality ofp.

3 The Reaction Control System

The RCS is the system used to maneuver the Space Shuttle while it is in orbit.
The RCS is viewed as composed of three subsystems: the Forward RCS, the Left
RCS, and the Right RCS.

The propellants for the RCS jets, or thrusters, are stored in fuel and oxidizer
tanks, pressurized with helium, and are distributed through several different types
of pressure regulation and relief valves, distribution lines (here called plumbing)
and filling and draining connections, called junctions. The only physical connec-
tion among the subsystems of the RCS is an interconnection between the Left
and Right subsystems, calledcrossfeed. This provision is part of the redundancy
capabilities added to the Space Shuttle to ensure the safety of its operation.

8

In order for the Space Shuttle to perform a given maneuver, a set of jets, belonging
to the correct subsystems and pointing in the correct directions, must be prepared
to fire. Preparing a jet to fire involves providing an open, non-leaking path for the
fuel to flow from pressurized fuel tanks to the jet. The flow of fuel is controlled
by opening and closing pressure regulation and relief valves. Valves are opened
and closed by either having an astronaut flip a switch or by instructing the on-
board computer to issue special commands. In a very simplified form, the RCS
can be viewed as a directed graph of the type shown in Figure 2, whose nodes are
tanks, jets and pipe junctions, and whose arcs are labeled by valves. Switches are
connected to valves through fairly complex electrical circuits.

4 USA-Advisor System’s Design

The USA-Advisor system consists of a collection of largely independent modules,
represented by lp-functions1[24], and a graphical Java interface,J. The interface
gives a simple means for the user to enter information about the history of the
RCS, its faults, and the task to be performed.

USA-Advisor can perform two tasks: (1) checking if a plan satisfies a goal,G, and
(2) finding a plan forG of a length not exceeding some number of steps. Based on
this information,J verifies that the input is complete, selects an appropriate com-
bination of modules, assembles them into an A-Prolog program,Π , and passesΠ
as an input to an answer set solver (SMODELS) for computing stable models In
this approach the task of checking a planP is reduced to checking if there exists
a model of the programΠ ∪P. A planning module is used to describe a set of
possible plans the user is interested in. Planning is reduced to finding such mod-
els. Finally, the Java interface extracts the appropriate answer from theSMODELS
output and displays it in a user-friendly format.

In our design, the RCS is described at two levels of detail, the appropriate level
being selected depending on the task to be performed. At the highest level, electri-
cal circuits are assumed to be working correctly. Thus, their internal functioning
can be ignored, and the function they compute is described explicitly in terms
of the effects that switches and computer commands have on the corresponding
valves. At the lowest level of abstraction, used when electrical circuits contain
faulty components, circuits are represented explicitly.

The RCS is decomposed in four main modules: the Plumbing Module, the Valve
Control Module, the Circuit Theory Module, and the Planning Module. The
Plumbing Module models the plumbing system of the RCS. The Valve Control
Module describes how switches and computer commands affect the position of
valves. The Circuit Theory Module describes the behavior of standard combina-
torial digital circuits, augmented with other components, like delay units, power
units, switches, and valves. The Planning Module is responsible for generating
plans achieving the desired goal, and contains a large number of heuristics aimed

1 By an lp-function we mean programΠ of A-Prolog with input and output signaturesσi(Π)
andσo(Π) and a setdom(Π) of sets of literals fromσi(Π) such that, for anyX ∈ dom(Π),
Π ∪X is consistent, i.e. has an answer set.

9

at improving both the quality of plans and the efficiency of the planner. Additional
modules provide the description of the schematics of each electrical circuit.

The model of the RCS is based on the research on action languages [29]. As
the reader will probably notice, the rules used in the model are a straightforward
translation of the causal laws of action languageA L [12].

The connections among the modules are depicted in Figure 1. In the rest of this
section we give a detailed description of each module.

Plumbing Module

computer commands
occurrences of

Switch Position Module

occurrence of
switch flippings

info on
stuck switches

positions
of switches

schematics of
affected

electrical circuits

electrical faults

Basic VCM Extended VCM

positions
of switches

VCM

info on leaks

info on stuck valves

ready_to_fire(J)

positions of valves positions of valves

Figure 1 Modular structure of the model of the RCS.

4.1 Plumbing module

The Plumbing Module (PM) models the plumbing system of the RCS, which con-
sists of a collection of tanks, jets and pipe junctions connected through pipes. The
flow of fluids through the pipes is controlled by valves. The system’s purpose is
to deliver fuel and oxidizer from tanks to the jets needed to perform a maneuver.
The structure of the plumbing system is described by a directed graphG of the
type shown in Figure 2, whose nodes are tanks, jets and pipe junctions, and whose

10

arcs are labeled by valves. The possible faults of the system at this level are leaky
valves, damaged jets, and valves stuck in some position.The purpose ofPM is to
describe how faults and the position of valves affect the pressure of tanks, jets and
junctions.This is accomplished by means of state constraints alone.

V2

V3 V4

V1
Tank Junc1

Junc2 Jet

Sw1

Sw2

Sw3
Sw4

Figure 2 A simplified view of the RCS.

In particular, when fuel and oxidizer flow at the right pressure from the tanks to a
properly working jet, the jet is considered ready to fire. In order for a maneuver to
be started, all the jets it requires must be ready to fire. Pressurization of fuel and
oxidizer tanks is obtained by releasing helium from the helium tanks connected to
the fuel and oxidizer tanks. The necessary condition for a fluid to flow from a tank
to a jet, and in general to any node ofG, is that there exists a path without leaks
from the tank to the node and that all valves along the path are open.

The rules ofPM define a function which takes as input the structural description,
G, of the plumbing system, its state including position of valves and the list of
faulty components, and determines: the distribution of pressure through the nodes
of G; which jets are ready to fire; which maneuvers are ready to be performed.

The elements of the plumbing system are represented inPM as follows. The arcs
of graphG are described by relationlink(N1,N2,V)which holds iffG contains a di-
rected arc from nodeN1 to N2 and this arc is labeled by the valveV. For instance,
a statementlink(ffh,ff,ffha)says that fuel helium tankffh is connected to fuel pro-
pellant tankff by valve ffha. Relationjet of(J,R) identifies jets and the subsys-
tem they belong to. The subsystems of the RCS are identified by statements:sys-
tem(fwdrcs), system(leftrcs), andsystem(rightrcs). Relationdirection(J,D)spec-
ifies the direction of jets. There are six different possible directions different jets

11

point to: up, down, left, right, forward, and aft. Relationtank of(T,R) links each
tank to the subsystem it belongs to. For instance, a statementtank of(ffh,fwdrcs)
says that the forward fuel helium tank belongs to the forward subsystem. There
are twelve possible maneuvers to be performed by firing jets of Shuttle, encoded
by atoms of the formmaneuver(M).

The initial state of the plumbing module is mainly characterized by fluent
in state(V,S), specifying that valveV is in stateS(open or closed), and a collection
of faulty components described by atoms of the formhas leak(V), damaged(J)and
stuck(V,S)(valveV is stuck in positionS). The role of defaults is essential for a
compact description of the initial state.For example, it is assumed that all helium
tanks are pressurized in the initial state and that normally functioning valves are
initially closed. This statement can be nicely expressed using the default:

holds(in state(V,closed),0) :-
¬holds(in state(V,open),0).

Here and in the rest of the discussion variableV denotes a valve.

Important fluents in the characterization of the current state of the RCS arepres-
surizedby(N,TK), stating that fluid under pressure is flowing from tankTK to
nodeN (in short, “N is pressurized byTK”), and ready to fire(J), saying that jet
J is pressurized by the correct type of propellants and thus ready to fire (jets need
to be pressurized with both fuel and oxidizer).

The Shuttle is ready for a maneuverM when an appropriate set of jets is ready to
fire. To increase the efficiency of reasoning, we partition such a set of jets based on
the subsystem the jets belong to. Fluentmaneuverready(M,R)says that the jets of
subsystemR involved in maneuverM are ready. For example, the following rule
determines when the left subsystem is ready for the maneuver called “+x”, which
only requires one aft-pointing jet in the left subsystem.

holds(maneuver ready(plus x,left rcs),T) :-
jet of(J,left rcs),
direction(J,aft),
holds(ready to fire(J),T).

To further illustrate the issues involved in the construction ofPM, let us consider
the definition of fluentpressurizedby(N,Tk). Helium tanks are treated as special
nodes and presently assumed to be always pressurized. Hence, the definition for
these tanks is trivial. For other nodes, the definition is recursive. It says that any
non-tank nodeN1 is pressurized by a tankTk if N1 is not leaking and is connected
by an open valve to a nodeN2 which is pressurized byTk.

holds(pressurized by(N1,Tk),T) :-
link(N2,N1,V),
¬holds(leaking(N1),T),
holds(in state(V,open),T),
holds(pressurized by(N2,Tk),T).

In the RCS, a node is considered leaking if propellant flow toward it is regulated
by a leaking, open valve, and there is a path from such valve to the node along
which all valves are open. This can be nicely formalized by combining recursive

12

definitions anddefined fluents,i.e. fluents that are considered false (resp., true)by
default. The next rules show the formalization of defined fluentleaking(N):

holds(leaking(N1),T) :-
link(N1,N2,V), has leak(V),
holds(in state(V,open),T).

¬holds(leaking(N),T) :-
not holds(leaking(N),T).

Notice that fluentleakingis non-inertial, and the key step in its representation is
the use of the Closed World Assumption, encoded above as a default. The recur-
sive step is obtained by:

holds(leaking(N1),T) :-
link(N1,N2,V),
holds(in state(V,open),T),
holds(leaking(N2),T).

The high level of abstraction of A-Prolog is confirmed by the relatively small
number of rules present in the knowledge modules of USA-Advisor. For example,
the Plumbing Module consists of approximately 40 rules.

As usual, default rules are used to represent theinertia axiom. All the modules
share the same inertia axiom: (we have a similar rule for¬holds(L,T))

holds(L,T+1) :-
not non inertial(L),
holds(L,T),
not ¬holds(L,T+1).

In the rule, variableL ranges over all fluent literals. Relationnon inertial(L) is de-
fined for non-inertial fluents such asleaking, and allows to stop the inertia axiom
from being applied to them.

4.2 Valve control module

The flow of fuel and oxidizer propellants from tanks to jets is controlled by open-
ing/closing valves along the path connecting these nodes. The state of valves can
be changed either by manipulating mechanical switches or by issuing computer
commands. Switches and computer commands are connected to the valves, they
control, by electrical circuits.

In some specific phases of operation of the Shuttle, such as launch and landing, the
on-board general purpose computers, GPCs, is in charge of opening/closing valves
and will achieve this objective by sending computer commands. If the Shuttle
is in orbit, or the computer system is malfunctioning, an astronaut can normally
override these commands by manually flipping the switches that control the valves
to be opened/closed.

The Switch Position Module,SPM, describes how the actions of flipping switches
and the faults present in the system affect the position of switches. The only type of

13

fault considered in theSPMis switches being stuck. Throughout the model of the
RCS, this type of mechanical malfunctioning is represented by relationstuck(D,S),
stating that deviceD (in the model,D ranges over switches and valves) is stuck
in stateS. Similarly to the plumbing module, the state of devices is described by
the fluentin state(D,S)meaning that deviceD is in stateS. A device is always in a
stateS if it is stuck in stateS. The input to theSPMcontains information on stuck
switches and the occurrences of switch flippings. The output of the module con-
sists of the position of switches resulting from the execution the specified actions.
The effect of the actions performed on normally functioning switches is defined
by thedynamic causal lawbelow. The law says that flipping a working switchSw
to stateScauses it to move to that state.

holds(in state(Sw,S),T+1) :-
occurs(flip(Sw,S),T),
not stuck(Sw,S’).

Notice the use of default negation in the rule to express the Closed World As-
sumption on the information on stuck switches. A more common approach would
consist in replacing default negation by classical negation and in encoding sepa-
rately the Closed World Assumption on relationstuck. Our choice to use default
negation directly is motivated by performance considerations.

The fact that a switchSwis always in stateS if it stuck in S, is formalized by the
rule:

holds(in state(Sw,S),0) :- stuck(Sw,S).

The Valve Control Module,VCM, describes how computer commands and
changes in the position of switches affect the state of valves. Intuitively, if a switch
Sw is in position “open” or “closed”, the valve(s) it controls arenormally in that
state state. Computer commands issued when the appropriate switch is in special
position “gpc” cause the corresponding valve(s) to either open or close (depend-
ing on type of computer command). There are, however, two types of possible
failures: valves can be stuck in some position, and electrical circuits can malfunc-
tion in various ways.

A substantial simplification of theVCM module is achieved by dividing it in two
parts, calledbasicandextendedVCM modules. At the basic level, it is assumed
that all electrical circuits are working properly and therefore are not included in the
representation. The extended level includes information about electrical circuits
and is normally used when some of the circuits are malfunctioning. In that case,
the position of switches and the occurrence of computer commands may produce
results that cannot be predicted by the basic representation.

4.2.1 Basic valve control module

At this level, theVCM deals with a set of switches, computer commands and
valves, and connections among them. The input of the basicVCM consists of the
positions of switches, the faults of valves, and the collection of computer com-
mands issued. The module implements an lp-function that, given this input, re-
turns positions of valves at the current moment of time. This output is used as

14

input to the plumbing module. The class of faults of the system considered at this
level consists of valves being stuck in some position.

Connections between devices (i.e. switches and valves) are described by relation
controls(Sw,V,C)meaning that switchSw controls the state of valveV through
circuit C (circuits are reified). The connection between computer commands and
valves is modeled by atoms of the formcommands(CC,V,S)(“computer command
CC moves valveV to positionS”) and commands(cc(CC1,CC2),V,S)(“computer
commandsCC1 andCC2 used togethermoveV to S”).

An electrical malfunctioning of the circuitry controlling valveV is represented by
statement of the formbad circuitry(V) (in the RCS, each valve is controlled by no
more than one circuit).

The dynamic behavior of the basicVCM is described by a set of fluents and ac-
tions. Actions are represented as follows:

– action of(flip(Sw,S),R)- flipping switch Sw to stateS is an action of theR
subsystem of the RCS.

– action of(cc(CC1,CC2),R)- issuing a pair of computer commandsCC1 and
CC2 is an action of theR subsystem of the RCS.

– action of(CC,R)- issuing computer commandCC is an action of theRsubsys-
tem of the RCS.

The input of the basicVCM consists of:

1. a collection of statements of the formholds(instate(D,S),T)describing the
states of switches and valves;

2. the description of the faults affecting the valves;
3. the set of occurrences of computer commands.

The effect of the occurrence of computer commands is described by a dynamic
causal law stating that, if switchSw controlling valveV is in stategpc2, V is
working properly, and the computer command required to moveV to some stateS
were issued at timeT, thenV will be in stateSat the next moment of time.

holds(in state(V,S),T+1) :-
controls(Sw,V,C),
holds(in state(Sw,gpc),T),
occurs(CC,T), commands(CC,V,S),
not stuck(V,S’), not bad circuitry(V).

The condition onbad circuitry(V) is used to stop this rule from being applied
when the circuit connectingSwandV is not working properly.

The static connection between switches and valves is expressed by a static causal
law. It says that, under normal conditions, if switchSwcontrolling valveV is in
some stateS, different from gpc, thenV is also in stateS.

holds(in state(V,S1),T) :-
controls(Sw,V,C),

2 A switch can be in one of three positions: open, closed, or gpc. When it is in gpc, it does not
affect the position of the valve.

15

holds(in state(Sw,S1),T),
state of(S,v switch), neq(S1,gpc),
not stuck(V,S2), not bad circuitry(V).

It is assumed that a valveV is always in stateS if it stuck in S, as defined by rule:
holds(in state(V,S),0) :- stuck(V,S).

Impossibility conditionsare described by constraints. TheVCM description in-
cludes such a constraint to express that it is not possible to move a switch to a
state it is already in.

:- holds(in state(Sw,S),T),
state of(S,v switch),
occurs(flip(Sw,S),T).

This constraint eliminates any models where an actionf lip tries to move a switch
Sw, which is in stateS, to the same stateS. Constraints of this type play an impor-
tant role in increasing efficiency of the module by reducing the search space for
plans.

The output of theVCM is a description of the state of valves and switches at the
current moment of time.

4.2.2 Extended valve control module

The extendedVCM encompasses the basicVCM and also includes information
about electrical circuits, power and control buses, and the wiring connections
among all the components of the system.

This module, too, defines an lp-function. It takes as input the same information as
the basicVCM, together with faults on power buses, control buses and electrical
circuits.The extendedVCM returns positions of valves at the current moment of
time, exactly like the basicVCM.

Since (possibly malfunctioning) electrical circuits are part of the representation,
it is necessary to compute the signals present on all wiring connections, in order
to determine the positions of valves. The signals present on the circuit’s wires are
generated by the Circuit Theory Module (CTM), included in the extendedVCM.
Large part of this module was developed independently to address a different col-
lection of tasks [8]. The part of the CTM used by the USA-Advisor is described
in the next section. Figure 3 below shows the connection between the Extended
Valve Control Module and the Circuit Theory Module.

16

VCM

Signals on
input wires
of circuits

Signals to
valves

Input to
Extended

VCM

Positions
of valves

Circuit
Theory
Module

Extended

Figure 3 Connection between Extended VCM and Circuit Theory Module.

The state of a valve in the extendedVMC is determined by the signals present
on its two input wires, labeledopen and closed. If the open wire is set to1
and theclosedwire is set to0, the valve moves to state open. Similarly for
the state closed. The following static causal law defines this behavior. Relation
input o f type(W,S) is used to indicate whetherW is anopenwire or aclosed
wire.

holds(in state(V,S1),T) :-
input(W1,V), input(W2,V),
input of type(W1,S1),input of type(W2,S2),
neq(S1,S2),
holds(value(W1,1),T),
holds(value(W2,0),T),
not stuck(V).

The output signals of switches, valves, power buses and control buses are also
defined by means of static causal laws, to be discussed shortly.

At this level, the representation of a switch is extended by a collection of its in-
put and output wires. Each input wire is associated to one and only one output
wire, and every input/output pair is linked to a position of the switch. There are
a few different types of switches in the RCS system. Those that control valves
are calledv switchesand represented by relationof type(Sw,vswitch). Possible
states for vswitches are expressed by relationstateof(S,vswitch), and include
open, closed, andgpc. When a switchSwis in position (or state)S, an electrical

17

connection is established between inputWi and outputWo of the pair(s) corre-
sponding toS and represented in A-Prolog by statementconnects(S,Sw,Wi,Wo).
This relation says that “stateSof switchSwconnects input wireWi to output wire
Wo.” Therefore the signal present onWi is transferred toWo, as expressed by the
following rule.

holds(value(Wo,X),T) :-
holds(in state(Sw,S),T),
connects(S,Sw,Wi,Wo),
holds(value(Wi,X),T).

Output wiresWo of all pairs corresponding to states different fromS will have
value0 at timeT, as defined by rule

holds(value(Wo,0),T) :-
holds(in state(Sw,S1),T),
connects(S2,Sw,Wi,Wo), neq(S1,S2).

We will of course also need a more detailed representation of valves. There are
two types of valves in the RCS: solenoid and motor controlled valves. However,
a motor controlled valve can operate in one of three ways depending on the type
of electrical circuit connected to it. So, in our representation, valves can be of
four types. In all cases, wires coming from an electrical circuit control the state of
the valves. The present state of a valveV and the value present on its input wire
connected to a power bus control the value of signals on the output wires ofV.

Valves have a set of input pins, one power pin, and two output pins. Valves are
classified according to their physical properties and to the number of input pins
they have, as follows: (a) solenoid valves (which have two input pins), (b) two-
pin motor-controlled (MC) valves, (c) three-pinMC valves, and (d) four-pinMC
valves. The number of input pins determines the way valves are controlled. Two-
pin valves have one “open” and one “closed” pin. When a signal1 is sent to an
input pin, while the other is set to0, the valve moves to the state associated with
the pin set to1. This behavior is captured by rule

holds(in state(V,S),T) :-
v twopin(V), input(W1,V),
input of type(W1,S), neq(S,power bus),
input(W2,V), input of type(W2,S1),
neq(S1,power bus), neq(S,S1),
holds(value(W1,1),T),
holds(value(W2,0),T),
not stuck(V,S1).

In these rules, the type,Y, of a valve, V, is given by statement
typeof valve(V,Y). For instance, valveffha is identified as a solenoid by statement
typeof valve(ffha,solenoid). An input/output pin of a valve has a specific function
associated with it. Wires connected to the input pins of valves are represented by
the two relationsinput(W,V)andinput of type(W,Y), whereY is chosen in order to
be able to distinguish among the different pins.3

3 The actual naming depends on the type of valves.

18

Rules describing the behavior of three-pin and four-pin valves are similar.

Power and output pins work in the same way for all types of valves. Of the two
valve output pins one is labeled “open”, and the other “closed”. When a valve
is in state “open”, an electrical connection is established between the power pin
and the “open” output pin, while the “closed” output pin is disconnected. Wires
connected to the output pins are represented by statementsoutput(W,V), which
says that wireW is an output wire of valveV, andoutputof type(W,S), stating
that output wireW corresponds to stateS. Values on output wires of both solenoid
and motor controlled valves are determined by rule

holds(value(W,1),T) :-
of type(V,valve),
output(W,V), output of type(W,S),
input(Wp,V), input of type(Wp,power bus),
holds(in state(V,S),T),
holds(value(Wp,1),T).

This rule expresses that if valveV is in stateS at timeT, then the value on the
output wire (corresponding toS) of V is 1 atT whenV is powered.

Values on output wires of a valveV indicate the state ofV, and are therefore
mutually exclusive under normal behavior. If an output wire has value1 at timeT,
then the value on the other output wire is0 atT. This behavior is defined by rule

holds(value(W2,0),T) :-
of type(V,valve),
output(W1,V), output(W2,V), neq(W1,W2),
holds(value(W1,1),T).

If a valve has no power (abnormal condition) then all its output wires have value
0, which is specified by rule

holds(value(W,0),T) :-
of type(V,valve), output(W,V),
input(Wp,V), input of type(Wp,power bus),
holds(value(Wp,0),T).

The behaviors described for switches and valves are valid provided that no faults
are involved. If a switch is stuck in some position, flipping has no effect. If a valve
is stuck in some position, signals on the input pins are not effective. If a power or
control bus is faulty, its output is constantly0. Stuck devices are represented by
stuck(D,S)as in the basic valve control module. Faulty power buses and control
buses are described by statementbad device(B).

Given the type of a valveV, values on input wires ofV at timeT, malfunctioning
conditions expressed bystuck(V,S), and the state ofV at timeT−1, the program
determines the state ofV and the values present on its output wires at momentT.

The electrical circuits of the RCS are composed of both analog and digital com-
ponents. Circuits are named through statements of the formeleccirc(C). In the
extended level of theVCM, a digital gate or component,G, can malfunction
if its input/output wireW is stuck at a valueX (0 or 1), defined by statement

19

stuckat(W,G,X). If this is the case, the representation of the electrical circuit(s)
these gates belong to, are also included as part of the module. However, it is not
necessary to add the representation of circuits that are working properly. To indi-
cate that circuitC connected to a valveV is malfunctioning we add rule

bad circuitry(V) :-
bad circuitry(C),
controls(Sw,V,C).

The behavior of different components of electrical circuits is described within the
circuit theory module.

The Space Shuttle flight computer software is contained in its five general purpose
computers (GPCs) which control the vehicle during specific phases of a flight.
This software allows control of all RCS activity being responsible for transmitting
commands for valve configuration and jet firings. If a switch is placed in GPC
state, computer commands can be output toopenor close the affected valves.
Issuing a computer command is represented as an action that will affect a target
deviceD by settingD to a new state. At the extended level of theVCM, issuing
computer commands is expressed by a dynamic causal law that asserts value1 on
the wireW that connects the computer to a component of an electrical circuit. The
rule defining this behavior is

holds(value(W,1),T+1) :-
commands(CC,V,S), output(W,CC),
occurs(CC,T).

Normally, i.e. in the absence of computer commands, a signal value0 is assigned
to the wire that connects a component of an electrical circuit to the computer, as
follows

holds(value(W,0),T) :-
commands(CC,V,S), output(W,CC),
¬holds(value(W,1),T).

Wires connected to the output pins of computer commands, as well as power buses
and control buses, are identified byoutput(W,E), whereE is either a computer
command, a power bus or a control bus.

The extendedVCM, without the Circuit Theory module, consists of 36 rules.

4.3 Circuit theory module

The Circuit Theory Module (CTM) is a general description of normal and faulty
behavior of components of electrical circuits with possible propagation delays
and 3-valued logic. It can also be used as a stand-alone application for simulation,
computation of the maximum delay of a circuit, detection of glitches, and other
tasks.

A large portion of theCTM was independently developed as part of the A-Circuit
project [8]. Because of the modularity of our design, it has been possible to di-
rectly include theCTM in the USA-Advisor system. Some additions were neces-
sary to account for more complex components used in the RCS. More importantly,

20

we extended the model to allow the representation of faulty components. The de-
scription of theCTM is beyond the scope of this paper, but it is important to stress
the central role of recursion in the state constraints of theCTM. The interested
reader can refer to [41] for an in-depth discussion.

Next, we analyze the planning module used in USA-Advisor. For simplicity of
presentation we start our discussion by describing the basic structure of the mod-
ule. Section 4.5 contains an elaboration of the basic module obtained by adding
control knowledge. Section 5 describes a further improvement based on an exten-
sion of A-Prolog.

4.4 The Basic Planner

The Basic Planning Module of the USA-Advisor establishes a simple search crite-
ria used by the program to find a plan. The structure of the Basic Planning Module
described in this section follows the generate and test approach from [21,36,42].
The main idea of this approach consists in establishing a one-to-one correspon-
dence between plans for achieving a goalG in at most a given number,lasttime,
of steps and answer sets of a logic programPG. This program normally consists
of (a) a large part describing our knowledge about the corresponding dynamic
system, and (b) a smaller part containing specification of a goal, a special rule
“generating” actions needed to achieve this goal, and possibly some other rules
describing properties of the desired plans. The following discussion illustrates this
idea. Notice that we differ from the standard answer set planning approach in that
we take advantage of the fact that the RCS consists of three, largely independent,
subsystems. A plan for the RCS is viewed as the composition of three separate
plans that can operate in parallel.

The following rules form the heart of the planner. The first rule, which is respon-
sible for the generation of occurrences actions, states that, for each time point,T,
in a given finite interval, if the goal has not been achieved for subsystemR, then
an action controlling subsystemRmay occur atT.

0{occurs(A,T):action of(A,R)}1 :-
T < lasttime, subsystem(R),
not goal(T,R).

Informally, not goal(T,R) means “if the goal has not been achieved at stepT for
subsystemR.”

The goal of preparing for such a maneuver is also split into subgoals, each prepar-
ing a particular subsystem. The first rule below states that the overall goal has been
achieved if every subsystem is ready for the current maneuver.

goal :-
selected maneuver(M),
holds(maneuver ready(M,left rcs),T1),
holds(maneuver ready(M,right rcs),T2),
holds(maneuver ready(M,fwd rcs),T3).

:- not goal.

21

The second rule above is a constraint that states that the overall goal must be
achieved in every model.

Splitting the RCS into subsystems allowed us to substantially improve the effi-
ciency of the module because of the reduction in the length of plans. For instance,
in some cases, it allowed us to reduce the time to find a plan of 5 steps from a few
hours to a few seconds. Notice that, since there actually are some dependencies be-
tween some subsystems, a very small number of extremely rare (and undesirable)
plans can be missed. It is possible to extend the planning module in order to find
these plans. The interested reader may refer to [4] to see how this is accomplished.

Since the RCS contains more than 200 actions, with rather complex effects, and
may require long plans, the standard planning approach described above can still
be too slow, and needs to be substantially improved. This is done by addition of
various forms of heuristic, domain-dependent4, information. We refer to the Basic
Planner expanded by such heuristics as Smart Planner.

4.5 Smart Planner: adding the control knowledge

In this section we will discuss the expansion of the basic planner by useful heuris-
tic information, including control knowledge. The usefulness of control knowl-
edge for planning has been investigated in [1,34,32,3], but comparatively little is
known about the influence of heuristics in answer set planning (see however [13]).
Such knowledge can be classified into two categories: domain dependent and do-
main independent. Both types of heuristics work by either limiting the combina-
tions of actions that can occur or by declaring that certain situations are illegal.
In either case the heuristics help prune the search space, leading to increased effi-
ciency, and improving plan quality by eliminating unwanted plans.

Some of the control knowledge used in the USA-Advisor can easily be included
for planning in other domains. An example of such domain independent knowl-
edge is the statement “Do not repeat actions already performed.” Note that, while
this rule does not apply in all domains, in many an optimal plan will never in-
clude the same action twice. This rule can be easily encoded in A-Prolog as the
following constraint:

:- action of(A,R), neq(T1,T2),
occurs(A,T1), occurs(A,T2).

USA-Advisor contains also a number of domain specific heuristics. The first ex-
ample shown here states that a switch should not be moved to the gpc (general
purpose computer) position unless the following action is to issue a computer
command to the valve related to that switch.

:- controls(Sw,V),
occurs(flip(Sw,gpc),T),
not issued commands(V,T+1).

4 Notice that the addition does not affect the generality of the algorithm.

22

Note that while there are valid plans for the operation of the RCS which do not
obey this rule, for each of them there is a plan containing exactly the same actions
which does obey it. This allows us to further prune the search space.

More domain-dependent rules embody common-sense knowledge of the type “do
not pressurize nodes which are already pressurized.” In the RCS, some nodes can
be pressurized through more than one path. Clearly, performing an action in order
to pressurize a node already pressurized will not invalidate a plan, but this involves
an unnecessary action. Although we do not claim the plans computed are optimal,
the shortest sequence of actions to achieve the goal is a good candidate as the
optimal plan(s). The following constraint eliminates models where more than one
path to pressurize a nodeN2 is open.

:- link(N1,N2,V1), link(N1,N2,V2), neq(V1,V2),
holds(in state(V1,open),T),
holds(in state(V2,open),T),
not stuck(V1,open), not stuck(V2,open).

The Planning Module contains approximately 20 rules of which 15 are heuristics.

Next, we discuss the lessons learned from the development of USA-Advisor de-
scribed in the previous sections. In Section 5, we explain how the use of an exten-
sion of A-Prolog later allowed us to substantially improve the quality of reasoning
carried out by the system.

4.6 Discussion

The Smart Planner is to the best of our knowledge the largest and most sophisti-
cated answer set planner in existence. Below are some lessons we learned from its
design and implementation.

– Since a single action of an astronaut changes the values of many interrelated
fluents of the RCS the description of effects of this action becomes a non-
trivial task. To solve it we need to find solutions to frame, ramification, and
qualification problems [31,23,37]. We solved these problems by using the
techniques developed in theory of actions and change and the power of A-
Prolog rules. The frame problem was solved by encoding the inertia axiom
by a “non-monotonic”, default rule of A-Prolog. Qualification was addressed
by the use of constraints. And finally, the most difficult ramification problem
was solved by the use of static causal laws. It is not clear to us how and if the
effects of the RCS actions could be accurately represented by more traditional
STRIPS-like action languages like ADL [43].

– A-Prolog proved to be a language capable of specifying the initial situation,
causal and other relations of the domain, as well as the heuristic informa-
tion limiting the search space and improving quality of plans. This contrasts
with some of the other representational approaches which require separate lan-
guages for each of these classes of statements. For instance, the encoding of
heuristic information in [1,2,3] required a fairly sophisticated use of temporal
logic.

23

– The sameformalization of the domain can be used for other reasoning tasks
than planning. All that is needed is replacing the reasoning module, as shown
later in Section 6 and in more detail in [5].

– The heuristics used in the Smart Planner were easy to encode and to use. More-
over, our experiments show that they significantly improve both, quality of
plans and efficiency of search.

– The planner’s ability to mix parallel and sequential plans5 and to efficiently
search for them are the key ingredients in the success of the project.

Overall, answer set planning proved to be a good tool for our purpose. We are not
aware of any other tool which would allow us to deal with the complex effects of
actions of the RCS.

Experiments show that the system is also quite efficient and meets the criteria for
use by NASA stating that a plan should be found in at most 20 minutes. In fact,
in our experiments the threshold has been exceeded in only2 cases out of2000,
while the average time to find a plan has been about11 seconds – far lower than
the 20 minute threshold. Partly this is due to non-numerical nature of the problem.
The fact that despite a large number of concurrent actions involved, the plans were
comparatively short also contributed to the efficiency. To expand the applicability
of answer set planning and reasoning to hybrid systems, i.e. systems involving
“continuous” time and numerical computations we need to substantially extend
the existing answer set solvers.

Let us now look in more detail at how the experiments were performed and at the
results. To assess efficiency, we have randomly generated2000problem instances,
each specifying a set of faults and a maneuver to be performed. The instances are
partitioned in10 sets of200elements, according to the number and type of faults
in them. Every set is denoted by a pair〈mech,elec〉, wheremechandelect are
respectively the number of mechanical and electrical faults present in the instances
of the set. Table 1 shows the sets of instances used for our experiments (for further
details on the generation of the instances, the reader can refer to [41]).

Recall that our planner takes a parameter,lasttime, specifying the maximum al-
lowed length of the plans. In the experiments, we used an algorithm that, given a
problem instance, iteratively runs the planner, increasinglasttimeby 1 if no plan
is found. When a plan is found the procedure terminates and the plan is returned.
The value oflasttimeranges between3 and10. We also included a timeout of
600seconds for each call to the planner: if no plan is found within that time, the
planner is interrupted and a new iteration is performed. Notice that, if no timeout
occurs, this approach is guaranteed to find shortest plans, in terms of the corre-
sponding value oflasttime6.

The average time (including all the calls to the planner that occur during the iter-
ations overlasttime) to find a plan of up to10 steps or determine that none exists
are shown in Table 2. The table also includes the number of instances that do not

5 As we discussed earlier, the plans found by our planner consist of sequences of compound
actions, each containing at most one action per subsystem. The elements of each compound
action are to be executed concurrently.

6 But not necessarily in terms of number of actions, as we will see later.

24

Table 1 Sets of instances used in the experiments.

Set Name Mechanical Faults Electrical Faults

ins-3-0 3 0
ins-5-0 5 0
ins-8-0 8 0
ins-10-0 10 0
ins-3-2 3 2
ins-5-3 5 3
ins-8-5 8 5
ins-10-3 10 3
ins-10-5 10 5
ins-10-7 10 7

have a solution if10 steps or less. As the numbers show, some sets of instances
were quite hard.

Figures 4–8 give a graphical representation of the times to find a solution for each
instance. All the tests in this paper were performed on a Pentium 4 3.2GHz with
1.5GB RAM running NetBSD 3.99.7,lparse1.0.13, andSMODELS2.26.

Table 2 Average times, grouped by set of instances.

Set Name Average Time (sec) No solution

ins-3-0 4.6443 7
ins-5-0 4.5658 28
ins-8-0 11.4887 63
ins-10-0 22.4169 96
ins-3-2 4.1187 60
ins-5-3 13.8207 102
ins-8-5 8.3934 138
ins-10-3 20.2484 177
ins-10-5 10.1764 162
ins-10-7 11.0357 143
Average 11.0909 976

25

 0

 100

 200

 300

 400

 500

 600

200
180

160
140

120
100

80
60

40
20

1

Time (secs)

Instance N
um

ber

 0

 50

 100

 150

 200

 250

 300

 350

 400

200
180

160
140

120
100

80
60

40
20

1

Time (secs)

Instance N
um

ber
Figure 4 Times for set ins-3-0 (left) and ins-5-0 (right).

 0

 100

 200

 300

 400

 500

 600

200
180

160
140

120
100

80
60

40
20

1

Time (secs)

Instance N
um

ber

 0

 200

 400

 600

 800

 1000

 1200

200
180

160
140

120
100

80
60

40
20

1

Time (secs)

Instance N
um

ber

Figure 5 Times for set ins-8-0 (left) and ins-10-0 (right).

26

 0 2 4 6 8

 10

 12

 14

 16

200
180

160
140

120
100

80
60

40
20

1

Time (secs)

Instance N
um

ber

 0

 100

 200

 300

 400

 500

 600

 700

 800

200
180

160
140

120
100

80
60

40
20

1

Time (secs)

Instance N
um

ber
Figure 6 Times for set ins-3-2 (left) and ins-5-3 (right).

 0 2 4 6 8

 10

 12

 14

200
180

160
140

120
100

80
60

40
20

1

Time (secs)

Instance N
um

ber

 0

 200

 400

 600

 800

 1000

 1200

 1400

200
180

160
140

120
100

80
60

40
20

1

Time (secs)

Instance N
um

ber

Figure 7 Times for set ins-8-5 (left) and ins-10-3 (right).

27

 0

 20

 40

 60

 80

 100

200
180

160
140

120
100

80
60

40
20

1

Time (secs)

Instance N
um

ber

 0

 20

 40

 60

 80

 100

200
180

160
140

120
100

80
60

40
20

1

Time (secs)

Instance N
um

ber
Figure 8 Times for set ins-10-5 (left) and ins-10-7 (right).

28

5 Improving the Quality of Reasoning

The previous sections showed that USA-Advisor is capable of fairly sophisticated
planning in presence of complex faults.

On the other hand, although the plans found are all reasonable, some of them
may be preferable to the others. For example, plans that do not involve the use
of the crossfeed in the RCS are preferable to those that do, because they allow to
maintain a better balance of the level of propellant in the tanks. In this section,
we show how answer set programming techniques can be extended to allow the
specification of preferences on plans and the computation of such preferred plans.
We begin by extending the syntax and semantics of A-Prolog.

5.1 CR-Prolog

CR-Prolog is obtained from A-Prolog by adding consistency-restoring rules (cr-
rules) with preferences. Rules of A-Prolog are calledregular rules. A cr-rule is a
statement of the form:

r : h1 or h2 or . . . or hk
+← l1, . . . , lm,

not lm+1, . . . ,not ln
(5)

wherer is the name of the rule (in the rest of the discussion, we will omit rule
names whenever possible). The cr-rule intuitively says that, if the agent believes
l1, . . . , lm and does not believelm+1, . . . , ln, then it “may possibly” believe one el-
ement of the head. This possibility is used only if there is no way to obtain a
consistent set of beliefs using regular rules only.

Let us see how cr-rules work. Consider the following program:

r1 : p or q
+← not t.

r2 : s.

Since the program containing only regular ruler2 is consistent,r1 need not be
applied. Hence, there is only one answer set:{s}. On the other hand, program

r1 : p or q
+← not t.

r2 : s.
r3 : ← not p,not q.

has two answer sets:{s, p} and{s,q}, obtained by applyingr1.

The semantics of the fragment of CR-Prolog described so far can be concisely
defined as follows. LetΠ r denote the set of regular rules of programΠ and let
Π cr denote the set of cr-rules ofΠ . By α(r) we denote the regular rule obtained

from a consistency restoring ruler by replacing
+← by ←; α is expanded in a

standard way to an arbitrary setR of cr-rules.

A minimal (with respect to set theoretic inclusion) collectionR of cr-rules ofΠ
such thatΠ r ∪α(R) is consistent (i.e. has an answer set) is called anabductive
supportof Π .

29

A setA of literals is called ananswer setof Π if it is an answer set of the regular
programΠ r ∪α(R) for some abductive supportR of Π .

Preferences between cr-rules are encoded by atoms of the formpre f er(r1, r2),
wherer1 andr2 are names of cr-rules. The intuitive reading of the atom is “do not
consider sets of beliefs obtained usingr2 unless you have excluded the existence
of belief sets obtained usingr1.” We call this type of preferencebinding.

To better understand the use of preferences, consider programΠ1:

r1 : p
+← not t.

r2 : q
+← not t.

r3 : pre f er(r1, r2).

Π1 has one answer set:{pre f er(r1, r2)}. Notice that cr-rules are not applied, and
hence the preference atom has no effect. Now consider programΠ2 = Π1∪{r4 :
← not p,not q}. Now cr-rules must be used to restore consistency. Sincer1 is
preferred tor2, the answer set is:{p, pre f er(r1, r2)}. Finally, considerΠ3 = Π2∪
{r5 : ← p}. Its answer set is:{q, pre f er(r1, r2)}.
For the definition of the semantics of CR-Prolog, refer to [5].

5.2 CR-Prolog and Soft Requirements

In several cases, “best” plans are selected based on some minimization criteria. An
interesting case is when we are given a set of requirements that plans should satisfy
if at all possible(e.g., “if at all possible, do not skip lunch”). Such requirements
are referred to assoft (or defeasible). In our approach, the satisfaction of soft
requirements is checked for in the test phase of the search.

In its simplest form, a soft requirement is encoded by a constraint and a cr-rule.
The body of the constraint contains:

– the encoding of the condition that plans should satisfy, according to the soft
requirement; the encoding is such that, if the requirement is not met, the body
of the constraint issatisfied;

– a condition (theinhibitor) that allows to stop the application of the constraint,
in case the soft requirement has to be violated.

For example, a possible constraint for the soft requirement “if at all possible, do
not skip lunch” is:

← skip(lunch),not allowed(skip(lunch)).

The cr-rule is used to say that, under some conditions, the constraintmay possibly
be inhibited, but its inhibition should be a rare occurrence. The cr-rule for the soft
requirement above is:

allowed(skip(lunch)) +← .

which intuitively says that one may be possibly allowed to skip lunch.

30

If plans exist that do not violate the requirement, the cr-rule is not used. However,
if no such plan exists, the cr-rule is used to conclude that skipping lunch is allowed.
This inhibits the constraint, and allows the computation of plans violating the
requirement.

For another example, consider the encoding of the soft requirement “if possible
do not skip lunch; however, if you had a big breakfast, you are allowed to skip
lunch,” which consists of the rules:

← skip(lunch),not allowed(skip(lunch)).
allowed(skip(lunch)) +← had(big break f ast).

The cr-rule informally says that, if one had a big breakfast, he may possibly be
allowed to skip lunch.

When several soft requirements are specified, one is often interested in ranking
them in order of preference, so that the most preferred soft requirements are the
ones that are less likely to be violated. Preferences statements of CR-Prolog pro-
vide a convenient way to encode such preferences. For example, consider the two
soft requirements:

– if at all possible, do not skip lunch;
– if at all possible, do not skip dinner;

together with the preference “skipping lunch is preferred over skipping dinner.”
The soft requirements can be encoded as before:

← skip(lunch),not allowed(skip(lunch)).
skipl : allowed(skip(lunch)) +← .

← skip(dinner),not allowed(skip(dinner)).
skipd : allowed(skip(dinner)) +← .

The preference is encoded by the following rule:

pre f er(skipl ,skipd).

which says that (if one has to skip either dinner or lunch) skipping dinner should
be considered only if skipping lunch is not possible. It is important to stress that
preference statements of CR-Prolog allow to encode more complex criteria than
the one above, e.g. dynamic preferences such as “if you had a big breakfast, it is
better for you to skip lunch than skipping dinner; otherwise, skipping dinner is
preferred.” Such preference can be encoded in CR-Prolog with the rules:

pre f er(skipl ,skipd)← had(big break f ast).
pre f er(skipd,skipl)← not had(big break f ast).

31

5.3 CR-Prolog Based Planner

The structure of the A-Prolog based planners, such as the one shown in Sec-
tion 4.4, can be easily extended to take defeasible requirements into account. Let
PLANPROBbe a set of A-Prolog rules containing the encoding of a domain de-
scription as well as the specification of the goal and the planning module. Let also
SOFTREQbe the encoding of a set of defeasible requirements. The plans that
best satisfy the requirements can be found by computing the answer sets of:

PLANPROB∪ SOFTREQ.

Soft requirements and preferences over them have an immediate application in an
extended planner for USA-Advisor (CR-Plan). For example, recall that the left
and right subsystems of the RCS are actually connected by thecrossfeed, which
allows to share propellant between the two subsystems. The crossfeed is intended
to be used when one of the two subsystems is affected by faults preventing the
use of the propellant from its own tanks. Use of the crossfeed should normally
be avoided, to keep the level of propellant in the two subsystems balanced. This
statement can be seen as the soft requirement “avoid the use of the crossfeed if at
all possible.” Following the approach outlined above, a possible encoding of such
requirement in CR-Prolog is:

rx f(R,T) : allowed(x f eed(R,T)) +← subsystem(R).

← subsystem(R),action o f(A,R),
occurs(A,T),
opensx f eedvalve(A),
not allowed(x f eed(R,T)).

The cr-rule says that the use of the crossfeed may possibly be allowed at any time
stepT. The constraint says that it is impossible for actionA of subsystemR to
occur atT if A opens a crossfeed valve, and the use of the crossfeed is not allowed
in R at time stepT.

To see how the introduction of this requirement affects planning, consider a situa-
tion in which the RCS is functioning correctly and we need to perform a maneuver
that involves the use of the left and right subsystems.

Because of the absence of faults, the design of the RCS guarantees that the ma-
neuver can be performed without the use of the crossfeed. On the other hand, the
design also guarantees that the crossfeedcanbe used to achieve the goal. Hence,
the set of plans found by the planner from Sections 4.4 and 4.5 contains both plans
that use the crossfeed and plans that do not use it.

If the soft requirement described above is used, then the planner will return only
plans thatdo notuse the crossfeed, as these are the “best” plans according to the
requirement. It is worth stressing the non-monotonic behavior of the planner: if
faults are later added to the description of the initial situation, so that the goal can
only be achieved with the use of the crossfeed, then the planner will be forced to
violate the soft requirement and to return plans that involve the crossfeed.

32

Another example of the use of soft requirements for USA-Advisor is the encod-
ing of the policy that “computer commands should be avoided if at all possible.”
(This policy is motivated by the fact that, normally, issuing a computer command
requires preparing and uploading a patch of the software of the on-board com-
puter.) The CR-Prolog encoding of the requirements is:

rccs(R,T) : allowed(ccs(R,T)) +← subsystem(R).

← subsystem(R),action o f(A,R),
occur(A,T),sendscomputercommand(A),
not allowed(ccs(R,T)).

The cr-rule says that computer commands may possibly be allowed at any time
stepT. The constraint says that it is impossible for actionA of subsystemR to oc-
cur atT if A sends a computer command and computer commands are not allowed
in R at time stepT.

It is of course possible to state preferences between the two soft requirements. For
example, if modifying the software of the Shuttle’s computer is considered prefer-
able to losing the balance of the propellant between the left and right subsystems,
the following rule can be added to the planner:

pre f er(rccs(R2,T2), rx f(R1,T1)). (6)

It is also possible (and often important) to use dynamic preferences. For example,
the rules:

pre f er(rx f(R1,T1), rccs(R2,T2))← computerunreliable.
pre f er(rccs(R2,T2), rx f(R1,T1))← not computerunreliable. (7)

say that the use of the crossfeed is preferred to computer commands only if the
on-board computer isknown7 to be unreliable. Otherwise, computer commands
are preferred.

Notice once again the non-monotonic nature of the planner: if the preference state-
ment(s) are not satisfiable, they can be violated. For example, if the computer is
unreliable, but the goal still cannot be achieved after allowing the use of the cross-
feed, then the use of computer commands will be allowed.

It is interesting to notice that soft requirements can also be used to avoid the gener-
ation of irrelevant actions, typical of planning domains in which the goal is divided
in independent subgoals, and the execution of parallel actions is allowed. Consider
what happens in USA-Advisor if the goal requires that some jets in the forward
and left subsystems be set ready to fire, and achieving the subgoal for the forward
subsystem takesnf steps, while achieving the subgoal for the left subsystem takes
nl steps, withnf < nl . By inspecting the selection rule used in the planning mod-
ule, one can see that, even iflasttime is set to the lowest possible value ofnl ,
a plan in which the subgoal for the forward subsystem is achieved at stepnf is
considered equivalent to one in which the same subgoal is achieved atnf +1. For
this reason, a plan in which an extra, irrelevant action is performed on the forward

7 Notice the use of default negation to encode the Closed World Assumption.

33

subsystem at somen′ < nf +1 is as likely to be returned as the plan that achieves
the subgoal at stepnf .

A soft requirement can be written so that, if a plan of lengthnf + 1 is generated
for the forward subsystem, it is possible to guarantee that no extra action will
occur at stepn′ above (i.e. the plan for that subsystem contains an empty step).
The soft requirement for irrelevant actions states that “performing actions should
be avoided if at all possible.”, and is encoded by the rules:

rshort(R,T) : allowed(executeaction(R,T)) +← subsystem(R).

← subsystem(R),action o f(A,R),
occurs(A,T),not allowed(executeaction(R,T)).

The cr-rule says that, at any stepT of the plan for subsystemR, the agent may be
possibly allowed to perform actions. The constraint says that it is impossible for
actionA of subsystemR to occur at stepT if the agent is not allowed to execute
actions on subsystemR at stepT.

Experimental results confirm that the plans returned by CR-Plan are of a signif-
icantly higher quality than the plans generated by the basic planner described in
Sections 4.4 and 4.5.

We have applied CR-Plan to the problem instances from Section 4.6. The iteration
over the maximum plan length has been performed using the algorithm described
there. For these experiments, we have usedCRMODELS1.58, an inference engine
for CR-Prolog recently developed [35].

The experiments have been performed in two sessions. In the first sessions, we
have removed from CR-Plan all the preference statements (see (6)–(7) above). The
resulting planner, called CR-Plan−, was tested on the2000problem instances. In
the second session, we added to CR-Plan− the preference statements (7) and tested
the resulting planner, called CR-Plan+, on the same2000instances.

The use of CR-Plan− substantially increased the quality of plans with respect
to the A-Prolog based planner. Overall, computer commands and crossfeed were
used119 times, as opposed to3089times by the A-Prolog planner, with an im-
provement of96.15%. Moreover, in569cases, CR-Plan− returned plans that con-
tained less actions than the plans found by the A-Prolog planner (in no occasion
they were longer). The total number of irrelevant actions avoided by CR-Plan−
was1595, corresponding to a reduction of19.69%on the total number of actions
used (8102for the A-Prolog planner and6507for CR-Plan−).

Although the experiments were mainly aimed at assessing the quality improve-
ment, we found that the speed of CR-Plan− was still largely acceptable, in spite of
the substantial increase in the complexity of the task performed. Out of2000runs,
CR-Plan− exceeded NASA’s 20 minute threshold only43 times, corresponding to
2.15%of the instances. The average time to complete one instance was238sec-
onds, far below the threshold. If we discard the43 outliers, the average time goes
down to156seconds. The times for CR-Plan− are shown in Table 3.

8 Available fromhttp://www.krlab.cs.ttu.edu/Software.

34

Table 3 Average times for CR-Plan− and the A-Prolog planner, grouped by set of instances.

Set Name Average Time (sec) A-Prolog Avg. (sec)

ins-3-0 140.5569 4.6443
ins-5-0 161.3922 4.5658
ins-8-0 340.4750 11.4887
ins-10-0 236.3294 22.4169
ins-3-2 155.8627 4.1187
ins-5-3 316.4596 13.8207
ins-8-5 221.4760 8.3934
ins-10-3 282.9618 20.2484
ins-10-5 238.2858 10.1764
ins-10-7 288.1211 11.0357
Average 238.1920 11.0909

The results of the experiments on CR-Plan+ are equally satisfactory. Because of
the introduction of preference statements (7) in CR-Plan+, the number of times
the crossfeed was used throughout the2000instances went down from86for CR-
Plan− to 56 for CR-Plan+. The speed of CR-Plan+ was quite good: out of2000
instances, only46 times NASA’s20 minute threshold was exceeded (compare to
43times for CR-Plan−), and the average time was245.92seconds (154seconds if
the46 outliers are discarded). These numbers show that, overall, the introduction
of preferences didn’t affect significantly the computation time. A comparison of
the average times, grouped by set of instances, is shown in Table 4. It is interest-

Table 4 Average times for CR-Plan+ and comparison with the other planners

Set Name CR-Plan+ CR-Plan− A-Prolog

ins-3-0 72.2124 140.5569 4.6443
ins-5-0 83.7280 161.3922 4.5658
ins-8-0 368.8101 340.4750 11.4887
ins-10-0 250.4088 236.3294 22.4169
ins-3-2 156.8805 155.8627 4.1187
ins-5-3 351.7330 316.4596 13.8207
ins-8-5 241.5304 221.4760 8.3934
ins-10-3 264.3492 282.9618 20.2484
ins-10-5 265.1365 238.2858 10.1764
ins-10-7 404.4173 288.1211 11.0357
Average 245.9206 238.1920 11.0909

ing to note that in some cases is average time for CR-Plan+ is significantly smaller
than that of CR-Plan−. A possible explanation of the phenomenon is that the in-
troduction of preferences adds several constraints on the application of cr-rules,
and in some experiments this can help to reduce the search space.

35

5.4 Discussion

Various extensions of A-Prolog have been recently developed, providing con-
structs that allow the specification of preferences.

In its simplest form, theminimize statement ofSMODELS [40] instructs the rea-
soning system to look for one model that minimizes the number of atoms, from
a given set, that are present in the model. In its complete form, the statement al-
lows to minimize the sum of the weights associated with the specified atoms. The
fact that theminimize statement allows to find only one model limits its appli-
cability, as one may be interested in finding multiple, equally good solutions to
a problem. Moreover, in the presence of preferences, an encoding of defeasible
requirements based onminimize is likely to be less elaboration tolerant than the
CR-Prolog equivalent, because of the need to find suitable weights to be assigned
to the atoms in theminimize statement.

The language of Logic Programs with Ordered DisjunctionLPOD [15,16] is an
extension of A-Prolog that allows the specification, in the head of the rules, of a list
of alternative literals in order of preference (this is similar to epistemic disjunction,
with the difference that in epistemic disjunction all the alternatives are considered
equivalent). If the body of the rule is satisfied, one alternative must be selected
following the preference order. A possible, rather straightforward, encoding of soft
requirements usingLPOD consists in writing the constraint part of the requirement
as shown earlier, and replacing the corresponding cr-rule by anLPOD rule:

¬allowed(req)×allowed(req).

whereallowed(req) is the inhibitor used in the constraint. If multiple requirements
need to be specified, and a total preference order exists over them, the constraints
are written as usual, and their inhibitors are listed in a single rule:

noneviolated×allowed(req1)×allowed(req2)× . . .×allowed(reqn).

Because of the use of a single rule to list all the inhibitors, this type of encoding
is less elaboration tolerant than ours. Another difference in CR-Prolog andLPOD
lies in the different definition of the preference relation. If conflicts arise among
preferences, the Pareto-style preference ofLPOD simply ignores the conflicting
preferences. On the other hand, our binding preference discards any solutions that
are involved in the conflict of preferences. In particular, when preferences are
static, the program becomes inconsistent. This behavior derives from our view
that programs should contain a small, clearly specified set of preferences. Hav-
ing inconsistency is a way to alert the user (e.g. the flight controllers) that the
preferences were not clearly specified. We believe that our more conservative def-
inition of preferences can be especially useful when the consequences of making
the wrong choice are serious (e.g. loss of valuable equipment, loss of lives). For a
more detailed discussion, refer to [4].

Finally, theweak constraintsof DLV [19] (also used in the approaches that rely
on a translation to this language, such asDLVK [22]) provide an elegant way to
encode defeasible requirements. Unfortunately, the current implementation of the
DLV inference engine does not allow function symbols, which complicates the

36

development of a complex system such as USA-Advisor. With respect to the en-
coding of defeasible requirements, notice that preferences on weak constraints are
encoded with numerical weights. This is likely to limit the elaboration tolerance of
the approach, as the addition of a new soft requirement may require re-assigning
most of the weights in the program. It is also important to notice that the definition
of the preference relation inDLV is in the style of Pareto preference. Conflicting
preferences are ignored in a way similar toLPOD, which may cause problems if
the making wrong choice may have negative consequences.

6 Other Forms of Reasoning

In the previous sections we have shown how our A-Prolog based methodology can
be used to model complex domains and to perform planning tasks.

An important feature of our methodology is thatthe domain model is independent
of the particular type of reasoningand can thus be shared by all the reasoning
modules.

To demonstrate this point, in this section we describe a simple diagnostic mod-
ule for the RCS that uses the same domain model as the planning module. The
interested reader may refer to [6] for an in-depth description of answer set based
diagnosis.

We view the diagnostic task as a reasoning process in which the agent explains
unexpected observations by making hypotheses on faults that may be present in
the system. In our approach, observations about fluents are encoded by statements
of the formobs(l , t), wherel is a fluent literal andt is a time step. The statement
informally says thatl was observed to hold at stept. Possible observations on
the state of the RCS are, for example,obs(pressurizedby(f f 12j, f f h),3) and
obs(in state(f f m1,open),5). Notice the difference between relationobs, which
encodes observations, and relationholds, which encodes the reasoner’s beliefs or
expectations.

Observations and expectations are linked in A-Prolog by the following set of ax-
ioms,RA:

holds(L,0)← obs(L,0).
← obs(L,T),holds(L,T).

The first axiom provides a simple way to describe the initial situation (and can be
easily made more sophisticated, e.g. by introducing the Closed World Assump-
tion). The second axiom, calledreality check, ensures that the reasoner’s expecta-
tions coincide with the observations.

Given a domain modelM, a setH of statements of the formoccurs(A,T), spec-
ifying the actions performed, and a collection of observationsO, the need for a
diagnosis can be verified by checking the consistency of

S = M∪RA∪H ∪O.

If S is consistent, the reasoner can conclude thatO contains no unexpected ob-
servations. Otherwise,S is called a symptom, and a diagnosis needs to be found.

37

In this paper by diagnosis we mean a set-theoretically minimal collection,D , of
faults such thatS ∪D is consistent.

Notice that, in the context of diagnosis, faults can be viewed as unlikely events,
and can thus be nicely formalized using cr-rules. For example, a cr-rule:

stuck(V,S) +← .

says that any valveV may be stuck in some positionS, although this is unlikely.
Similarly, we can write cr-rules for all the other possible faults from the model of
the RCS, e.g.

has leak(V) +← .

The corresponding set of cr-rules,DM, constitutes adiagnostic modulefor the
RCS. It is not difficult to check that, in the presence of unexpected observations,
the answer sets of the program:

S ∪DM

correspond to the possible diagnoses of the system. In fact, the cr-rules inDM
are used only ifS is inconsistent. As discussed above, this happens whenO
contains unexpected observations. The application of the cr-rules inDM allows
the reasoner to assume the existence of faults, and the reality check axiom ensures
that in every answer set the reasoner’s expectations coincide with the observations.
Moreover, thanks to the minimality built in the semantics of CR-Prolog, the set of
faults found with this method are minimal with respect to set-theoretic inclusion,
and thus constitute diagnoses according to the above definition.

7 Lessons Learned

Our methodology for representing knowledge about dynamic domains and for
designing reasoning modules proved to be scalable beyond small domains. The
key steps of the methodology are:

1. Identifying the relevant objects and relations in the domain.
2. Identifying the actions.
3. Describing the effects of the actions using the action language based approach.

The decisions made at step (1) heavily influence both the clarity of the model
and efficiency of the resulting system. An example of this is the modeling of the
junctions of the RCS, which improved to the model substantially.

The availability of state constraints also proved to be important for modeling
domains of size and complexity comparable to the RCS. We believe state con-
straints contributed substantially to the compact definition of fluents such as
pressurizedby(N,TK) and of our general theory of electrical circuits.

Besides its already known applications, we found default negation useful in se-
lecting modules of the domain’s encoding. Consider for instance the way relation
bad circuitry(V) influences the selection of the Basic and Extended Valve Con-
trol Modules: in the model, we only had to specify when the relation holds (thus

38

enabling the Extended Valve Control Module), while default negation was used to
determine when it does not hold. Without default negation, we would have been
forced to state explicitly whenbad circuitry(V) does not hold.

Control knowledge proved to be essential in improving the speed of reasoning.
Very frequently, this type of information could be found in the operating proce-
dures of the RCS.

In order to improve the speed of computation, it is also profitable to divide the ac-
tions in independent subsets (elements of which are executed concurrently) when-
ever possible.

The use of an external frontend is important to allow the automatical selection of
the appropriate modules and avoid problems due to the large size of the grounding
of the whole model.

8 Conclusions

In this paper we have described an A-Prolog based methodology for modeling
dynamic domains that allows to formalize the description of rather complex do-
mains. In this methodology, A-Prolog, or CR-Prolog in more sophisticated cases,
are used to specify the initial situation, the domain model, the control knowledge,
and the reasoning modules. It is important to stress that, in our approach, the do-
main model is shared byall the reasoning modules.

The resulting programs are efficient enough to be used for practical applications.
We demonstrated our methodology by applying it to the development of a decision
support system for the Reaction Control System of the Space Shuttle.9 The system
is intended for actual use by NASA flight controllers and its applicability is not
limited to the Space Shuttle. In fact, the development of USA-Advisor is currently
being continued by the programmers at United Space Alliance, who are working
on formalizing models of other systems of the Shuttle and of the International
Space Station, as well as creating suitable graphical interfaces.

Finally, in this paper we have also shown how CR-Prolog, the extension of A-
Prolog by consistency-restoring rules and preferences, allows to substantially im-
prove the quality of reasoning by specifying soft requirements (i.e. conditions on
the solutions that the reasoning modules should satisfy if at all possible) and pref-
erence over them.

Acknowledgements The authors would like to thank United Space Alliance for their continued
support. This work was partially supported by United Space Alliance under contract number
NAS9-20000 and by NASA under contract number NASA-NNG05GP48G.

References

1. F. Bacchus and F. Kabanza.Using Temporal Logic to Control Search in a Forward Chaining
Planner, pages 141–153.

9 USA-Advisor can be downloaded fromhttp://www.krlab.cs.ttu.edu/Software.

39

2. F. Bacchus and F. Kabanza. Planning for Temporally Extended Goals.Annals of Mathe-
matics and Artificial Intelligence, 22(1-2):5–27, 1998.

3. F. Bacchus and F. Kabanza. Using Temporal Logics to Express Search Control Knowledge
for Planning.Artificial Intelligence, 16:123–191, 2000.

4. Marcello Balduccini. USA-Smart: Improving the Quality of Plans in Answer Set Planning.
In PADL’04, Lecture Notes in Artificial Intelligence (LNCS), Jun 2004.

5. Marcello Balduccini. Answer Set Based Design of Highly Autonomous, Rational Agents.
PhD thesis, Texas Tech University, Dec 2005.

6. Marcello Balduccini and Michael Gelfond. Diagnostic reasoning with A-Prolog.Journal
of Theory and Practice of Logic Programming (TPLP), 3(4–5):425–461, Jul 2003.

7. Marcello Balduccini and Michael Gelfond. Logic Programs with Consistency-Restoring
Rules. In Patrick Doherty, John McCarthy, and Mary-Anne Williams, editors,International
Symposium on Logical Formalization of Commonsense Reasoning, AAAI 2003 Spring
Symposium Series, pages 9–18, Mar 2003.

8. Marcello Balduccini, Michael Gelfond, and Monica Nogueira. A-Prolog as a tool for declar-
ative programming. InProceedings of the 12th International Conference on Software En-
gineering and Knowledge Engineering (SEKE’2000), pages 63–72, 2000.

9. Marcello Balduccini and Veena S. Mellarkod. A-Prolog with CR-Rules and Ordered Dis-
junction. InICISIP’04, pages 1–6, Jan 2004.

10. Chitta Baral. Knowledge Representation, Reasoning, and Declarative Problem Solving.
Cambridge University Press, Jan 2003.

11. Chitta Baral and Michael Gelfond. Logic Programming and Knowledge Representation.
Journal of Logic Programming, 19(20):73–148, 1994.

12. Chitta Baral and Michael Gelfond. Reasoning Agents In Dynamic Domains. InWorkshop
on Logic-Based Artificial Intelligence, pages 257–279. Kluwer Academic Publishers, Jun
2000.

13. Chitta Baral and Le-Chi Tuan. Effect of knowledge representation on model based planning:
experiments using logic programming encodings. InProceedings of 2001 AAAI Spring
Symposium on Answer Set Programming, pages 110–115, 2001.

14. Matthew Barry and Richard Watson. Reasoning about actions for spacecraft redundancy
management. InProceedings of the 1999 IEEE Aerospace Conference, volume 5, pages
101–112, 1999.

15. Gerhard Brewka. Logic programming with ordered disjunction. InProceedings of AAAI-02,
2002.

16. Gerhard Brewka, Ilkka Niemela, and Tommi Syrjanen. Implementing Ordered Disjunc-
tion Using Answer Set Solvers for Normal Programs. In Sergio Flesca and Giovanbattista
Ianni, editors,Proceedings of the 8th European Conference on Artificial Intelligence (JELIA
2002), Sep 2002.

17. Gerhard Brewka, Ilkka Niemela, and Tommi Syrjanen. Logic Programs wirh Ordered Dis-
junction. 20(2):335–357, 2004.

18. Francesco Buccafurri, Nicola Leone, and Pasquale Rullo. Adding Weak Constraints to Dis-
junctive Datalog. InProceedings of the 1997 Joint Conference on Declarative Programming
APPIA-GULP-PRODE’97, 1997.

19. Francesco Calimeri, Tina Dell’Armi, Thomas Eiter, Wolfgang Faber, Georg Gottlob, Gio-
vanbattista Ianni, Giuseppe Ielpa, Christoph Koch, Nicola Leone, Simona Perri, Gerard
Pfeifer, and Axel Polleres. The DLV System. In Sergio Flesca and Giovanbattista Ianni, ed-
itors,Proceedings of the 8th European Conference on Artificial Intelligence (JELIA 2002),
Sep 2002.

20. Tina Dell’Armi, Wolfgang Faber, Giuseppe Ielpa, Nicola Leone, and Gerard Pfeifer. Ag-
gregate Functions in Disjunctive Logic Programming: Semantics, Complexity, and Imple-
mentation in DLV. InProceedings of the 18th International Joint Conference on Artificial
Intelligence (IJCAI 03). Morgan Kaufmann, Aug 2003.

21. Yannis Dimopoulos, J. Koehler, and B. Nebel. Encoding planning problems in nonmono-
tonic logic programs. InProceedings of the 4th European Conference on Planning, volume
1348 ofLecture Notes in Artificial Intelligence (LNCS), pages 169–181, 1997.

22. Thomas Eiter, Wolfgang Faber, Nicola Leone, Gerard Pfeifer, and Axel Polleres. Answer
Set Planning under Action Costs.Journal of Artificial Intelligence Research, 19:25–71,
2003.

23. J. J. Finger.Exploiting Constraints in Design Synthesis. PhD thesis, Stanford University,
1987.

40

24. Alfredo Gabaldon and Michael Gelfond. From Functional Specifications to Logic Pro-
grams. InProceedings of the International Logic Programming Symposium (ILPS’97),
1997.

25. Michael Gelfond. Representing Knowledge in A-Prolog. In Antonis C. Kakas and Fariba
Sadri, editors,Computational Logic: Logic Programming and Beyond, Essays in Honour of
Robert A. Kowalski, Part II, volume 2408, pages 413–451. Springer Verlag, Berlin, 2002.

26. Michael Gelfond and Nicola Leone. Knowledge Representation and Logic Programming.
Artificial Intelligence, 138(1–2), 2002.

27. Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic program-
ming. InProceedings of ICLP-88, pages 1070–1080, 1988.

28. Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunc-
tive databases.New Generation Computing, pages 365–385, 1991.

29. Michael Gelfond and Vladimir Lifschitz. Action Languages.Electronic Transactions on
AI, 3(16), 1998.

30. Michael Gelfond and Richard Watson. On methodology for representing knowledge in
dynamic domains. InProc of the 1998 ARO/ONR/NSF/DARPA Monterey Workshop on
Engineering Automation for Computer Based Systems, pages 57–66, 1999.

31. Patrick J. Hayes and John McCarthy. Some Philosophical Problems from the Standpoint of
Artificial Intelligence. In B. Meltzer and D. Michie, editors,Machine Intelligence 4, pages
463–502. Edinburgh University Press, 1969.

32. Y. Huang, H. Kautz, and B. Selman. Control Knowledge in Planning: Benefits and Trade-
offs. In Proceedings of the 16th National Conference of Artificial Intelligence (AAAI’99),
pages 511–517, 1999.

33. M. Kaminski. A note on the stable model semantics of logic programs.Artificial Intelli-
gence, 96(2):467–479, 1997.

34. H. Kautz and B. Selman. The Role of Domain-Specific Knowledge in the Planning as
Satisfiability Framework. InProceedings of AIPS’98, 1998.

35. Loveleen Kolvekal. Developing an Inference Engine for CR-Prolog with Preferences. Mas-
ter’s thesis, Texas Tech University, Dec 2004.

36. Vladimir Lifschitz. Action Languages, Answer Sets, and Planning, pages 357–373. The
Logic Programming Paradigm: a 25-Year Perspective. Springer Verlag, Berlin, 1999.

37. John McCarthy. Epistemological problems of artificial intelligence. InProceedings of
IJCAI-77, pages 1038–1044, 1977.

38. Veena S. Mellarkod. Optimizing the Computation of Stable Models using Merged Rules.
Master’s thesis, Texas Tech University, May 2002.

39. Ilkka Niemela and Patrik Simons.Extending the Smodels System with Cardinality and
Weight Constraints, pages 491–521. Logic-Based Artificial Intelligence. Kluwer Academic
Publishers, 2000.

40. Ilkka Niemela, Patrik Simons, and Timo Soininen. Extending and implementing the stable
model semantics.Artificial Intelligence, 138(1–2):181–234, Jun 2002.

41. Monica Nogueira. Building Knowledge Systems in A-Prolog. PhD thesis, University of
Texas at El Paso, May 2003.

42. Monica Nogueira, Marcello Balduccini, Michael Gelfond, Richard Watson, and Matthew
Barry. An A-Prolog decision support system for the Space Shuttle. InPADL 2001, pages
169–183, 2001.

43. E. Pednault. ADL: exploring the middle ground between STRIPS and the situation cal-
culus. InProceedings of the First International Conference on Principles of Knowledge
Representation and Reasoning (KR-89), pages 324–332, 1989.

44. Raymond Reiter.On Closed World Data Bases, pages 119–140. Logic and Data Bases.
Plenum Press, 1978.

45. Patrik Simons. Extending the Stable Model Semantics with More Expressive Rules. InPro-
ceedings of the 5th International Conference on Logic Programming and Non-monotonic
Reasoning (LPNMR-99), number 1730 in Lecture Notes in Artificial Intelligence (LNCS).
Springer Verlag, Berlin, 1999.

46. Richard Watson. An application of action theory to the Space Shuttle. InPADL-99, volume
1551 ofLecture Notes in Artificial Intelligence (LNCS), pages 290–304, 1999.

