
A Theory of Intentions for Intelligent Agents
(Extended Abstract)

Justin Blount1, Michael Gelfond2, and Marcello Balduccini3

1 Southwest Research Institute (justin.blount@gmail.com )
2 Texas Tech University (michael.gelfond@ttu.edu )

3 Drexel University (marcello.balduccini@gmail.com )

Abstract. We describe theAIA architecture for intelligent agents whose be-
havior is driven by their intentions and who reason about, and act in, changing
environments. The description of the domain includes both the agent’s environ-
ment and the generalTheory of Intentions. The architecture is designed to enable
agents to explain unexpected observations and determine which actions arein-
tendedat the present moment. Reasoning is reduced to computing answer sets of
CR-Prolog programs constructed automatically from the agent’s knowledge.

Introduction
This paper presents a new declarative methodology for the design and implementation
of intelligent agents. We limit our attention to a single agent satisfying the following
assumptions:

– the agent’s environment, its mental state, and the effects of occurrences of actions
can be represented by a transition diagram. States of the diagram contain physical
properties of the world as well as mental attitudes of the agent. Transitions are
caused by actions and reflect possible changes in these states;

– the agent is capable of making correct observations, remembering the domain his-
tory, and correctly recording theresultsof hisattemptsto perform actions;

– normally, the agent is capable of observing the occurrence of all relevant exogenous
actions (actions not performed by the agent).

Our approach to agent design (referred to asAIA) builds upon earlier work on the
AAA architecture [1]. The main difference betweenAAA andAIA is in the organiza-
tion of the control loop of the agent. In both cases the agent uses its knowledge about the
domain to perform diagnostic and planning tasks. However, in our approach the loop is
centered around the notion of intention, which is absent inAAA. The use of intentions
simplifies and generalizes the loop and allows the agent to more naturally persist in its
commitment to achieve its goals. Moreover, it allows an outside observer (including the
agent designer) to reason about agent’s behavior, e.g. to prove that the agent will never
perform any unintended actions.

Our work is obviously related to the BDI agent model [7, 9]. Space constraints pre-
vent a thorough comparison, but we will mention some of the key differences. The BDI
model is usually based on a rather complex logic, e.g. LORA [9], with multiple modal-
ities that include beliefs, desires, intentions and time, as well as complex actions ob-
tained from elementary actions by operators such asif, while, choice. By contrast,AIA
is based on simpler, yet expressive logics that are directly executable. Revisions of be-
liefs, desires and intentions are also achieved quite differently in the two approaches,



since BDI logics are monotonic, whileAIA is based on non-monotonic logic. Finally,
in BDI intentions are considered on par with beliefs and desires. In our work, on the
other hand, intentions are precisely definable in terms of beliefs and desires. The hierar-
chical representation of activities inAIA, which we introduce later in this paper, also
paves the way towards establishing a connection between the flexibility of reasoning of
theAIA architecture and the computational efficiency of HTN planning [8].

The main technical contributions of our work are the introduction of a formal the-
ory of intentions (T I) and the development of an algorithm which takes the agent’s
knowledge (including the theory of intentions), explains the unexpected observations
and computes an action the agent will intend to perform. (Note, that when necessary,
the second task can require planning).

TheT I represents properties of intentions as a collection of statements of an action
theory ofAL. This ensures declarativity and allows for seamless integration ofT I with
agent’s knowledge about its domain and history. Existence of a reasoning algorithm
ensures that the declarative specification of an agent can be actually executed. The al-
gorithm is based on the reduction of the task of explaining observations and finding an
intended action to the problem of computing answer sets of a program of CR-Prolog
[3] automatically generated from the agent’s knowledge. As usual answer sets are com-
puted by a general purpose algorithm implemented by a comparatively efficient answer
set solver [2]. A prototype implementation of a software calledAIA Agent Manager
allows to test this methodology. The following example informally describes the agent
and illustrates its intended behavior by a number of simple (but non-trivial) scenarios.

Example 1.[Bob and John] Consider an environment that contains our agent Bob, his
colleague John, and a row of four rooms,r1, r2, r3, r4 where consecutive rooms
are connected by doorways, such that either agent maymove between neighboring
rooms. The door betweenr3 andr4 is special and can belocked andunlocked by both
agents. If the door islocked then neither canmove between those two rooms until it is
unlocked. Bob and Johnmeetif they are located in the same room.
Scenario 1: Planning to achieve the goal.Initially Bob knows that he is inr1, John
is in r3, and the door betweenr3 andr4 is unlocked. Suppose that Bob’s boss requests
that he meet with John. This causes Bob to intend to meet with John. This type of inten-
tion is referred to as anintention to achievea goal. Since Bob acts on his intentions, he
uses his knowledge of the domain to choose a plan to achieve his goal. Of course Bob
does not waste time and chooses the shortest plan that he expects to achieve his goal,
that is to move fromr1 to r2 and then tor3. A pair consisting of a goal and the plan
aimed at achieving it is called anactivity. To fulfill his intention, Bobintends to execute
the activity consisting of the goal to meet John and the two step plan to move from
r1 to r3. The process of executing an activity begins with amental4 action tostart the
activity. Assuming there are no interruptions, the process continues with the execution
of each action in the plan (in this case, moving tor2, then tor3). After meeting John in
r3 the process concludes with an action tostop the activity.
Scenario 2: Not expected to achieve goal and replanning.Suppose that as Bob is
moving fromr1 to r2 he observes John moving fromr3 to r4. Bob should recognize

4 Actions that directly affect an agent’s mental state are referred to asmentalactions, while those
actions that directly affect the state of the environment are referred to asphysicalactions.



that in light of this new observation the continued execution of his activity is not ex-
pected to achieve the goal, i.e. his activity isfutile. As a result, he shouldstop executing
his activity andstart executing a new one (containing a plan to move tor3 and then to
r4) that is expected to achieve the goal.
Scenario 3: Failure to achieve, diagnosis, and replanning.Bob moved fromr1 to r2
and then tor3, but observes that John is not there. Bob must recognize that his activity
failed to achieve the goal. Further analysis should allow Bob to conclude that, while
he was executing his activity, John must have moved tor4. Bob doesn’t know exactly
when John moved, but his intention will persist, and he will find a new activity (con-
taining a plan to move tor4) to achieve his goal.
Scenario 4: Failure to execute, diagnosis, and replanning.Believing that the door is
unlocked, Bob attempts to move fromr3 to r4, but is unable to perform the action. This
is unexpected, but Bob realizes that John must have locked the door after moving tor4.
Bob’s new activity contains the same goal to meet John and a plan to unlock the door be-
fore moving tor4. �

Despite the comparative simplicity of the tasks illustrated by these scenarios we are
unaware of any systematic declarative methodology which will allow us to easily build
an agent capable of the type of reasoning needed to perform them.

The Representation Language
The representation language adopted in this work is an extension of action languageAL
[4]. The language is parametrized by a sorted signature containing three special sorts
actions, fluents, andstatics(properties which can, resp. cannot, be changed by actions).
The fluents are partitioned into two sorts:inertial anddefined. Together, statics and flu-
ents are calleddomain properties. A domain literalis a domain propertyp or its nega-
tion ¬p. If domain literall is formed by a fluent, we refer to it as afluent literal; other-
wise it is astatic literal. Allowed statements are:causal laws(a causes lin if p0, . . . , pm),
state constraints(l if p0, . . . , pm), andexecutability conditions(impossible a0, . . . , ak

if p0, . . . , pm), wherek ≥ 0, a, ai’s are actions,l is a domain literal (thehead), lin is a
literal formed by an inertial fluent, andpi’s are domain literals. Moreover, no negation
of a defined fluent can occur in the heads of state constraints. The collection of state
constraints whose head is a defined fluentf is referred to as thedefinition off . As in
logic programming,f is true if it follows from the truth of the body of at least one of
its defining rules and is false otherwise. Asystem descriptionof AL is a collection of
statements ofAL over some (implicitly defined) signature.

In this paper we expand the syntax ofAL by requiring its signature to containac-
tivities, consisting of a goal, a plan aimed at achieving the goal, and a name. We name
activities by natural numbers. For instance we can denote Bob’s activity from Scenario
1 by〈1, [move(b, r1, r2),move(b, r2, r3)],meet(b, j)〉. InAL this will be represented
by the staticsactivity(1), comp(1, 1,move(b, r1, r2)), comp(1, 2,move(b, r2, r3)),
length(1, 2), goal(1,meet(b, j)), wherecomp(X,Y,A) states thatA is theY th ele-
ment of the plan of activityX, andlength(X,N) says that the plan of activityX has
lengthN . In this example both components of the activity’s plan are actions. In general,
they can be other, previously defined, activities.



Normally, a system description ofAL is used together with a recorded history of
the domain, i.e., a collection of agent’s observations. In traditional action theories such
histories determine past trajectories of the system, calledmodels, the agent believes to
be possible. If no such model exists the history is deemed inconsistent.

Compared to theAAA architecture, the present work alsoexpands the notion of
domain history and modifies the notion of history’s model. The new domain history
includes two more types of statements:attempt(A, I) and¬hpd(A, I). The former
indicates that the agent attempted to execute actionA at stepI. If at that point the pre-
conditions for executability ofA are satisfied, then actionA is successful and, therefore,
the domain history will containhpd(A, I); otherwise it will contain¬hpd(A, I). The
notion of model is modified to allow the agent to explain unexpected observations by
assuming the occurrence of a minimal collection of occurrences of exogenous actions
missed by the agent.

Theory of Intentions
The agent’s mental state is primarily described by the two inertial fluentsactive goal(g)
andstatus(m, k). The latter holds whenk is the index of the component ofm that has
most recently been executed, andstatus(m,−1) holds when the agent does not intend
to executem5. The inertial property of these two fluents elegantly captures the natural
persistence of the agent’s intentions.

The two mental actionsstart(m) andstop(m) directly affect the agent’s mental
state by initiating and terminating its intent to execute activitym. Special exogenous
mental actionsselect(g) andabandon(g), which can be thought of as being performed
by the agent’s controller, initiate and terminate the agent’s intent to achieve goalg.
Special agent actionwait, which has no executability conditions or effects (physical or
mental), can be seen as doing nothing. Since actionwait has no effects, it is neither
a mental nor physical action. All other agent and exogenous actions are said to be
physical. While the agent’s and exogenous mental actions do not affect the state of the
physical environment, some physical actions may affect the agent’s mental state. The
properties of the above actions and fluents are expressed by a collection of axioms of
AL6.
Defined fluentactive(M) is true when activityM has a status that is not equal to−1:

active(M) if ¬status(M,−1). (1)
Action start sets the value ofstatus to 0 and an agent cannotstart an active activity.
Similarly actionstop deactivates, and an agent cannotstop an inactive activity.

Defined fluentchild(M1,M) is true whenM1 is the current component ofM :
child(M1,M) if comp(M,K + 1,M1), status(M,K). (2)

Similarly, child goal(G1, G) is true whenG andG1 are the goals ofM andM1, and
descendant(M1,M) is defined recursively in terms ofchild. Sub-activities and sub-
goals are represented by defined fluentminor(∙). We refer to activities and goals that
are notminor astop-level. Special exogenous actionselect activates a goal, andabandon
deactivates a goal. A state constraint is also included, which ensures that top-level goals
are no longer active once they have been achieved.

5 The mental state includes statics, which describe activities.
6 For space reasons we omit formal representations of some axioms.



The next axioms describe the propagation of the intent to achieve a goal to its child
goal. Of course, the parent goal may be a top-level or minor goal.

The first axiom in (3) says that an unachieved minor goalG1 of an activityM1
becomesactive whenM1 is the next component of an ongoing activityM . The second
says that a minor goalG1 is no longer active when it is achieved:
active goal(G1) if ¬G1, minor(G1), child goal(G1, G), active goal(G),

goal(M1, G1), status(M1,−1).
¬active goal(G1) if G1, minor(G1), child goal(G1, G), active goal(G).

(3)

Not shown here are the third and forth axioms, which say that a minor goalG1 is no
longer active when its parent is no longer active, and that a minor goalG1 of M1 is no
longer active whenM1 has been executed (i.e. its status is equal to its length). Defined
fluentsin progress(M) andin progress(G) are true whenM and its goalG are both
active. Defined fluentnext act(M,A) is true if agent actionA is the next action of the
ongoing execution ofM . For a physical agent action ofM , the axiom is:

next act(M,A) if phys agent act(A), status(M,K),
comp(M,K + 1, A), in progress(M).

(4)

Executing the next physical action ofM increments the status ofM :
A causes status(M,K + 1) if next act(M,A), status(M,K),

comp(M,K + 1, A), phys agent act(A).
(5)

Along the same lines, stopping an activity causes its descendants to be inactive:
stop(M) causes status(M1,−1) if descendant(M1,M). (6)

An intentional system descriptionD consists of a description of the agent’s phys-
ical environment, a collection of activities, and the theory of intentions. Paths in the
transition diagramT (D) correspond to physically possibletrajectoriesof the domain.
A state of the trajectory is divided into two parts:physicalandmentalconsisting of all
physical and mental fluent literals respectively.

The AIA Control Strategy
In our architecture the agent’s behavior is specified by the followingAIA control loop:

1. interpret observations;
2. find an intended actione;
3. attempt to performe and update history with a record of the attempt;
4. observe the world, update history with observations, and go to step1.

In step1 the agent uses diagnostic reasoning to explain unexpected observations. The
agent explains these observations by hypothesizing that some exogenous actions oc-
curred unobserved in the past. In step2 the agent finds anintended action, i.e.: to
continue executing an ongoing activity that is expected to achieve its goal; tostop an
ongoing activity whose goal is no longer active (either achieved or abandoned); tostop
an activity that is no longer expected to achieve its goal; or tostart a chosen activity
that is expected to achieve his goal.

In general, a historyΓ of the domain defines trajectories in the transition diagram
satisfyingΓ . These trajectories define possible pasts of the domain compatible with
observations inΓ and the assumptions about the agent’s observation strategy and abil-
ity.This however does not mean that every action in such a model is intended by an



agent. This is the case, for example, if Bob procrastinates andwaits instead of per-
forming the intended actionstart(1). It can be shown, however, that this is impossible
for histories produced by an agent executing theAIA control loop. Every agent’s ac-
tion in every model of such a history is intended. Such histories are calledintentional,
and this is exactly what we require from an intentional agent.

The Reasoning Algorithms
In this section we present a refinement of theAIA control loop in which reasoning
tasks are reduced to computing answer sets of a CR-Prolog program constructed from
the intentional system description and the domain history.

The program, denoted byΠ(D, Γn), consists of: the translation ofD into ASP
rules (Π(D)); rules for computing models ofΓn (Π(Γn)); and rules for determining
intended actions atn (IA(n)). Construction ofΠ(D) is based on the diagnostic module
of AAA [6]. In addition to standard axioms, it contains axioms encoding our domain
assumptions and the effects of a recordattempt(A, I) and¬hpd(A, I). A consistency-
restoring rule of CR-Prolog allows us to compute minimal explanations of unexpected
observations:

occurs(A, I2)
+
← phys exog act(A), curr step(I1), I2 < I1.

unobs(A, I)← I < I1, phys exog act(A), occurs(A, I), not hpd(A, I).
number unobs(N, I)← curr step(I), N = #count{unobs(EX, IX)}.

The following lemma links the first step and the answer sets ofΠ(D) ∪Π(Γn).

Lemma 1. If Γn is an intentional history ofD, thenPn is a model ofΓn iff Pn is defined
by some answer setA of Π = Π(D)∪Π(Γn). Moreover, for every answer setA of Π,
number unobs(x, n) ∈ A iff there arex unobserved occurrences of exogenous actions
in A.

To perform the second step – finding an intended action – we will need programIA(n).
It consists of an atominterpret(x, n) wherex is the number of unobserved exogenous
actions in the models ofΓn and the collection of rules needed to compute an intended
action. A constraint requires the agent to adhere to the outcome of the reasoning com-
pleted in step1 by preventing the agent from assuming additional occurrences of ex-
ogenous actions. Next we notice that the collection of possible histories can be divided
in four categories. The categories, which are uniquely determined by a mental state of
the agent, are used in the rules for computing intended actions.

For example, a history belongs to category 1 if the agent has neither goal nor activity
to commit to. In this case the intended action is towait. This is defined by a rule in
which literalactive goal or activity(I) is true when there is an active goal or activity
at the current stepI. Similarly a history is of category 2 if the agent’s top-level activity
is active but its goal is not, and in this case the intended action is tostop the activity.
A history is of category 3 if the agent’s top-level activity and goal are both active. In
this situation the intended action will be the next action of activityM . But there is
an exception to this rule — the agent needs to check that this activity still has a chance
achieve his goal. Other rules cause an atomproj success(M, I) to be part of an answer
set if thenext action is intended. If no such answer set exists, then the activity is futile,
and the intended action is tostop. This is achieved by a cr-rule:



futile(M, I)
+
← interpret(N, I), category 3(M, I),¬proj success(M, I).

Finally, category 4 corresponds to the case in which there is an active goal but the
agent does not yet have a plan to achieve it. In this case an intended action will begin
executing either an activity containing a shortest plan for achieving this goal orwait if
such activity does not exist. The planning task uses cr-rules similar to those in [5]. The
resulting program shows that, by mixing regular ASP rules with consistency restoring
rules, CR-Prolog is capable of expressing rather non-trivial forms of reasoning. The
following lemma ensures that step2 of theAIA control loop – finding an intended
action – is reduced to computing answer sets ofΠ(D, Γn).

Lemma 2. Let Γn be an intentional history andx be the number of unobserved oc-
currences of exogenous actions in a model ofΓn. Action e is an intended action
of Γn iff some answer setA of Π(D, Γn) ∪ {interpret(x, n).} contains the atom
intended act(e, n).

Conclusions
This paper describes theAIA architecture for intelligent agents whose behavior is
driven by their intentions and who reason about, and act in, changing environments. We
presented a formal model of an intentional agent and its environment that includes the
theory of intentionsT I. Such a model was capable of representing activities, goals, and
intentions. We presented an algorithm that takes the agent’s knowledge (includingT I),
explains unexpected observations, and computes the agent’s intended action. Both rea-
soning tasks are reduced to computing answer sets of CR-prolog programs. A prototype
can be found at http://www.depts.ttu.edu/cs/research/krlab/software-aia.php.

References
1. Balduccini, M., Gelfond, M.: The AAA Architecture: An Overview. In: AAAI Spring Sym-

posium on Architecture of Intelligent Theory-Based Agents (2008)
2. Balduccini, M.: CR-MODELS: An inference engine for CR-Prolog. In: Baral, C., Brewka, G.,

Schlipf, J. (eds.) Proceedings of the 9th International Conference on Logic Programming and
Non-Monotonic Reasoning (LPNMR’07). Lecture Notes in Artificial Intelligence, vol. 3662,
pp. 18–30. Springer (2007)

3. Balduccini, M., Gelfond, M.: Logic Programs with Consistency-Restoring Rules. In: Doherty,
P., McCarthy, J., Williams, M.A. (eds.) International Symposium on Logical Formalization of
Commonsense Reasoning. pp. 9–18. AAAI 2003 Spring Symposium Series (Mar 2003)

4. Baral, C., Gelfond, M.: Reasoning Agents In Dynamic Domains. In: Workshop on Logic-
Based Artificial Intelligence. Kluwer Academic Publishers (Jun 2000)

5. Blount, J., Gelfond, M.: Reasoning about the intentions of agents. In: Artikis, A., Craven, R.,
Kesim Çiçekli, N., Sadighi, B., Stathis, K. (eds.) Logic Programs, Norms and Action, Lecture
Notes in Computer Science, vol. 7360, pp. 147–171. Springer Berlin / Heidelberg (2012)

6. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of Intelligent
Agents. Cambridge University Press (2014)

7. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. In: Proceed-
ings of the 2nd International Conference on Principles of Knowledge Representation and Rea-
soning. pp. 473–484. Morgan Kaufmann publishers Inc.: San Mateo, CA, USA (1991)

8. Sacerdoti, E.: The nonlinear nature of plans. In: Procs of IJCAI-75 (1975)
9. Wooldridge, M.: Reasoning about Rational Agents. The MIT Press, Cambridge, Mas-

sachusetts (2000)


