
Ontology-Based Reasoning about the
Trustworthiness of Cyber-Physical Systems

Marcello Balduccini∗, Edward Griffor†, Michael Huth], Claire Vishik[, Martin Burns†, David Wollman†

∗Saint Joseph’s University, Philadelphia, PA, USA,marcello.balduccini@sju.edu , †US NIST, Gaithersburg, MD,
USA,edward.griffor@nist.gov, martin.burns@nist.gov, david.wollman@nist.gov ,
]Imperial College London, London, UK,m.huth@imperial.ac.uk , [Intel Corporation, Austin, TX, USA,
claire.vishik@intel.com

Keywords: CPS Framework, Cross-Cutting Concerns, Sys-
tem Validation, Semantic Models & Analyses, Ontology.

Abstract

It has been challenging for the technical and regulatory com-
munities to formulate requirements for trustworthiness of the
cyber-physical systems (CPS) due to the complexity of the
issues associated with their design, deployment, and opera-
tions. The US National Institute of Standards and Technology
(NIST), through a public working group, has released a CPS
Framework that adopts a broad and integrated view of CPS
and positions trustworthiness among other aspects of CPS.
This paper takes the model created by the CPS Framework
and its developments one step further, by applying ontologi-
cal approaches and reasoning techniques in order to achieve
greater understanding of CPS. The example analyzed in the pa-
per demonstrates the enrichment of the original CPS model ob-
tained through ontology and reasoning and its ability to deliver
additional insights to the developers and operators of CPS.

1 Introduction

The cyber-physical systems (CPS) brought additional com-
plexity to the computing environment. In addition to other re-
quirements, the technologists now have to contend with the
behavior and influence of the physical subsystem, creating an
even greater need for an integrated context and the ability to
reason about the applicati of the requirements.

The use of ontologically inspired modeling in computer sci-
ence is not new. In fact, as Smith and Welty [17] point out, this
approach has been used extensively in information systems sci-
ence. Examples include conceptual modeling in the database

Official contribution of the National Institute of Standards and Technol-
ogy; not subject to copyright in the United States. Certain commercial equip-
ment, instruments, or materials are identified in this paper in order to specify
the experimental procedure adequately. Such identification is not intended to
imply recommendation or endorsement by the National Institute of Standards
and Technology, nor is it intended to imply that the materials or equipment
identified are necessarily the best available for the purpose.

development area or domain modeling in software engineer-
ing. Although these uses are separate from applying ontologies
to knowledge engineering, there is a direct connection.

The creation of an extensive ontology is frequently a lengthy
process. However, in this case, the authors had the advan-
tage to rely on an extensive model already in existence. NIST
hosted a Public Working Group on Cyber Physical Systems
(CPS) with the aim of capturing input from those involved in
CPS in order to define a reference framework supporting com-
mon definitions and facilitating interoperability between such
systems. A key outcome of that work is the CPS Framework
(Release 1.0) [9]. The framework proposes a means of sup-
porting three Facets of a CPS lifecycle: conceptu-alization,
realization, and assurance of CPS through analytical lenses,
called Aspects. In the framework, the Aspect named Trust-
worthiness, describes a number of related Concerns that deal
specifically with the avoidance of flaws in Privacy, Security,
Safety, Resilience and Reliability. The framework is extensi-
ble and supported with executable models, e.g. a UML model
of Concerns and Aspects, and all three Facets and the interde-
pendencies across the CPS lifecylce.

The CPS framework helps articulate the motivation for impor-
tant requirements to be considered in building, composing, and
assuring CPS. However, the CPS Framework currently does
not offer a comprehensive model for reasoning over CPS arti-
facts and their dependencies.

In this paper, we develop a Conceptual Ontology for the Trust-
worthiness aspect that can be extended to other Aspects of the
CPS Framework.We illustrate this approach with a case study,
where the Conceptual Ontology is used to model the CPS from
scenarios associated with a camera placed onto an autonomous
car in order to support multiple aspects of decision making.

The model contains sufficient complexity to demonstrate the
capabilities of the approach and how it can be scaled to the
full CPS Framework. The case study includes, e.g., consider-
ations such as Transduction (in which a CPS produces a phys-
ical signal that interacts with the Environment) and Influence
(in which a CPS produces or receives a physical signal that
brings about a state change of another CPS). The objective is

1



to demonstrate that an ontology-based approach can aid engi-
neers in identifying and resolving important issues for design,
implementation, and validation of CPS.

Intended Audience: This paper is meant for both academic
researchers and engineering professionals. For the former, it
can stimulate more research in an area that urgently needs firm
foundations for modeling and reasoning about the trustworthi-
ness of CPSs. For the latter, it conveys the main ideas behind
our approach and demonstrates that it can, in principle, be used
in standard engineering and production practice.

2 Related Work

Ontology-Based Data Access (OBDA) systems (see e.g. [13,
2]) such as Ontop, allow for semantic queries about an ontol-
ogy to be interpreted over concrete data – using engines such
as NoSQL, Hadoop, MapReduce and so forth. This is achieved
throughmappingsthat mediate between the semantic layer of
ontologies and the concrete data. Use of these maps can virtu-
alize the concrete data graphs to those portions that are needed
for evaluating the queries, improving scalability and semanti-
cally guiding data analytics, see e.g. [13]. Our work is consis-
tent with the use of OBDA to link to, and support, data analyt-
ics.

The Object Management Group has an Insurance Working
Group that builds data models for that sector, informed by on-
tologies. Since ontologies can be composed, we may integrate
such Insurance Ontologies as another important concern in the
operation of CPS, particularly those related to infrastructure.

For the Cybersecurity concern, there is a rich literature on
graph-based attack models. Closest to our work are perhaps
the Attack-Countermeasure Trees (ACT) by Roy, Kim, and
Trivedi [16]. An ACT specifies how (or how likely) an attacker
can logically realize a specific goal in a IT system, even when
faced with specific mitigation or detection measures. Leaves
on trees are basic attack, detection or mitigation actions and
the model assumes that basic attack actions are statistically in-
dependent. Our approach is much wider in scope: it applies to
CPS, is applicable to all concerns of the CPS framework and
their dependencies – not just cybersecurity, and it can formu-
late and invoke inference rules of interest rather than relying
on a static inference structure determined by a graph.

Our approach can be extended toquantitativereasoning by in-
terpreting queries and inferences as developed in this paper
over the reals, rankings or other domains that allow a quan-
titative comparison. One may then generate answers to queries
that areoptimal with respect to some metrics. The combina-
tion of physical (non-linear) interaction and logical (discrete or
Boolean) interaction of CPS make this a mixed-integer, non-
linear optimization problem (MINLP) extended with logical
inference. MINLP approaches can support a limited form of
logic, e.g. through disjunctive programming [1]. But these
methods seem to struggle with supporting richer logics and
inferences such as “what-if” explorations. We therefore seek

support for both MINLP methods and logic reasoners. This
need has already been recognized in the optimization commu-
nity, we refer to [15] for an overview, a discussion, and first re-
sults in addressing this need for Process Systems Engineering.
The tool ManyOpt [4] already provides such abilities but can
only express polynomials as non-linear behavior. The notion
of δ-satisfiability [5] relaxes inequalities by up to someδ > 0
in order to satisfy all constraints. This renders decidability for
a rich theory including transcendental functions, with tool sup-
port [6]. It would be of great interest to leverage this to opti-
mization plus logical inference, e.g., within the tool ManyOpt.

3 CPS Framework

We now introduce the NIST Framework for Cyber-Physical
Systems, referred to as “CPS Framework” or simply “Frame-
work” below. The Framework comprises a set ofconcerns and
facetsrelated to the system under design or study. This section
will clarify the intent and purpose of the framework, as well as
its extensible and modifiable nature. The reader interested in
documentation of the CPS Framework is directed to the three
volume NISTFramework for Cyber-Physical Systems:

• SP 1500-201(https://www.nist.gov/publications/framework-
cyber-physical-systems-volume-1-overview)[9]
• SP 1500-202(https://www.nist.gov/publications/framework-

cyber-physical-systems-volume-2-working-group-reports)[10]
• SP 1500-203(https://www.nist.gov/publications/framework-

cyber-physical-systems-volume-3-timing-annex)[18]

The CPS Framework provides the taxonomy and methodology
for designing, building, and assuring cyber-physical systems
that meet the expectations and concerns of system stakehold-
ers, including engineers, users, and the community that bene-
fits from the system’s functions. The Framework comprises a
set of concerns about systems, three development facets and a
notion of functional decomposition suited to CPS. A CPS often
delivers complex functions that are ultimately implemented in
a multitude of collaborating systems and devices. This collab-
oration or interaction can occur through the exchange of infor-
mation or the exchange of energy. We refer to the former as
logical interaction and the latter as physical interaction.

The functional decomposition of the Framework breaks a CPS
down into functions or sets of functions, as follows:

• theBusiness Case, a name and brief description of what
the system is or does
• the Use Case, a set of scenarios or step-by-step descrip-

tion of ways of using the system and the functions that
realize those steps
• the Allocation of Functionto subsystems or actors – ex-

pressed in the terminology of Use Cases
• thePhysical-Logical Allocation: allocation of given sub-

system functions to physical or logical implementation.

As an example, consider a simplified version of an automated
vehicle CPS forautomated emergency braking. The business
case is a“vehicle system that detects objects and brings the

2



vehicle safely to a stop without colliding with the obstacle.”A
corresponding use-case scenario consists of asensor arrayde-
tecting an object and sending abraking torque requestto the
braking system, where the amount of torque requested is based
on a calculation of the distance to the object. The underly-
ing subsystems or actors are the sensor array and the braking
system which carries out the calculation and converts the re-
quest to an amount of electric power applied to components
that produce the appropriate amount of hydraulic pressure on
the braking calipers. The sensors are physical, the communica-
tion of the request is logical and the braking system is capable
of both logical and physical function – it does calculation and
creates hydraulic pressure.

Next, we describe how the set of concerns of the CPS Frame-
work is organized andapplied to a functionin the functional
decomposition of a CPS. The concerns of the Framework are
represented in a multi-rooted, tree-like structure (a “forest” in
graph theory), where branching corresponds to thedecomposi-
tion of concerns. We refer to this structure as theconcern tree
of the CPS Framework. The concerns at the roots of this struc-
ture, the highest level concerns, are calledaspectsand there
are nine of them, one of which beingTrustworthiness.

A concern about a given system reflects consensus thinking
about method or practice, involved in addressing the concern,
and in some cases consensus-based standards describing
that method or practice. This method or practice is applied
to each function in the functional decomposition of the
system and application of a concern to a function results
in one or more properties to be required of that function
in order to address the concern in question. A concern
may be seen as a branch in the concern tree, consisting of
the root name followed by a (possibly empty) sequence of
concern element names in the branch, separated by periods or
dots. In the Trustworthiness aspect, e.g., we have the concern
Trustworthiness.Security.Cybersecurity.Confidentiality
that may be abbreviated as, e.g.,Conf ′d. A sample property,
meant to address this concern about data exchanged between
components of a system, is use of encryption of some kind
(e.g. AES or DES). A property is appended to the concern tree
branch in block parentheses. Here,Conf ′d[AES−encr] states
that concernConf ′d is intended to be addressed by the use of
AES encryption.

The facets of the CPS Framework are sets of activities, char-
acteristic of amode of thinkingabout the development of a
system. These facets areconceptualization, realization, and
assurance. We refer to the CPS Framework documentation
noted above for their complete explanation. The output of the
conceptualization facet is aModel of the CPS, consisting of
properties of the CPS with an indication of the concerns that
gave rise to the properties. The output of the realization facet
is the CPS itself. And, finally, the output of the assurance facet
is anAssurance Case for each concern applied to the CPS. The
assurance case is sorted by the concerns applied to the CPS and
consists ofassurance judgment(s), comprised of:

Fig. 1: Decomposition tree for Trustworthiness Concerns

• Propertiesof the CPS and the concerns that resulted in
the addition of those properties to the Model of the CPS.
• Argumentation:consensus or authority-based description

of criteria for concluding that a property, intended to ad-
dress a concern, has been established of the CPS.
• Evidence: information, accessible to stakeholders, that

the criteria used in this argumentation are indeed met.
• Uncertainty: qualitative or quantitative representation of

the uncertainty associated with the evidence that the cri-
teria are met.

3.1 Why a CPS Framework?

There are many critical concerns about the CPSs that surround
us or that we depend upon – including the sub-concerns of
Trustworthiness: Safety, Security, Privacy, Resilience,
andReliability. The urgency of addressing such concerns has
only increased with the rapid deployment of CPS in domains
such as transportation, medical care, and energy. There are
clear needs to design for trustworthiness and monitor thetrust-
worthiness statusof these CPS, since components can fail and
new threats can emerge over time.

The CPS Framework provides aCPS Normal Form: any CPS
can be analyzed through the same analytical lenses of the CPS
Framework (see, e.g., Figure 1), resulting in the functional de-
composition of the CPS annotated with its concerns and the
properties introduced in its Model in order to address those
concerns. Given two CPS and their respective analyses, we
may thus compare these CPS directly, one concern at a time.

Subsequent to the initial release of the CPS Framework, ref-
erenced above, NIST modeled the CPS Framework using the
Unified Modeling Language (UML) and generated an XML
schema or type structure of the CPS Framework. This effort
was labeled theCPS Framework Open Source Projectand, as
a follow up, NIST held a CPS Framework Open Source Work-
shop on September 19, 2017. The intent of this modeling ef-
fort, in the format of XML, was to:

• Represent CPS in a common data exchange format (to
facilitate concern-focused design collaboration)
• Provide an IT-based mechanism for comparing the

concern-integrity of CPS (to enable a concern-centric as-
sessment of CPS composition)

3



Fig. 2: Open-source tools supporting the CPS Framework

• Facilitate a concern-focused interface to CPS (to assess
and monitor the status of a CPS relative to measurable
properties and their associated concerns).

This CPS Framework and the Open Source technology, de-
picted in Figure 2, are essential to understanding critical per-
formances of CPSs incrementally, from the perspective of CPS
development, deployment, and adoption.

3.2 Relation of this Paper to the CPS Framework

The work presented in this paper is an extension of the open
source project reported above. The UML/XML modeling
provides a concern-focused portal to CPS. It demonstrates a
methodology to reason about mutual dependencies and con-
flicts in requirements that need to be taken into consideration
during the design, deployment, and operational stages. Infor-
mation needed for such reasoning, can be manually entered or
obtained from a continuous feed from a sensor array designed
to measure base requirement satisfaction. It can also be gener-
ated in other ways, depending on the nature of the system. The
reasoning engine described in this paper is realized by model-
ing a CPS through ontologies based on the CPS Framework.

The semantic relationship of the CPS framework to the work
reported here is as follows. The above synopsis of pertinent
CPS Framework concepts and approaches featured the forest
of concerns, where each tree represents an aspect. There are
two types of nodes, concern elements and property nodes, as
well as two types of edges: those that represent decomposition
of concerns and those that connect concern elements to prop-
erties. Both types of edges should be thought of asAND edges,
meaning that the satisfaction of the parent concern requires that
all of the children nodes be satisfied. In our approach, we ad-
dress a concern by satisfying its node in the concern tree. This
means that a concern element satisfies all its children – which
are refined concerns, and that a property node satisfies all of
its properties. Logical conjunction is therefore the basis of this
satisfaction relation.

4 A CPS Framework Ontology

At the core of this approach is an ontology of the CPS Frame-
work and of a CPS of interest. An ontology is a formal, logic-

based representation that supports reasoning by means of log-
ical inference. In this paper, we adopt a rather broad view of
this term: by ontology, we mean a collection of statements in
a logical language that represent a given domain in terms of
classes(i.e., sets) of objects,individuals(i.e., specific objects),
relationships between objects and/or classes, and logical state-
ments over these relationships. In the context of the trustwor-
thiness of CPS, for instance, an ontology might define the high-
level concept of “Concern” with its refinement of “Aspect.”
All of these will be formalized as classes and, for Aspect, sub-
classes. Specific concerns will be represented as individuals:
Trustworthiness as an individual of class Aspect,Security
andCybersecurity of class Concern. Additionally, a relation
“has-subconcern” might be used to associate a concern with
its sub-concerns. Thus, Aspect “has-subconcern”Security,
which in turn “has-subconcern”Cybersecurity. By introduc-
ing a property “satisfied,” one could also indicate which con-
cerns are satisfied.

Inference can then be applied to propagate “satisfied” and other
relevant properties and relations throughout the ontology. For
example, given a concern that is not “satisfied,” one can lever-
age relation “has-subconcern” to identify the concerns that are
not satisfied, either directly or indirectly, because of it.

In practice, it is often convenient to distinguish between
the factual part,Ω, of the ontology (later, simply called
“ontology”), which encodes the factual information (e.g.,
Trustworthiness “has-subconcern”Security), and theax-
ioms, Λ, expressing deeper, often causal, links between rela-
tions (e.g., a concern is not satisfied if any of its sub-concerns
is not satisfied). Further, when discussing reasoning tasks, we
will also indicate, separately, the setQ of axioms encoding a
specific reasoning task or query.

5 Applying Ontology and Reasoning to CPS

By leveraging a logic-based representation of a domain of in-
terest, one can apply inference and draw new and useful con-
clusions in a principled, rigorous way. In essence, our ap-
proach is agnostic to any specific choice of logical language
and inference mechanisms. Axioms expressed in the used log-
ical language formalize the queries one is interested in answer-
ing, the type of reasoning that can be carried out, and any ad-
ditional contextual information. Thus, given an ontologyΩ, a
set of axiomsΛ, and an inference relation�, we say thatΔ is
an answer to the (implicit) query iff

Ω ∪ Λ � Δ.

where∪ denotes the union of two sets. For instance, in the
language of propositional logic, given knowledge that some
propositionp is true and thatp implies some other proposition
q, one can infer thatq is also true, i.e.:

{p, p ⊃ q} � {q}.

In the context of cybersecurity,p might be true when a cy-
berattack has occurred andp ⊃ q might formalize an expert’s

4



knowledge that, whenever that cyberattack occurs, a certain
system becomes inoperative (propositionq). The logical infer-
ence represented by symbol� allows to draw the conclusion
that, as a result of the cyberattack, the system is now inoper-
ative. For increased flexibility of representation, we use here
a non-monotonic extension of propositional logic, called An-
swer Set Programming (ASP) [7, 14, 3]. ASP is a rule-based
language, where a rule is a statement of the form

h1 ∨ h2 ∨ . . . hk ← l1, . . . , lm, not lm+1, . . . , not ln. (1)

Everyhi andli is aliteral, i.e. an atomic proposition analogous
to p andq above, optionally prefixed by the negation symbol
¬ to express its negation. Intuitively, Equation (1), hereafter
referred to as (1), states that, ifl1, . . . , lm hold and there is no
reason to believe (thenot keyword in (1)) thatlm+1, . . . , ln
hold , then one ofh1, . . . , hk must hold. Thus, the ASP coun-
terpart of the propositional logic implicationp ⊃ q is q ← p.
Suppose propositionr represents the fact that the system is
patched against the cyberattack. To make conservative predic-
tions about the system state after a cyberattack, we might want
to conclude that the system should be expected to be inopera-
tive unless there is positive evidence that it was patched. This
can be represented in ASP by:

q ← p, not r.

Note the difference between¬r and notr. The former is true if
we have explicit evidence that the system has not been patched.
The latter does hold whenever we have that explicit evidence,
but also whenever we simply do not know if it was patched or
not. Depending on specific needs, Answer Set Programming
allows either type of expression. (This type of default reason-
ing is an example of the greater flexibility of representation
that motivates our use of ASP in this paper.)

Although ASP is propositional in nature, we follow common
representational practice and allow for a literal to include a
list of arguments, possibly comprising logical variables. For
example, we may writeq(s1) to indicate that it is systems1

that is inoperative. Similarly, given a variableX, we may use

q(X)← p, not r(X).

to say that any systemX that is not known to be patched should
be assumed to have been made inoperative by the cyberattack.

5.1 Naming Conventions

The decomposition of a CPS identifies resources that may
satisfy properties. Suppose thatcam is a camera, a subsystem
of an autonomous car, and thatmem is a memory sub-system
of cam; we will examine this system in more detail later. Then
cam mem[encr], e.g., is a Boolean predicate that is true if
the memorymem of cameracam uses encryption. Properties
thus have formSystemPath[prop] where SystemPath
identifies a system component or part, with subcomponents
indicated by the underscore symbol, andprop a property that

this part may enjoy. We interpret two such properties to be
equal only if their actual names are equal:cam mem[encr]
and cam mem′[encr], e.g., are different properties as the
same encryption is applied to different memories of the
same cameracam. PropertiesSystemPath[prop] also
have a semantic contextConcernPath that articulates
which (sub)concern of an aspect this property is trying to
address. Propertycam mem[encr], e.g., may have context
Trustworthiness.Security.Cybersecurity.Confidentiality ,
where we use the dot operator “.” inConcernPath to distin-
guish this easily from navigations inSystemPath. In our se-
mantics below, a property may be either true or false (i.e., sat-
isfied or non-satisfied). These truth values in turn influence the
satisfaction of concerns and aspects. Below, we elide details
of such context or of system paths; e.g.,Conf ′d may abbreviate
Trustworthiness.Security.Cybersecurity.Confidentiality .

5.2 Formalization

For sake of illustration, we consider a lane keeping/assist
(LKAS) use case centered around an advanced car that uses
a camera and a situational awareness module (SAM) for lane
keeping/assist. The SAM processes the video stream from the
camera and controls, through a physical output, the automated
navigation system. The camera and the SAM may use en-
crypted memory and secure boot. Safety mechanisms in the
navigation system cause it to shut down if issues are detected
in the input received from the SAM. This use case is chosen
because it encompasses major component types of a CPS, and
lends itself to various non-trivial investigations. Through this
use case, we will highlight the interplay among trustworthiness
concerns, as well as their ramifications on other CPS aspects,
such as the functional aspect.

For sake of presentational simplicity, we will assume that the
camera is capable of two recording modes, one at 25 fps
(frames per second) and the other at 50 fps. The selection of
the recording mode is made by the SAM, by acting on a flag
of the camera’s configuration. It is assumed that two camera
models exist, a basic one and an advanced one. Either type of
camera can be used when realizing the CPS. Due to assumed
technical limitations, the basic camera is likely to drop frames
if it attempts to record at 50 fps while using encrypted memory.

In our approach, the formalization of a CPS is organized along
multiple levels: (L1) aspects and concerns; (L2) properties;
(L3) CPS configuration; (L4) actions; (L5) constraints, depen-
dencies and trade-offs; and (L6) satisfaction axioms. Level L1
and L6 form theCPS-independent specification, since aspects
and concerns are independent of the specific CPS being mod-
eled. Levels L2-L5 comprise theCPS-dependent specification,
as the information included in them depends on the CPS being
modeled. Furthermore, levels L1 and L2 formalize the con-
cepts from the definition of the CPS Framework. Levels L3-L5
extend the CPS Framework in order to provide details needed
for reasoning about the behavior of a CPS of interest. Level L6
provides the semantics of the formalization. Next, we describe
our approach through its application on the LKAS use case.

5



Formalization of aspects and concerns.The formalization
of aspects and concerns is shared by all CPSs. The nodes of a
concern tree are represented by individuals of classConcern.
The root nodes of the concern trees are a particular kind of
concern, and so they are placed in a class (Aspect) that is a
subclassConcern. Following the definition of the CPS Frame-
work, classAspectincludes individualsTrustworthiness, Tim-
ing andFunctionalfor the corresponding aspects, while class
Concernincludes individualsSecurity, Cybersecurity, Func-
tionality, etc.

Edges linking aspects and concerns are represented by
the relation subConc, which is a representation of “sub-
concern.” Thus, an edge from a concernx to a concern
y is formalized by a statementsubConc(x, y). Statement
subConc(Trustworthiness, Security), e.g., formalizes that
the Security concern is a direct sub-concern of the Trustworthi-
ness aspect in our LKAS use case. ConcernsCybersecurity
andConf ′d are linked similarly.

Formalization of properties. Properties of a CPS are repre-
sented by individuals of classProperty. An edge that links
a property with an aspect or concern is represented by re-
lation addrBy, which stands for “addressed by.” Let us
suppose that, in the LKAS use case, both SAM and cam-
era must use encrypted memory for the confidentiality con-
cern to be satisfied (see Figure 3). We may express this
by two statementsaddrBy(Conf ′d, SAM mem[encr]) and
addrBy(Conf ′d, cam mem[encr]). Similarly, the fact that
SAM and camera must use secure boot for the integrity
concern to be satisfied is expressed byaddrBy(Integrity,
SAM boot[sec]) andaddrBy(Integrity, cam boot[sec]).

Another property, referred to below, iscam[storeAll], stat-
ing that cameracam stores all frames, i.e. does not drop any
frames. Note that, in the LKAS use case, the car heavily de-
pends on the camera for proper lane keeping/assist: not drop-
ping any frames is essential for satisfaction of the functionality
concern.

Formalization of configurations. Properties do not neces-
sarily capture all possible configurable features of a CPS, but
only those on which concerns are defined. For instance, in
the LKAS use case, there is a choice between using the basic
camera or the advanced camera. We describe the choice be-
tween the two as part of the configuration of the CPS. Thus,
the formalization includes a classConfiguration. Each indi-
vidual of this class represents a different configuration feature,
e.g.cam[basicOne] is used for the selection of a type of cam-
eracam. Similarly to properties, configurations can be true or
false in a given state of the CPS. In fact, their truth value is es-
sential in defining the configuration of the CPS for a scenario
of interest. Truth values of properties and configurations are
specified by relationobs, where a statementobs(x, true) de-
clares that property or configurationx is (observed to be) true.
Observability of falsity is represented in a similar way.

Formalization of actions. We use the term “action” to de-
note both those actions that are within the control of an agent

(e.g., actions a driver may take), and those actions that oc-
cur spontaneously, e.g. triggered by a particular state of the
CPS such as the automatic disabling of the LKAS capabil-
ity if the camera malfunctions. The formalization includes
a suitable classAction and individuals for the actions of in-
terest. In the LKAS use case, we consider the occurrence
of a cyberattack, and formalize it by means of the indi-
vidual/action labeledAttack. The case in which the auto-
mated navigation system shuts down is modeled by an indi-
vidual NavShutdown. When the configuration of a CPS can
be modified at run-time, suitable actionsMakeTrue(c) and
MakeFalse(c) may also be introduced, wherec is the con-
figuration the action affects. For example, in the LKAS use
case, we consider actionsMakeTrue(cam[basicOne]) and
MakeFalse(cam[basicOne]), which, respectively, switch on
or switch off the basic camera.

Formalization of constraints, dependencies, trade-offs.An
additional feature of our model is the ability to establish causal
links between concerns, properties, configurations, and ac-
tions. This is accomplished by the reasoning over statements.
Table 1 lists types of statements, their syntactic expressions
as judgments, and their corresponding encodings for the ASP
reasoner. The logical encodings of the statements are used to
implement reasoning capabilities discussed later in the paper.

Statementtype Syntax Encoding for reasoner
Property
dependency

Γ impactsposπ

Γ impactsnegπ
impacted(pos/neg, π, S)←

holds(Γ,S)

Default property
value

σ defaults true
σ defaults false

defaults(σ, true/false)

Effects ofactions a causesπ if Γ
holds(π,S + 1)←

holds(Γ,S), occurs(a, S)

Triggeredactions Γ triggersa occurs(a, S)← holds(Γ, S)

Table 1: Constraints, dependencies, and trade-offs whereΓ, π
range over (sets of) propositions anda over actions

For an example of a property dependency statement, recall that
the use of encrypted memory causes the basic camera to drop
frames if it attempts to record at 50 fps. We formalize this by:

cam mem[encr] ∧ ¬cam[rate25fps] ∧ cam[basicOne]

impactsnegcam[storeAll] (2)

The statement states that, under the conditions specified, the
storeAll property isimpacted negatively, that is, is made false.
If a property is impacted positively, impactspos is used in-
stead. As shown in this example, properties and configura-
tions can be negated by prefixing them by¬. Let us list rel-
evant aspects of concerns from the contexts of these proper-
ties:Conf ′d for encr, Timing for rate25fps, Configuration
for basicOne, andFunctionality for storeAll. In the case
of storeAll, one may also want to specify that the property
should be assumed to hold true in the absence of contrary evi-
dence. This can be achieved by a statement:

storeAll defaults true

6



Timing

Time-interval 
and latency 

control

Functional

Functionality

Trustworthiness

Safety Security

Physical security Cybersecurity

Confidentiality Integrity Availability

Privacy Resilience Reliability

Aspects

Concerns

Camera stores all 

frames

SAM uses secure boot

Camera uses sec. boot

Camera should be capable of 

recording at 25 fps or at 50 fps

SAM uses encrypted memory

Camera uses encrypted 

memory

Properties

Fig. 3: LKAS use case: pertinent part of the concern forest

The effects of actions on properties are given by statements
borrowed from action languageAL [8], which has been de-
signed specifically for a compact specification of the causal
dependencies in complex domains.1 Let us say, for instance,
that in the LKAS use case a cyberattack may force the camera
to record at 50 fps. Using actionAttack, introduced earlier, this
may be formalized by a law

Attack causes¬rate25fps.

The last type of statement from Table 1 describes the sponta-
neous triggering of actions when suitable conditions are satis-
fied. To illustrate this, recall that, in the LKAS use case, safety
mechanisms in the navigation system cause the navigational
system to shut down if issues are detected in the input received
from the SAM. One obvious circumstance in which this will
happen is if the system is not fully functional. This link can be
formalized by the trigger:

¬Functional triggersNavShutdown. (3)

Axioms. Recall that our approach reduces the task of answer-
ing a query of interest to that of finding one or more answers,
Δ, such thatΩ ∪ Λ � Δ holds, where the ontologyΩ and
any supporting axiomsΛ are expressed in a logical language
for the reasoner of choice – ASP in this paper. The statements
presented so far can be easily translated into logic statements
as seen in the last column of Table 1, e.g. (2) translates to

impacted(neg, cam[storeAll], S)←
holds(cam mem[encr], S),
¬holds(cam[rate25fps], S),
holds(cam[basicOne], S).

(4)

whereholds is an auxiliary relation that states that its argument
holds at a discrete stepS in the evolution of the CPS. As we

1 While we findAL convenient, our approach does not depend on a partic-
ular choice of language. Other languages, e.g. PDDL, can be easily incorpo-
rated into our approach.

will demonstrate later, the inclusion of a step argument makes
it possible to analyze the evolution of the CPS over time in
response to possible events.

It remains to formalize the meaning of relationimpacted in
terms of the effect on the truth value ofcam[storeAll]. In our
approach, this is accomplished by a set of axioms that com-
plete the translation of the statements from Table 1 and, addi-
tionally, enable reasoning about the satisfaction of properties,
concerns, and aspects. Due to space considerations, we focus
the presentation on the latter, shown in Figure 4.

¬holds(sat(C), S)← addrBy(C, π),
not holds(π, S).

(5)

¬holds(sat(C1), S)← subConc(C1, C2),
¬holds(sat(C2), S).

(6)

holds(X, S)← defaults(X, true),
not ¬holds(X, S).

(7)

holds(π, 0)← obs(π, true). (8)

¬holds(π, 0)← obs(π, false). (9)

Fig. 4: Satisfaction-related axioms for LKAS use case

Axiom (5) intuitively states that a concern is not satisfied if any
of the properties that address it does not hold. This ensures that
the lack of satisfaction of a propertyπ is propagated to the con-
cern(s) that are addressed byπ according to theaddrBy state-
ments provided by the formalization of properties. The lack
of satisfaction is then propagated up the relevant concern tree
by axiom (6) according to the concern-concern dependencies
specified by thesubConc statements in our ontology.

One may note that axioms (5)-(6) only address the lack of sat-
isfaction of properties and concerns. The specification of the
notion of satisfaction is completed bydefaults statements say-
ing that all properties and concerns are satisfied by default,
by axiom (7), which embodies the semantics of thedefaults

7



statements, and by axioms (8)-(9), which link the observations
about the initial state to auxiliary relationholds.

Thus, if the basic camera is used with encrypted memory while
recording at 50 fps, (4) makes it possible to conclude that
property storeAll is not satisfied. In turn, (5) yields that
Functionality is not satisfied. Finally, (6) concludes that the
functional aspect is not satisfied.

5.3 Reasoning

The formalization presented above makes it possible to reason
about aspects and concerns of a CPS, their interdependencies,
and their implications in relation to the other systems the CPS
may interact with. Now, we illustrate these reasoning capabil-
ities by focusing mostly on the trustworthiness concerns. But
the reasoning mechanisms we established can be applied to ar-
bitrary parts of the aspects hierarchy.

Concern tree. For LKAS CPS, let the basic camera be used,
SAM and camera use encrypted memory and secure boot, and
the recording rate be set to 50 fps. Once aspects, concerns,
properties, and configurations are formalized as described ear-
lier, this system state is formalized by the statements:

obs(basicOne, true), obs(cam mem[encr], true),
obs(cam boot[sec], true), obs(cam[rate25fps], false),
obs(SAM mem[encr], true), obs(SAM boot[sec], true)

By inspecting Figure 3, it is not difficult to see that the confi-
dentiality concern is satisfied. From a technical perspective a
query “isχ satisfied by the design of the CPS?”, whereX is
a property (e.g.,storeAll) or concern, is answered by check-
ing whetherΩ ∪ Λ � holds(χ, 0). By specifying a different
time step, one can also check whether the query is satisfied
at run-time. In our running example, starting from the obser-
vation that encrypted memory is used, axiom (5) allows one
to conclude thatΩ ∪ Λ � holds(sat(Conf ′d), 0). Similarly,
one can formally concludeholds(sat(Integrity), 0). From
(6) and (7), it also follows thatCybersecurityis satisfied and,
in turn, all concerns up toTrustworthiness. Thus the LKAS
CPS is deemed to be trustworthy.

On the other hand,Ω ∪ Λ entails¬holds(storeAll, 0) and
¬holds(sat(Functional), 0) and, recursively, theFunction-
ality concern and theFunctionalaspect are thus not satisfied.

All-sat. One may also want to check whether all aspects are
satisfied. This query is encoded by the setQ of axioms:

sat(all) defaults true.
¬holds(sat(all), S)← aspect(A), ¬holds(sat(A), S).

(10)
These axioms introduce a “meta-aspect”all, representing the
satisfaction of the entire concern forest, and state that it is
enough for one aspect not to be satisfied, to cause the concern
forest not to be satisfied as a whole. In our example, one can
check thatΩ∪Λ∪Q � ¬holds(sat(all), 0). In fact, as we saw
in the previous paragraph,¬holds(sat(Functionality), 0)

is entailed. This is sufficient to trigger (10) and derive
¬holds(sat(all), 0). Thus, the CPS is deemed to be trustwor-
thy, but does not satisfy the functional aspect. Therefore, the
concern forest, as a whole, is not satisfied.

Partial synthesis/Design completion.Our approach also al-
lows for the completion of a partially specified CPS design so
that desired constraints are satisfied. Letγ be the requirement
that must be satisfied, e.g.sat(Conf ′d) or sat(all). The cor-
responding query is encoded by the setQ of axioms:

holds(π, 0) ∨ ¬holds(π, 0).
⊥ ← not holds(γ, 0).

where the first rule states that any propertyπ can be true or
false2 and the second says thatholds(γ, 0) must be true in ev-
ery solution/answer returned. For instance, let us complete the
partial design:

obs(basicOne, true), obs(cam boot[sec], true),
obs(cam[rate25fps], false), obs(SAM mem[encr], true),
obs(SAM boot[sec], true)

Note that the design does not specify whether the camera uses
encrypted memory or not. Let us suppose that we are in-
terested in finding a completion of the design in which the
LKAS CPS is trustworthy. To do that, we specifyγ to be
sat(Trustworthiness). One can now check thatΩ ∪ Λ ∪ Q
entails3 holds(cam mem[encr], 0). In fact, the completion of
the design in which the camera uses encrypted memory makes
the CPS trustworthy for purposes of the design analysis.

What-if. A What-if reasoning task studies how the CPS is af-
fected by the occurrence of actions, in terms of which proper-
ties hold, which concerns are satisfied, and which other actions
may be triggered. Let the expressionoccurs(a, s) denote the
occurrence of actiona at steps and let a historyH be a set of
such expressions. A query “isχ satisfied at steps′?”, where
χ is a property (e.g.,storeAll) or concern ands′ is a step
during or after historyH, is answered by checking whether
Ω ∪ Λ ∪H � holds(χ, s′).

A query “does actiona occur at steps′?” is answered by
checking whetherΩ ∪ Λ ∪ H � occurs(a, s′). Obviously, the
same mechanism allows for answering more general questions,
such as “isX satisfied (or not satisfied) at some point during
H?” and “which actions are triggered duringH?”. In reference
to the LKAS use case, let us consider a scenario in which, ini-
tially, the basic camera is used, SAM and camera use encrypted
memory and secure boot, and the recording rate is set to 25 fps.
Clearly, the functional aspect is satisfied by the CPS. We want
to study whether the functional aspect remains satisfied after
occurs(Attack, 0). That is, we need to check whether

Ω ∪ Λ ∪H � holds(sat(Functional), 1).

2 Note that the axioms ofΛ prevent the selection of truth values that conflict
with obs(∙, ∙) statements provided.

3 To be precise, credulous entailment is used in this example.

8



Note the use of step1 in the query, which corresponds to the
step that follows the hypothesized occurrence of the action. It
is not difficult to see that the answer to the query is negative.
In fact, as we discussed earlier, the attack forces the camera
to record at 25 fps. From (4), it follows that the camera will
begin to drop frames, which in turn affects the functional as-
pect negatively. One may wonder whether there are any further
side-effects – for instance, whether any follow-up actions are
triggered. This can be accomplished by checking if there is any
other actiona that occurs at step1. One can check that, given
that the functional aspect is no longer satisfied, (3) will cause
Ω∪Λ∪H to entailoccurs(NavShutdown, 1), indicating that
the navigation system will shut down. (Recall thatoccurs(∙, ∙)
is derived from the triggers statement, as seen in Table 1.)

Mitigation. The last reasoning task we illustrate is aimed at
determining how the effects of a history can be mitigated. As
before, letH be a set of occurrences of actions. We are inter-
ested in answering the query “which mitigation measure can
restoreγ?” whereγ is a concern or the meta-aspectall.4 To
simplify the presentation, let us focus on the case in which all
mitigation actions are executed concurrently after the last ac-
tion of H. Let s# denote the corresponding step. The setQ
of axioms that encode the query includes a rule of the form
occurs(a, s#)∨¬occurs(a, s#) for every actiona that one is
interested in allowing, as well as a rule

⊥ ← not holds(sat(γ), s#+1).

stating that it is impossible forγ not to be satisfied. The
question is answered by finding the set of actionsa such that
Ω ∪ Λ ∪ H ∪ Q � occurs(a, s#). In the LKAS use case, it
is not difficult to check that the mitigation action returned by
this process isMakeFalse(cam[basicOne]), indicating that
the basic camera should be replaced by the advanced camera in
order to compensate for the fact that the cyberattack is forcing
the CPS to record at 50 fps.

If the underlying inference mechanism allows for finding mul-
tiple solutions, one can also use our approach to find optimal
solutions. For instance, one might ask “which mitigation mea-
sures can restoreγ and involve the smallest number of ac-
tions?”. If ASP is the underlying logical formalism, the query
can be easily encoded by extendingQ by a rule:

<∼ occurs(A, s#). (11)

where “<∼” is an advanced connective requesting the mini-
mization of occurrences of its right-hand side in any solution
found.5

To illustrate the task, consider a variation of the LKAS use case
in which a SAM affected by the cyberattack can be patched
(action Patch) to force it to request 25 fps recording. Then
Ω andΛ are modified accordingly andQ is expanded as de-
scribed above. One can check thatΩ ∪ Λ ∪ H ∪ Q entails the

4 For illustration purposes, we focus on after-the-fact mitigation. It is not
difficult to extend the technique to cover preventive measures.

5 It is possible to use other types of minimization as well.

two solutionsoccurs(MakeFalse(cam[basicOne], s#) and
occurs(Patch, s#). While, in principle, another possible mit-
igation consists inboth replacing the basic cameraandpatch-
ing the SAM, it is ruled out by (11) because it is non-minimal.

6 Discussion

Kolbe et al. [12] stress the importance of situational awareness
in complex systems and the benefits of ontologies to enable a
rich context that permits the developers and operators to model
a large number of situations. Others, e.g. Gyrard et al. [11],
stressed the advantages of using ontologies and logical rea-
soning for cross-domain application development. Our exper-
imental use cases illustrate that the richer context brought for-
ward by the proposed approach supports more holistic insights
into complex systems, their development, and operations, and
allows the developers to model rich contexts and anticipate the
issues, constraints, and conflicts that are not self-evident and
are multi-domain in nature.

Cyber-physical contexts are very diverse and have diverging
operational and design requirements. Different emphasis is
needed to design safe and secure aircraft, a smart meter, a con-
nected medical device, or a connected home appliance. Nev-
ertheless, similar technologies and fundamental design princi-
ples are used to build these differing systems, and they share
dependencies on similar or connected infrastructure technolo-
gies. When specific technologies are analyzed for these diverse
contexts, we find more similarities in hardware and software
design, communications protocols used, connectivity require-
ments or resilience-building approaches than one might have
expected. Yet research and development and engineering com-
munities working in different CPS contexts are more aware
of differences than similarities. Studies conducted in various
contexts found limited mutual flow of ideas and best practices
among different CPS environments. Numerous factors are re-
sponsible for this situation, including operational concerns,
traditional work processes in different market segments, con-
fidentiality requirements, differing skills sets in these fields,
and many other issues. While the fragmentation of the field
affects the core hardware, software, and communications tech-
nologies, it applies especially strongly to additional concerns
that need to be considered at the design stage, such as cyberse-
curity and privacy. Connectivity via communications networks
is a recent requirement in many CPS contexts, and many sub-
fields lack expertise in technologies and practices connected to
cyber as well as knowledge of technology approaches to fulfill
requirements associated with trustworthiness.

The CPS framework has already created a unifying view on the
shared model associated with CPS, and, as part of the model,
with the CPS trustworthiness. The application of ontologies
and reasoning to the space covered by the CPS Framework po-
tentially supports an in-depth analysis that can be formalized
for specific contexts, yet is broadly applicable.

The experimental use case presented in this paper is limited.
However, future work based on the same premises will be more

9



extensive. We plan to implement and evaluate parametriza-
tion of use cases, test probabilistic models enabled by the same
ontologies, and demonstrate more sophisticated reasoning ap-
plied to more complex use cases.

7 Conclusion

In this paper, we presented a methodology for developing
a Conceptual Ontology of the CPS Framework and its As-
pects. We then tested parts of such a Conceptual Ontology
to illustrate the approach with a use case for CPS, the lane
keeping/assist scenario of an advanced car. We demonstrated
that the model supports multiple aspects of decision making
based on the formulation and automatic answering of semantic
queries. Although we focused this work on Trustworthiness,
the model contains sufficient complexity to demonstrate the
capabilities of the approach and its scalability to the full CPS
Framework. Our experiment already includes complex consid-
erations such as Transduction and Influence. Our work demon-
strates that an ontology-based methodology can aid engineers
in identifying and resolving important issues for design, im-
plementation, and validation of CPS.

Acknowledgements.M. Balduccini was partly supported by
NIST grant 70NANB17H260. M. Huth acknowledges the UK
EPSRC funded projects EP/N020030/1 and EP/N023242/1.

References

[1] E. Balas. Disjunctive programming: Cutting planes
from logical conditions. InNonlinear Programming 2,
pages 279–312. Elsevier, 1975.

[2] Marcello Balduccini, Sarah Kushner, and Jacquelin
Speck. Ontology-Driven Data Semantics Discovery
for Cyber-Security. In Enrico Pontelli and Tran Cao
Son, editors,PADL’15: Practical Aspects of Declara-
tive Languages, Jun 2015.

[3] Chitta Baral. Knowledge Representation, Reasoning,
and Declarative Problem Solving. Cambridge Univer-
sity Press, Jan 2003.

[4] Andrea Callia D’Iddio and Michael Huth. ManyOpt:
An Extensible Tool for Mixed, Non-Linear Optimiza-
tion Through SMT Solving. CoRR, abs/1702.01332,
2017.

[5] Sicun Gao, Jeremy Avigad, and Edmund M. Clarke.
Delta-decidability over the reals. InProc. of the 27th
Annual IEEE Symp. on Logic in Computer Science,
pages 305–314, 2012.

[6] Sicun Gao, Soonho Kong, and Edmund M. Clarke.
dreal: An SMT solver for nonlinear theories over the re-
als. InProc. of 24th International Conf. on Automated
Deduction, pages 208–214, 2013.

[7] Michael Gelfond and Vladimir Lifschitz. Classical
Negation in Logic Programs and Disjunctive Databases.
New Generation Computing, 9:365–385, 1991.

[8] Michael Gelfond and Vladimir Lifschitz. Action Lan-
guages.Electronic Transactions on AI, 3(16), 1998.

[9] Edward Griffor, Christopher Greer, David Wollman,
and Martin Burns. Framework for Cyber-Physical Sys-
tems: Volume 1, Overview. Technical Report NIST-SP-
1500-201, National Institute of Standards and Technol-
ogy, Jun 2017.

[10] Edward Griffor, Christopher Greer, David Wollman,
and Martin Burns. Framework for Cyber-Physical Sys-
tems: Volume 2, Working Group Reports. Technical
Report NIST-SP-1500-202, National Institute of Stan-
dards and Technology, Jun 2017.

[11] Amelie Gyrard, Soumya Kanti Datta, Christian Bon-
net, and Karima Boudaoud. Cross-Domain Internet of
Things Application Development: M3 Framework and
Evaluation. In2015 3rd International Conf. on Future
Internet of Things and Cloud, pages 9–16, Aug 2015.

[12] Niklas Kolbe, Arkady Zaslavsky, Sylvain Kubler,
Jeremy Robert, and Yves Le Traon. Enriching a Sit-
uation Awareness Framework for IoT with Knowledge
Base and Reasoning Components, 2017.

[13] Dimitrios A. Koutsomitropoulos and Aikaterini K.
Kalou. A standards-based ontology and support for Big
Data Analytics in the insurance industry.ICT Express,
3(2):57–61, 2017.

[14] Victor W. Marek and Miroslaw Truszczynski. The
Logic Programming Paradigm: a 25-Year Perspective,
chapter Stable Models and an Alternative Logic Pro-
gramming Paradigm, pages 375–398. Springer Verlag,
Berlin, 1999.

[15] Miten Mistr, Andrea Callia D’Iddio, Michael Huth, and
Ruth Misener. Satisfiability modulo theories for process
systems engineering. eprints for the optimization com-
munity, 19 June 2017.

[16] Arpan Roy, Dong Seong Kim, and Kishor S. Trivedi.
Attack countermeasure trees (ACT): towards unifying
the constructs of attack and defense trees.Security and
Communication Networks, 5(8):929–943, 2012.

[17] Barry Smith and Chris Welty. Ontology: Towards a
New Synthesis.Formal Ontology in Information Sys-
tems, 10(3):iii–x, 2001.

[18] David Wollman, Marc Weiss, YaShian Li-Baboud, Ed-
ward Griffor, and Martin Burns. Framework for Cyber-
Physical Systems: Volume 3, Timing Annex. Technical
Report NIST-SP-1500-203, National Institute of Stan-
dards and Technology, Sep 2017.

10


