
Language ASP{f} with Arithmetic Expressions and

Consistency-Restoring Rules

Marcello Balduccini1 and Michael Gelfond2

1 Kodak Research Laboratories

Eastman Kodak Company

Rochester, NY 14650-2102 USA

marcello.balduccini@gmail.com
2 Computer Science Department

Texas Tech University

Lubbock, TX 79409 USA

michael.gelfond@ttu.edu

Abstract In this paper we continue the work on our extension of Answer Set

Programming by non-Herbrand functions and add to the language support for

arithmetic expressions and various inequality relations over non-Herbrand func-

tions, as well as consistency-restoring rules from CR-Prolog. We demonstrate the

use of this latest version of the language in the representation of important kinds

of knowledge.

1 Introduction

In this paper we describe an extension of Answer Set Programming (ASP) [12,16,4]

called ASP{f,cr}. This work continues our research on the introduction of non-

Herbrand functions in ASP.

In logic programming, functions are typically interpreted over the Herbrand Universe,

with each functional term f(x) mapped to its own canonical syntactical representation.

That is, in most logic programming languages, the value of an expression f(x) is f(x)
itself, and thus, if equality is understood as identity, f(x) = 2 is false. This type of

functions, the corresponding languages and efficient implementation of solvers is the

subject of a substantial amount of research (we refer the reader to e.g. [8,6]).

When representing certain kinds of knowledge, however, it is sometimes convenient

to use functions with non-Herbrand domains (non-Herbrand functions for short), i.e.

functions that are interpreted over domains other than the Herbrand Universe. For ex-

ample, when describing a domain in which people enter and exit a room over time, it

may be convenient to represent the number of people in the room at step s by means of

a function occupancy(s) and to state the effect of a person entering the room by means

of a statement such as

occupancy(S + 1) = O + 1← occupancy(S) = O

where S is a variable ranging over the possible time steps in the evolution of the domain

and O ranges over natural numbers.

Of course, in most logic programming languages, non-Herbrand functions can still be

represented, but the corresponding encodings are not as natural and declarative as the

one above. For instance, a common approach consists in representing the functions of

interest using relations, and then characterizing the functional nature of these relations

by writing auxiliary axioms. In ASP, one would encode the above statement by (1) intro-

ducing a relation occupancy′(s, o), whose intuitive meaning is that occupancy′(s, o)
holds iff the value of occupancy(s) is o; and (2) re-writing the original statement as a

rule

occupancy′(S + 1, O + 1)← occupancy′(S,O). (1)

The characterization of the relation as representing a function would be completed by

an axiom such as

¬occupancy′(S,O′)← occupancy′(S,O), O 6= O′. (2)

which intuitively states that occupancy(s) has a unique value. The disadvantage of this

representation is that the functional nature of occupancy′(s, o) is only stated in (2).

When reading (1), one is given no indication that occupancy′(s, o) represents a func-

tion – and, before finding statements such as (2), one can make no assumption about

the functional nature of the relations in a program when a combination of (proper) rela-

tions and non-Herbrand functions are present. Moreover, in ASP relational encodings of

functions often pose performance issues. For example, the grounding of rule (2) grows

with O(|D|2) where D is the range of variables O and O′. If |D| is large, which is often

the case especially with numerical variables, the size of the grounding can affect very

negatively the overall solver performance.

Various extensions of ASP with non-Herbrand functions exist in the literature. In [7],

Quantified Equilibrium Logic is extended with support for equality. A subset of the

general language, called FLP, is then identified, which can be translated into normal

logic programs. Such translation makes it possible to compute the answer sets of FLP

programs using ASP solvers, although the performance issues due to the size of the

grounding remain. [14] proposes instead the use of second-order theories for the defini-

tion of the semantics of the language. Again, a transformation is (partially) described,

which removes non-Herbrand functions and makes it possible to use ASP solvers for

the computation of the answer sets of programs in the extended language. As with

the previous approach, the performance issues are present. In [15,17] the semantics is

based on the notion of reduct as in the original ASP semantics [12]. For the purpose of

computing answer sets, a translation is defined, which maps programs of the language

from [15,17] to constraint satisfaction problems, so that CSP solvers can be used for the

computation of the answer sets of programs in the extended language. Finally, the lan-

guage of CLINGCON [9] extends ASP with elements from constraint satisfaction. The

CLINGCON solver finds the answer sets of a program by interleaving the computations

of an ASP solver and of a CSP solver. All the approaches except for [7] support only

total functions. While the approaches from [15,17,9] are computationally efficient, the

approaches of [7,14], based on translations to ASP, are affected by performance issues

due to the size of the grounding. Finally, in [1,2] we have proposed an extension of

ASP with non-Herbrand functions, called ASP{f}, that supports partial functions and

is computationally more efficient than [7].

In the present paper, we extend the definition of ASP{f} from [1,2] further, by adding

to it support for full-fledged arithmetic expressions and for consistency restoring rules

from CR-Prolog [3]. We also contribute our perspective to the current debate on the

usefulness of partial vs. total functions and on the role of non-Herbrand languages in

general by demonstrating the use of our extended language for the representation of

important types of knowledge and for the encoding of some classical scenarios, pointing

out the differences with other approaches and with ASP encodings.

The rest of the paper is organized as follows. In the next section we extend ASP{f}with

full-fledged arithmetic expressions. In the following section we introduce consistency-

restoring. The resulting language is called ASP{f,cr}. Next, we address high-level

issues of knowledge representation in ASP{f,cr} and we demonstrate the use of

ASP{f,cr} for the formalization of some classical problems. Finally, we draw conclu-

sions and discuss future work.

2 ASP{f} with Arithmetic Expressions

In this section we summarize the syntax and the semantics of ASP{f} [1,2], and ex-

tend the language with support for arithmetic expressions over non-Herbrand functional

terms. For simplicity, in the rest of this paper we drop the attribute “non-Herbrand” and

simply talk about functions and (functional) terms.

The syntax of ASP{f} is based on a signature Σ = 〈C,F ,R〉 whose elements are,

respectively, finite disjoint sets of constants, function symbols and relation symbols.

Some constants and function symbols are numerical (e.g. numerical constants 1 and

5) and have the standard interpretation.3 A simple term is an expression f(c1, . . . , cn)
where f ∈ F , and ci’s are 0 or more constants. An arithmetic term is either a simple

term where f is a numerical function, or an expression constructed from such simple

terms and numerical constants using arithmetic operations, such as (f(c1) + g(c2))/2
and |f(c1) − g(c2)|. Simple terms and arithmetic terms are called terms. An atom is

an expression r(c1, . . . , cn), where r ∈ R, and ci’s are constants. The set of all simple

terms that can be formed from Σ is denoted by S; the set of all atoms from Σ is denoted

by A. A term-atom, or t-atom, is an expression of the form f op g, where f and g are

terms and op ∈ {=, 6=,≤, <,>,≥}. A seed t-atom is a t-atom of the form f = v such

that f is a simple term and v is a constant. All other t-atoms are called dependent.

A regular literal is an atom a or its strong negation ¬a. A literal is either an atom a, its

strong negation ¬a, or a t-atom. Any literal that is not a dependent t-atom is called seed

literal.

A rule r is a statement of the form:

h← l1, . . . , lm, not lm+1, . . . , not ln (3)

where h is a seed literal and li’s are literals. Similarly to ASP, the informal reading of r
is that a rational agent who believes l1, . . . , lm and has no reason to believe lm+1, . . . , ln
must believe h.

3 In the rest of the paper, whether an element of Σ is numerical will be clear from the context.

Given rule r, head(r) denotes {h}; body(r) denotes {l1, . . . , not ln}; pos(r) denotes

{l1, . . . , lm}; neg(r) denotes {lm+1, . . . , ln}.

A constraint is a special type of regular rule with an empty head, informally meaning

that the condition described by the body of the constraint must never be satisfied. A

constraint is considered a shorthand of ⊥ ← l1, . . . , lm, not lm+1, . . . , not ln, not ⊥,
where ⊥ is a fresh atom.

A program is a pair Π = 〈Σ,P 〉, where Σ is a signature and P is a set of rules.

Whenever possible, in this paper the signature is implicitly defined from the rules of

Π , and Π is identified with its set of rules. In that case, the signature is denoted by

Σ(Π) and its elements by C(Π), F(Π) and R(Π). A rule r is positive if neg(r) = ∅.
A program Π is positive if every r ∈ Π is positive. A program Π is also t-atom free if

no t-atoms occur in the rules of Π .

As in ASP, variables can be used for a more compact notation. The grounding of a rule

r is the set of all the rules (its ground instances) obtained by replacing every variable

of r with an element of C4 and by performing any arithmetic operation over numerical

constants. For example, one of the groundings of p(X + Y) ← r(X), q(Y) is p(5) ←
r(3), q(2). The grounding of a program Π is the set of the groundings of the rules

of Π . A syntactic element of the language is ground if it contains neither variables nor

arithmetic operations over numerical constants and non-ground otherwise. For example,

p(5) is ground while p(X + Y) and p(3 + 2) are non-ground.

The semantics of a non-ground program is defined to coincide with the semantics of

its grounding. The semantics of ground ASP{f} programs is defined below. It is worth

noting that the semantics of ASP{f} is obtained from that of ASP in [12] by simply

extending entailment to t-atoms.

In the rest of this section, we consider only ground terms, literals, rules and programs

and thus omit the word “ground.” A set S of seed literals is consistent if (1) for every

atom a ∈ A, {a,¬a} 6⊆ S; (2) for every term t ∈ S and v1, v2 ∈ C such that v1 6= v2,

{t = v1, t = v2} 6⊆ S. Hence, S1 = {p,¬q, f = 3} and S2 = {q, f = 3, g = 2} are

consistent, while {p,¬p, f = 3} and {q, f = 3, f = 2} are not.

The value of a simple term t w.r.t. a consistent set S of seed literals (denoted by valS(t))
is v iff t = v ∈ S. If, for every v ∈ C, t = v 6∈ S, the value of t w.r.t. S is undefined.

The value of a arithmetic term t w.r.t. S is obtained by applying the usual rules of

arithmetic to the values of the terms in t w.r.t. S, if the values of all the terms in t
are defined; otherwise its value is undefined.5 Finally, the value of a constant v ∈ C
w.r.t. S (valS(v)) is v itself. For example given S1 and S2 as above, valS2

(f) is 3 and

valS2
(g) is 2, whereas valS1

(g) is undefined. Given S1 and a signature with C = {0, 1},
valS1

(1) = 1.

A literal l is satisfied by a consistent set S of seed literals under the following condi-

tions: (1) if l is a seed literal, then l is satisfied by S iff l ∈ S; (2) if l is a dependent

4 The replacement is with constants of suitable sort. We omit the details of this process to save

space.
5 This definition does not adequately capture the value of expressions such as 0 ∗ f in the pres-

ence of undefined terms. We plan to address this and some related issues in a later paper.

t-atom of the form f op g, then l is satisfied by S iff both valS(f) and valS(g) are

defined, and they satisfy the equality or inequality relation op according to the usual

arithmetic interpretation. Thus, seed literals q and f = 3 are satisfied by S2; f 6= g is

also satisfied by S2 because valS2
(f) and valS2

(g) are defined, and valS2
(f) is dif-

ferent from valS2
(g). Conversely, f = g is not satisfied, because valS2

(f) is different

from valS2
(g). The t-atom f 6= h is also not satisfied by S2, because valS2

(h) is un-

defined. When a literal l is satisfied (resp., not satisfied) by S, we write S |= l (resp.,

S 6|= l).

An extended literal is a literal l or an expression of the form not l. An extended literal

not l is satisfied by a consistent set S of seed literals (S |= not l) if S 6|= l. Similarly,

S 6|= not l if S |= l. Considering set S2 again, extended literal not f = h is satisfied by

S2, because f = h is not satisfied by S2.

Finally, a set E of extended literals is satisfied by a consistent set S of seed literals

(S |= E) if S |= e for every e ∈ E.

Next, we define the semantics of ASP{f}. A set S of seed literals is closed under pos-

itive rule r if S |= h, where head(r) = {h}, whenever S |= pos(r). Hence, set S2

described earlier is closed under f = 3 ← g 6= 1 and (trivially) under f = 2 ← r, but

it is not closed under p ← f = 3, because S2 |= f = 3 but S2 6|= p. S is closed under

Π if it is closed under every rule r ∈ Π .

Definition 1. A set S of seed literals is an answer set of a positive program Π if it is

consistent and closed under Π , and is minimal (w.r.t. set-theoretic inclusion) among the

sets of seed literals that satisfy such conditions.

Thus, the program {p ← f = 2. f = 2. q ← q.} has one answer sets, {f = 2, p}.
The set {f = 2} is not closed under the first rule of the program, and therefore is not

an answer set. The set {f = 2, p, q} is also not an answer set, because it is not minimal

(it is a proper superset of another answer set). Notice that positive programs may have

no answer set. For example, the program {f = 3. f = 2 ← q. q.} has no answer

set. Programs that have answer sets (resp., no answer sets) are called consistent (resp.,

inconsistent).

Positive programs enjoy the following property:

Proposition 1. Every consistent positive ASP{f} program Π has a unique answer set.

Next, we define the semantics of arbitrary ASP{f} programs.

Definition 2. The reduct of a program Π w.r.t. a consistent set S of seed literals is the

set ΠS consisting of a rule head(r) ← pos(r) (the reduct of r w.r.t. S) for each rule

r ∈ Π for which S |= body(r) \ pos(r).

Example 1. Consider a set of seed literals S3 = {g = 3, f = 2, p, q}, and program Π1:

r1 : p← f = 2, not g = 1, not h = 0.
r2 : q ← p, not g 6= 2.
r3 : g = 3.
r4 : f = 2.

and let us compute its reduct. For r1, first we have to check if S3 |= body(r1)\pos(r1),
that is if S3 |= not g = 1, not h = 0. Extended literal not g = 1 is satisfied by S3 only

if S3 6|= g = 1. Because g = 1 is a seed literal, it is satisfied by S3 if g = 1 ∈ S3.

Since g = 1 6∈ S3, we conclude that S3 6|= g = 1 and thus not g = 1 is satisfied by S3.

In a similar way, we conclude that S3 |= not h = 0. Hence, S3 |= body(r1) \ pos(r1).
Therefore, the reduct of r1 is p ← f = 2. For the reduct of r2, notice that not g 6= 2
is not satisfied by S3. In fact, S3 |= not g 6= 2 only if S3 6|= g 6= 2. However, it is

not difficult to show that S3 |= g 6= 2: in fact, valS3
(g) is defined and valS3

(g) 6= 2.

Therefore, not g 6= 2 is not satisfied by S3, and thus the reduct of Π1 contains no

rule for r2. The reducts of r3 and r4 are the rules themselves. Summing up, ΠS3

1 is

{r′1 : p← f = 2, r′3 : g = 3, r′4 : f = 2}

The semantics of arbitrary ASP{f} programs is given by the following definition:

Definition 3. Finally, a consistent set S of seed literals is an answer set of Π if S is the

answer set of ΠS .

Example 2. By applying the definitions given earlier, it is not difficult to show that an

answer set of ΠS3

1 is {f = 2, g = 3, p} = S3. Hence, S3 is an answer set of ΠS3

1 .

Consider instead S4 = S3 ∪{h = 1}. Clearly ΠS4

1 = ΠS3

1 . From the uniqueness of the

answer sets of positive programs, it follows immediately that S4 is not an answer set of

ΠS4

1 . Therefore, S4 is not an answer set of Π1.

3 ASP{f,cr}: Consistency-Restoring Rules in ASP{f}

In this section we extend ASP{f} by consistency-restoring rules from CR-Prolog [3].

We denote the extended language by ASP{f,cr}. As discussed in the literature on CR-

Prolog, consistency-restoring rules are convenient for the formalization of various types

of knowledge and of reasoning tasks. Later in this paper we show how consistency-

restoring rules are useful for the formalization of knowledge about non-Herbrand func-

tions as well.

A consistency-restoring rule (or cr-rule) is a statement of the form:

h
+
← l1, . . . , lm, not lm+1, . . . , not ln. (4)

where h is a seed literal and li’s are literals. The intuitive reading of the statement is

that a reasoner who believes {l1, . . . , lm} and has no reason to believe {lm+1, . . . , ln},
may possibly believe h. The implicit assumption is that this possibility is used as little

as possible, only when the reasoner cannot otherwise form a non-contradictory set of

beliefs.

By ASP{f,cr} program we mean a pair 〈Σ,Π〉, where Σ is a signature and Π is a set

of rules and cr-rules over Σ.

Given an ASP{f,cr} program Π , we denote the set of its rules by Πr and the set of

its cr-rules by Πcr. By α(r) we denote the rule obtained from cr-rule r by replacing

symbol
+
←with←. Given a set of cr-rules R, α(R) denotes the set obtained by applying

α to each cr-rule in R. The semantics of ASP{f,cr} programs is defined in two steps.

Definition 4 (Answer Sets of CR-Rule Free Programs). The answer sets of a cr-rule

free ASP{f,cr} program are the answer sets of the corresponding ASP{f} program.

Definition 5. Given an arbitrary ASP{f,cr} program Π , a subset R of Πcr is an ab-

ductive support of Π if Πr ∪ α(R) is consistent and R is set-theoretically minimal

among the sets satisfying this property.

Definition 6 (Answer Sets of Arbitrary Programs). For an arbitrary ASP{f,cr} pro-

gram Π , a set of literals A is an answer set of Π if it is an answer set of the program

Πr ∪ α(R) for some abductive support R of Π .

Although out of the scope of the present paper, it is also possible to extend ASP{f,cr}
to allow for the specification of CR-Prolog-style preferences over cr-rules.

4 Knowledge Representation with ASP{f,cr}

In this section we demonstrate the use of ASP{f,cr} for the formalization of certain

types of knowledge. Whenever appropriate, we also compare with ASP and with other

extensions of ASP by non-Herbrand functions.

Consider a scenario in which data from a town registry about births and deaths is used

to determine who should receive a certain tax bill. The registry lists the year of birth and

the year of death of a person. If a person is alive, no year of death is in the registry. The

tax bill should only be sent to living people who are between 18 and 65 years old. To

ensure robustness, we want to be able to deal with (infrequently) missing information.

Hence, whenever there is uncertainty (represented by an atom uncertain(p)) about

whether a person should receive the tax bill or not, a manual check will be performed.

The first requirement can be encoded in ASP{f,cr} by the rule:

bill(P)←
person(P),
age(P) ≥ 18, age(P) ≤ 65,
not uncertain(P),
not ¬bill(P).

Relation person defines a list of people known to the system. To shorten the rules, from

now on we will implicitly assume the occurrence of an atom person(P) in every rule

where P occurs. The condition not ¬bill(P) allows one to specify exceptions in the

usual way. For example, the tax might be waived for low-income people:

¬bill(P)← low income(P).

Similarly, condition not uncertain(P) ensures that the bill is not sent if there is uncer-

tainty about whether the person is subject to the tax.

Next, we define a person’s current age based on their year of birth. Following intuition,

we define age only for people who are alive.

has birth year(P)← birth year(P) = X. (5)

¬has birth year(P)← not has birth year(P). (6)

has death year(P)← death year(P) = X. (7)

¬has death year(P)← not has death year(P). (8)

¬alive(P)← has death year(P). (9)

alive(P)← has birth year(P),¬has death year(P). (10)

age(P) = X ← alive(P),X = current year − birth year(P). (11)

Rules (5) and (7) determine when information about a person’s birth and death year

is available. Rules (6) and (8) formalize the closed world assumption (CWA) of rela-

tions has birth year and has death year. Although this encoding of CWA is com-

mon practice in ASP, it plays an important role in the distinction between languages

with partial functions and languages with total functions, as we discuss later. Rule (9)

states that it is possible to conclude that a person is dead if a year of death is found in

the registry. Rule (10) states that a person is alive if the registry contains a year of birth

and does not contain information about the person’s death. Finally, rule (11) calculates

a person’s age. current year is a function of arity 0 whose value corresponds to the

current year.

The next set of rules deals with the possibility of information missing from the registry.

One important case to consider is that in which information about a person’s death is

accidentally missing from the registry. In (10) a person is assumed to be alive unless

evidence exists about the person’s death. This modeling choice is justified because miss-

ing information is assumed to be infrequent. Exceptional conditions can be dealt with

by requesting a manual check on whether the person should receive the tax bill. Rule

(12) below states that one such case is when a person’s age according to the registry is

beyond that person’s maximum life span.

uncertain(P)← alive(P), age(P) ≥ max span(P). (12)

max span(P) = 92← not max span(P) 6= 92. (13)

max span(P) = 100← long lived family(P). (14)

uncertain(P)← not alive(P), not ¬alive(P). (15)

Rule (13) provides a simple definition of a person’s maximum life span, stating that,

normally, a person’s maximum life span is 92 years. Note that the rule is written in the

form of a default over non-Herbrand functions. This makes it possible for example to

predict a different life span depending on a person’s medical or family history. Along

the lines of [5], the reading of (13) is “if P ’s maximum life span may be 92, then it

is 92.” Generally speaking, an expressions of the form not f 6= g can be viewed to

intuitively state “f may be (equal to) g”. Rule (14) encodes one possible exception to

the default, for people from families with a history of long life spans. Rule (15) covers

instead the case in which the system couldn’t determine if a person is dead or alive. The

formalization of this type of test has already been covered in the literature and is shown

here for completeness, and using a a slightly simplified encoding. A discussion on this

topic and proposals for more sophisticated formalizations can be found in [10,11].

It is currently a source of debate [14,7] whether support for partial functions should

be allowed in languages with non-Herbrand functions. Although of course from the

point of view of computational complexity partial and total functions in this context are

equivalent, we believe that the following elaboration of the tax-bill scenario appears to

show that the availability of partial functions is indeed important.

First of all, notice that, in a language that only supported total functions, the scenario

discussed so far would have to be formalized by introducing a special constant. This

special constant is to be used when the birth or death years are unknown. For the sake

of this discussion, let us denote the special constant by <undef>.

Notice that, to allow for the use of <undef>, a design requirement would have to be

imposed on the town registry so that entries that do not have a value are set to <undef>.

It is worth mentioning that one might be tempted to avoid the use of <undef> and

instead reason by cases, one for each possible value of the year of birth or death. This

approach however does not appear to work well in this scenario. In fact, in this scenario

it is important to know whether the year of death is present in the registry at all – see

e.g. rules (5) and (7). When reasoning by cases, it is not possible to reason about this

circumstance from within the program, unless rather sophisticated extensions of ASP

such as [10,11] are used.

Going back to our scenario, suppose that we want to incorporate in our system in-

formation from a database of deadly car accidents. Suppose the database consists of

statements of the form died(p, y), where p is a person and y is the year in which the

deadly accident occurred. If there are inconsistencies between the town registry and the

accident database, we would like to give precedence to the former. This can be easily

formalized in ASP{f,cr} with:

death year(P) = Y ← died(P, Y), not death year(P) 6= Y. (16)

Informally, the rule states that, if p is reported to have died in a car accident in year y,

then that is assumed to be p’s death year, unless the town registry contains information

to the contrary.

It is important to notice that our ASP{f,cr} formalization makes it possible to incor-

porate the car accident database in a completely incremental fashion. No changes are

needed to the rules we showed earlier. This is possible mainly because death year is a

partial function.

Let us see now how using a language with total functions would affect the incorpora-

tion of the car accident database. Let us consider a situation in which no death year is

specified for person p in the town registry, but an entry died(p, 1998) exists in the car

accident database. As discussed above, in a language that only supported total func-

tions, death year(p) would have to be set to <undef> in the town registry. Hence, the

body of rule (16) would never be satisfied.

To the best of our knowledge, working around this issue when using a language with

total functions is non-trivial and the solutions are characterized by reduced elabora-

tion tolerance. For example, one possible method consists in introducing a relation

determined death year(P) that encodes the overall belief of the system about a per-

son’s death year. By default, the value of determined death year(P) is obtained from

the town registry. When that value is undefined, a death year can be derived from the

car accident database by means of a rule similar to (to avoid using a specific language

from the literature, we write the rule in the syntax of ASP{f,cr}):

determined death year(P) = Y ←
died(P, Y),
not determined death year(P) 6= Y.

Furthermore, any rule that previously involved relation death year would have to be

modified to use the new relation. This process, although seemingly harmless on the

surface, tends to be error-prone and the corresponding encoding is hardly elaboration

tolerant. Every time information from another database had to be incorporated, more

changes to the existing program are required – for example, the reader may want to

consider would happen if one had to incorporate information about births from e.g. a

health insurance database.

Up to this point we have discussed cases in which the use of total functions appears

to cause some issues. One may be wondering whether it is possible to represent total

functions in ASP{f,cr}, and if there are any drawbacks.

To address this topic, let us suppose that we would like to determine the number of

dependents of a person. This information could be used for example in order to ensure

that certain individuals are waived from paying the tax discussed earlier. For simplicity

of presentation, however, we discuss the determination of the number of dependents

independently of the code shown earlier.

Let us assume that the number of a person’s dependents is found in their tax return, if

one exists. If no tax return has been filed, we would like to consider separately each

possible case, corresponding to a number of dependents ranging between 0 and maxd.

The number of dependents can then be viewed as a total function.

In our formalization, an atom of the form return dep(p, d) states that p has d depen-

dents according to p’s latest tax return (or, equivalently, a function could be used instead

of a relation). We will represent the number of a person p’s dependents by means of a

function dependents(p).

A straightforward formalization, Πi
1, of such a total function is:

dependents(P) = D ← return dep(P,D). (17)

dependents(P) = V ← not dependents(P) 6= V. (18)

Rule (17) states that the number of dependents can be obtained from the tax return, if

available. Rule (18) states that a person can have any number of dependents, unless there

is reason to believe otherwise. Here and below we assume that variable V ranges over

the domain [0,maxd] (this can be easily implemented by adding a condition dom(V)
and a suitable definition of relation dom).

Πi
1 formalizes the nature of total function dependents for simple situations. However,

suppose that one wanted to take into account the case in which p’s tax return was audited

and the number of p’s dependents found to be different from what was stated in the tax

return. Rule (17) does not properly deal with this case, because it prevents one from

overriding a person’s dependents based on information from the audit. So, a different

formalization of total functions is needed to deal with more sophisticated examples.

One might then be tempted to rewrite (17) as a default and to add a suitable exception,

obtaining Πi
2:

dependents(P) = D ← return dep(P,D), not dependents(P) 6= D. (19)

dependents(P) = V ← not dependents(P) 6= V. (20)

dependents(P) = D ← assessed deps(P,D). (21)

Unfortunately this formalization does not yield the intended answers because of the

interaction between defaults (19) and (20): consider a person p1 with 3 dependents

according to their tax return, I1 = {return deps(P, 3)}. One might expect I1 ∪Πi
2 to

yield the conclusion dependents(p) = 3, but in fact the program has multiple answer

sets, enumerating all the possible numbers of dependents between 0 and maxd. This is

an instance of a phenomenon already studied in the literature (see e.g. [13]), which can

be circumvented by properly prioritizing the defaults of Πi
2. Doing so however tends

to affect the elaboration tolerance of the encoding (e.g. in case further defaults must be

added) and is somewhat cumbersome and error-prone.

A more robust and elaboration tolerant approach relies on the use of cr-rules. Intuitively,

in this approach, a cr-rule determines when to trigger the default behavior of considering

all the possible values of a total function. Consider the following program, Πi
3:

dependents(P) = D ← return deps(P,D), not dependents(P) 6= D. (22)

dependents(P) = D ← assessed deps(P,D). (23)

has dep info(P)← dependents(P) = D. (24)

← not has dep info(P). (25)

dependents(P) = D
+
← . (26)

Program Πi
3 is obtained from Πi

2 by replacing rule (20) by (24-26). Rules (24-25)

intuitively state that the number of dependents must be known for every person. Cr-

rule (26) intuitively states that it is possible to assume that a person has any number

of dependents, but that this possibility should be used only if strictly necessary and in

order to restore consistency.

It is not difficult to see that Πi
3 yields the expected conclusions. To this extent, it is

important to notice that cr-rule (26) will only be used for people for whom no other

dependent information is available. In fact, let I3 be a set of facts providing partial

information about the dependents of a group of people, and U3 = {p1, . . . , pu} be the

set of people from I3 for whom no dependent information is available. According to

Definition 5, any abductive support of Πi
3 ∪ I3 must contain, for every pi ∈ U3, a

ground cr-rule dependents(pi) = d
+
← for some d. Let now R3 be the set of all such

cr-rules, and consider a person p′ for whom dependent information is provided in I3.

The corresponding set R′

3 = R3 ∪ {dependents(p′) = d′
+
←} is not an abductive

support of Πi
3 ∪ I3 because it is not set-theoretically minimal. Hence, cr-rule (26) is

only used for the people in U3.

It is not difficult to see that this approach for the encoding of total functions in

ASP{f,cr} is applicable in general, and that (24) can be rewritten as a general, domain-

independent axiom (an example of a domain-independent axiom can be found in the

next section).

5 Some Modeling and Solving Tasks in ASP{f,cr}

In this section we demonstrate the use of ASP{f,cr} for a sample of modeling and

solving tasks from the literature. We also include a (partial) discussion of the features of

our encodings in relation with other methods for representing non-Herbrand functions.

We refer the reader to the description and original encodings from http://www.cs.uni-

potsdam.de/∼torsten/kr12tutorial.

Water Buckets on a Scale (page 216). In this scenario, one bucket is placed on each arm
of a two-armed scale. Each bucket initially contains an amount of water between 0 and
100. All amounts of water in this scenario are represented by integer values. At every
time step, an agent must pour an amount k, 1 ≤ k ≤ maxw of water into one of the
buckets.6 The agent’s goal is to balance the two buckets on the scale. The ASP{f,cr}
encoding, Πw, of this scenario is:

bucket(a). bucket(b).

1{pour(B, T, K) : bucket(B) : K ≥ 1 : K ≤ maxw}1← time(T), T < t. (27)

poured(B, T) = K ← pour(B, T, K). (28)

volume(B, T + 1) = V ← V = volume(V, T) + poured(B, T). (29)

volume(B, T + 1) = V ← volume(B, T) = V, not volume(B, T + 1) 6= volume(B, T).
(30)

heavier(B, T)← bucket(B), bucket(C), time(T), volume(C, T) < volume(B, T).
(31)

← bucket(B), heavier(B, t). (32)

Rule (27) states that the agent can pour any allowed amount of water in any one bucket

at every time step. For compactness, the rule uses the syntax of choice rules from

6 We deviate slightly from the original scenario in that the agent is allowed to decide how much

water is to be poured.

LPARSE and GRINGO. Extending the definition of ASP{f,cr} to support choice rules

is trivial. Rule (28) states that the amount of water poured as a consequence of ac-

tion pour(b, t, k) is k. Rule (29) encodes a dynamic law; it states that when water is

poured into a bucket, the volume of water in the bucket increases by the amount of wa-

ter poured. We assume that a suitable domain has been specified for variable V . Rule

(30) formalizes the inertia axiom. It states that the volume of water in a bucket stays

the same unless it is forced to change. Rule (31) describes the conditions under which

a buckets is heavier than the other. Finally, rule (32) states that it is impossible for a

bucket to be heavier than the other at the end of the execution of the plan.

It is worth observing that, as prescribed by good knowledge representation principles, in
Πw the inertia axiom is written without references to the occurrence of any action. This
allows for a rather elaboration tolerant encoding. In the original CLINGCON encoding,
on the other hand, the inertia axiom mentions the occurrence of actions:

amount(B, T)$ == 0← not pour(B, T), bucket(B), T < t. (33)

volume(B, T + 1)$ == volume(B, T) + amount(B, T)← bucket(B), T < t. (34)

This encoding is arguably less elaboration tolerant than Πw: for example, the CLING-
CON inertia axiom (33) must be modified whenever new actions are introduced in the
representation, while the inertia axiom from Πw does not have to be changed, and the
whole program can be extended in a completely incremental fashion. In fact, ASP{f,cr}
makes it possible to encode the inertia axiom in a form that is even more general than
that of rule (30):7

num fluent(volume(B))← bucket(B). (35)

val(N, T + 1) = val(N, T)← num fluent(N), not val(N, T + 1) 6= val(N, T). (36)

Rule (35) states that volume(·) is a “numerical fluent”. Rule (36) states that the value

of any numerical fluent remains the same over time unless it is forced to change. The

advantage of this generalized form of the inertia axiom is that the corresponding rules

apply without changes to any numerical fluent, so that now the addition of new numer-

ical fluents to the encoding can be fully incremental as well.

From the point of view of the size of the grounding, the CLINGCON encoding is however

superior to Πw, because in Πw rule (29) must be grounded for every possible value of

variable V , while in the CLINGCON encoding the grounding is entirely independent

of the volume of water in the buckets. On the other hand, the size of the grounding of

Πw is substantially better than the best ASP encodings that we are aware of. In the ASP

encodings, in fact, the grounding of the inertia axiom grows proportionally to the square

of the domain of variable V . A similar phenomenon can be observed in the encodings

based on the languages of [7,14], since in those approaches computation of the answer

sets is performed by translating the programs to ASP.

7 To complete the encoding (29) and (31) have to be modified in a straightforward way to use

val(·, ·) as well. From a technical perspective, in this encoding ground expressions volume(a)
and volume(b) are viewed as constants. This is possible because no assumptions are made

about the set of constants in our definition of the language. Alternatively, one could of course

extend the language with Herbrand function symbols and of Herbrand terms, at the cost of a

slightly more complex presentation.

N-Queens (page 176). In this scenario an agent must place n queens on an n× n chess

board so that no queen can attack another. In this scenario the size of the grounding and

the execution time tend to grow quickly with the increase of parameter n. In straight-

forward ASP encodings, the growth of the grounding is due to the tests ensuring that no

queen can attack another. Πq
1 shows one possible ASP encoding:

← queen(X1, Y1), queen(X1, Y2), Y1 < Y2.

← queen(X1, Y1), queen(X2, Y1), X1 < X2.

← queen(X1, Y1), queen(X2, Y2), X1 < X2, X2 −X1 = |Y2 − Y1|.

Conditions Y1 < Y2 and X1 < X2 are introduced in order to break symmetries. The

last rule is the most problematic with respect to the size of the grounding, because its

grounding grows roughly with O(n4). Several modifications of Πq
1 are known, which

decrease the size of the grounding.8 However, it is often argued that these modifications

make the corresponding encodings either less declarative, or less elaboration tolerant.

Certainly, most of the modifications achieve performance by a less straightforward en-

coding of the constraints of the problem.

It is then interesting to compare Πq
1 with a straightforward ASP{f,cr} encoding, Πq

2 :

← Q1 < Q2, col(Q1) = col(Q2).
← Q1 < Q2, row(Q1) = row(Q2).
← Q1 < Q2, col(Q2)− col(Q1) = |row(Q2)− row(Q1)|.

Condition Q1 < Q2 performs basic symmetry breaking. Πq
2 uses two functions to en-

code the positions of the queens. What is remarkable about Πq
2 is that the grounding of

the last rule grows roughly with O(n2), although we argue that it is as straightforward

an encoding of the requirement as the corresponding rule from Πq
1 . As in the previ-

ous scenario, we expect a similar growth for comparable CLINGCON encodings, and a

growth of O(n4) for the grounding of the encodings written in the languages of [7,14].

6 Conclusions and Future Work

In this paper we have defined the syntax and semantics of an extension of ASP by non-

Herbrand functions with full-fledged arithmetic expressions and consistency-restoring

rules. The resulting language ASP{f,cr} supports partial functions and we hope we have

demonstrated that it allows for the encoding of rather sophisticated kinds of knowledge,

including knowledge about total functions. Compared to similar languages, ASP{f,cr}
strikes a remarkable balance between expressive power and efficiency of computation.

In the previous section, the discussion on the efficiency of computation was based only

on the size of the grounding of the corresponding encodings, but in [1] experimental

evidence on solver performance was obtained using a prototype of an ASP{f} solver

(available at http://marcy.cjb.net/clingof). We expect that a version of the solver includ-

ing support for the extended language defined in this paper will be available soon. Once

that becomes available, we plan to substantiate the discussion from the previous section

with experimental results.

8 See especially http://www.cs.uni-potsdam.de/∼torsten/kr12tutorial.

References

1. Balduccini, M.: Answer Set Solving and Non-Herbrand Functions. In: Rosati, R., Woltran,

S. (eds.) Proceedings of the 14th International Workshop on Non-Monotonic Reasoning

(NMR’2012) (Jun 2012)
2. Balduccini, M.: Correct Reasoning: Essays on Logic-Based AI in Honour of Vladimir Lifs-

chitz, chap. 3. A “Conservative” Approach to Extending Answer Set Programming with Non-

Herbrand Functions, pp. 23–39. Lecture Notes in Artificial Intelligence (LNCS), Springer

Verlag, Berlin (Jun 2012)
3. Balduccini, M., Gelfond, M.: Logic Programs with Consistency-Restoring Rules. In: Do-

herty, P., McCarthy, J., Williams, M.A. (eds.) International Symposium on Logical Formal-

ization of Commonsense Reasoning. pp. 9–18. AAAI 2003 Spring Symposium Series (Mar

2003)
4. Baral, C.: Knowledge Representation, Reasoning, and Declarative Problem Solving. Cam-

bridge University Press (Jan 2003)
5. Baral, C., Gelfond, M.: Logic Programming and Knowledge Representation. Journal of

Logic Programming 19(20), 73–148 (1994)
6. Baselice, S., Bonatti, P.A.: A Decidable Subclass of Finitary Programs. Journal of Theory

and Practice of Logic Programming (TPLP) 10(4–6), 481–496 (2010)
7. Cabalar, P.: Functional Answer Set Programming. Journal of Theory and Practice of Logic

Programming (TPLP) 11, 203–234 (2011)
8. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Enhancing ASP by Functions: Decidable

Classes and Implementation Techniques. In: Proceedings of the Twenty-Fourth Conference

on Artificial Intelligence. pp. 1666–1670 (2010)
9. Gebser, M., Ostrowski, M., Schaub, T.: Constraint Answer Set Solving. In: 25th International

Conference on Logic Programming (ICLP09). vol. 5649 (2009)
10. Gelfond, M.: Strong Introspection. In: Dean, T., McKeown, K. (eds.) Proceedings of the 9th

National Conference on Artifical Intelligence. pp. 386–391. AAAI Press/The MIT Press,

Menlo Park, CA (Jul 1991)
11. Gelfond, M.: New Semantics for Epistemic Specifications. In: Delgrande, J.P., Faber, W.

(eds.) 11th International Conference on Logic Programming and Nonmonotonic Reason-

ing (LPNMR11). Lecture Notes in Artificial Intelligence (LNCS), vol. 6645, pp. 260–265.

Springer Verlag, Berlin (2011)
12. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.

New Generation Computing 9, 365–385 (1991)
13. Gelfond, M., Son, T.C.: Reasoning with Prioritized Defaults. In: Third International Work-

shop, LPKR’97. Lecture Notes in Artificial Intelligence (LNCS), vol. 1471, pp. 164–224

(Oct 1997)
14. Lifschitz, V.: Logic Programs with Intensional Functions (Preliminary Report). In: ICLP11

Workshop on Answer Set Programming and Other Computing Paradigms (ASPOCP11) (Jul

2011)
15. Lin, F., Wang, Y.: Answer Set Programming with Functions. In: Proceedings of the Interna-

tional Conference on Principles of Knowledge Representation and Reasoning (KR2008). pp.

454–465 (2008)
16. Marek, V.W., Truszczynski, M.: The Logic Programming Paradigm: a 25-Year Perspec-

tive, chap. Stable Models and an Alternative Logic Programming Paradigm, pp. 375–398.

Springer Verlag, Berlin (1999)
17. Wang, Y., You, J.H., Yuan, L.Y., Zhang, M.: Weight Constraint Programs with Functions. In:

Erdem, E., Lin, F., Schaub, T. (eds.) 10th International Conference on Logic Programming

and Nonmonotonic Reasoning (LPNMR09). Lecture Notes in Artificial Intelligence (LNCS),

vol. 5753, pp. 329–341. Springer Verlag, Berlin (Sep 2009)

