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Abstract

In this paper we give a summary of the Autonomous Agent Archi-

tecture (AAA architecture for short) for intelligent agents. The AAA

architecture is the result of several years of research on the design

and implementation of intelligent agents that reason about, and act

in, changing environments. In the AAA architecture, the knowledge

about the domain where the agent is situated is encoded in Answer Set

Prolog and is shared by all of the reasoning components. The agent’s

reasoning components are also formalized in Answer Set Prolog. Typ-

ical AAA agents are capable of observing the environment, interpret-

ing the observations, recovering from unexpected observations, and

planning to achieve their goals.

1 Introduction

The Autonomous Agent Architecture (AAA architecture for short) is an architecture for

the design and implementation of software components of intelligent agents reasoning

about, and acting in, a changing environment. The AAA architecture is based around

a control loop, called Observe-Think-Act Loop, consisting of the following steps:

1. Observe the world, explain the observations, and update the agent’s knowledge

base;

2. Select an appropriate goal, G;

3. Find a plan (sequence of actions a1, . . . ,an) to achieve G;
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4. Execute part of the plan, update the knowledge base, and go back to step 1.

Generally speaking, we view an architecture as a specification of (1) the agent’s con-

trol, (2) the type and representation of the agent’s knowledge, and (3) how the basic

operations, or primitives (e.g. goal selection, planning), are performed. The agent’s

control for the AAA architecture is the Observe-Think-Act Loop. The representation

of knowledge and the execution of the primitives are based on the following assump-

tions: (a) The world (including an agent and its environment) can be modeled by a

transition diagram whose nodes represent physically possible states of the world and

whose arcs are labeled by actions – the diagram therefore contains all possible trajecto-

ries of the system; (b) The agent is capable of making correct observations, performing

actions, and remembering the domain history; (c) Normally the agent is capable of

observing all relevant exogenous events occurring in its environment. Notice that the

observations made at step 1 of the loop need not be complete, or taken at every iter-

ation. However, according to the assumptions just given, those observations must be

correct. The interested reader can refer to [21] for a study of reasoning algorithms that

can deal with wrong or false observations.

The knowledge of a AAA agent is encoded by a knowledge base written using

Answer Set Prolog (ASP) [17, 18, 11] and the Answer Set Programming methodology

[24]. At the beginning of this research, our original goal was in fact to investigate if the

knowledge representation capabilities of ASP could be used to represent the agent’s

knowledge, and if the primitives, such as diagnostics or planning, could be reduced

to reasoning with ASP. With time, we came to the realization that, although ASP is

sufficient in many situations, in some cases it is not. For these cases, we used CR-

Prolog [8, 2, 5] (whose development in fact is rooted in the research on the AAA

architecture) and P-log [13, 20, 14]. In the remainder of the discussion, whenever there

is no need to make a distinction, we loosely use the term “ASP” to refer to both the

original language and its extensions

The AAA architecture was first suggested in [12]. Various reasoning algorithms

have been developed and refined along the years, most notably diagnostic reasoning

[7], planning [10], and inductive learning [3]. Throughout this paper we illustrate

the architecture and its use for agent design using the scenarios based upon a simple

electrical circuit. The domain is deliberately simple but we hope it is sufficient to

illustrate the basic ideas of the approach. Furthermore, in spite of the simplicity of the

domain used here, it is important to note that the corresponding algorithms are rather

scalable. In fact, they were successfully used in rather large, industrial size applications

[10].

2 Building the Action Description

The electrical circuit that we will be referring to is depicted in Figure 1. Circuit C0

consists of a battery (batt), two safety switches (sw1, sw2), and two light bulbs (b1, b2).

By safety switches we mean switches with a locking device. To move a switch from its

current position, the switch must first be unlocked. The switch is automatically locked

again after it is moved. If all of the components are working properly, closing a switch

causes the corresponding bulb to light up.
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Figure 1: C0: A simple electrical circuit

Next, we describe in more detail how we model the circuit, and introduce some

useful terminology.

The state of the circuit is modeled by the following fluents (properties whose truth

changes over time): closed(SW ): switch SW is closed; locked(SW ): switch SW is

locked; on(B): bulb B is on; ab(B): bulb B is malfunctioning; down(BAT T ): battery

BAT T has run down. When a fluent f is false, we write ¬ f .

The agent interacts with the circuit by means of the following actions: f lip(SW ):
move switch SW from open to closed, or vice-versa; unlock(SW ): unlock SW ;

replace(BAT T ), replace(B): replace a battery or a bulb.

We allow in the formalization actions whose occurrence is beyond the agent’s con-

trol (e.g., a bulb blowing up). These actions are called exogenous. Relevant exogenous

actions for this domain are: run down(BAT T ): battery BAT T runs down; blow up(B):
B blows up. Note that actions can occur concurrently. We distinguish between el-

ementary actions, such as the ones listed above, and compound actions, i.e. sets of

elementary actions, intuitively corresponding to the simultaneous execution of their

components. In the remainder of this paper we abuse notation slightly and denote

singletons by their unique component. We also use the term “action” to denote both

elementary and compound actions.

The behavior of the domain is described by laws. Depending upon the approach

used, the laws can be written using action languages [19] and later translated to ASP,

or encoded directly as ASP rules. To save space, here we adopt the direct encoding in

ASP. A possible encoding of the effects of actions unlock(SW ) and close(B) is:

¬holds(locked(SW ),S +1)← occurs(unlock(SW ),S).

holds(closed(SW ),S +1)← occurs( f lip(SW ),S), ¬holds(closed(SW ),S).

¬holds(closed(SW ),S +1)← occurs( f lip(SW ),S), holds(closed(SW ),S).

holds(on(B),S)← holds(closed(SW ),S),
connected(SW,B), ¬holds(ab(B),S),
¬holds(down(batt),S).

where variables SW , B, S range, respectively, over switches, bulbs, and non-negative

integers denoting steps in the evolution of the domain. The first law intuitively states

that unlocking SW causes it to become unlocked. This is called a direct effect of action

unlock(SW ). Laws describing the direct effects of actions are usually called dynamic

laws. The second and third laws encode the effects of flipping a switch, and they, too,
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are dynamic laws. The last law says that, if SW is closed and connected to some bulb

B in working order while the battery is not down, then B is lit. This law describes an

indirect effect, or ramification, of an action. Such laws are usually called static laws or

state constraints.

Similar laws encode the effects of the other actions and the behavior of malfunc-

tioning bulbs and battery. The encoding of the model is completed by the following

general-purpose axioms:

holds(F,S +1)← holds(F,S), not ¬holds(F,S +1).
¬holds(F,S +1)←¬holds(F,S), not holds(F,S +1).

where F ranges over fluents, S over steps. The rules encode the principle of inertia

“things normally stay as they are.”

Now, we turn our attention to the reasoning algorithms, and to the corresponding

agent’s behavior. For each reasoning algorithm, we select a scenario in which the main

reasoning algorithm used is the one of interest. (Because various steps of the Observe-

Think-Act loop are interconnected, most scenarios involve multiple algorithms.)

3 Planning Scenario

The idea of planning using Answer Set Programming dates back to [27, 15], where it

had been demonstrated that planning could be reduced to computing the answer sets

of suitable programs. What was not clear to us was if, and how, the approach could be

extended to medium and large sized applications. The conclusions of our research on

this issue, initially presented in [25] and later extended in [10], showed that the basic

planning technique had to be complemented with control knowledge [23, 22] in order

to improve the efficiency of planning in medium and large domains. We also showed

that such control knowledge could be easily encoded using ASP, as well as integrated

into the planner in an incremental fashion.

To understand how the ASP planning technique is tied into the AAA architecture,

consider the following scenario, based upon the domain introduced in the previous

section.

Example 1 Initially, all bulbs of circuit C0 are off, all switches open and locked, and

all components are working correctly. The agent’s goal is to turn on b1.

The intended agent behavior is as follows. At step 1 of the Observe-Think-Act loop,

the agent gathers observations about the environment. Recall that, in general, the ob-

servations need not be complete, or taken at every iteration. Let us assume, however,

for simplicity that at the first iteration of the agent’s observations are complete. At step

2, the agent selects goal G = on(b1). At step 3, it looks for a plan to achieve G and finds

〈unlock(sw1), f lip(sw1)〉. Next, the agent executes unlock(sw1), records the execution

of the action, and goes back to observing the world.

Suppose the agent observes that sw1 is unlocked. Then, no explanations for the

observations are needed. The agent proceeds through steps 2 and 3, and selects the

plan 〈 f lip(sw1)〉. Next, it executes f lip(sw1) and observes the world again. Let us

assume that the agent indeed discovers that b1 is lit. Then, the agent’s goal is achieved.
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The key feature that allows exhibiting the described behavior is in the capability to

find a sequence of actions 〈a1, . . . ,ak〉 that achieves G. The task involves both selecting

the appropriate actions, and ordering them suitably. For example, the sequence of ac-

tions 〈unlock(sw2), f lip(sw1)〉 is not a good selection, while 〈 f lip(sw1),unlock(sw1)〉
is improperly ordered.

To determine if a sequence of actions achieves the goal, the agent uses its knowl-

edge of the domain to predict the effects of the execution of the sequence. This is

accomplished by reducing planning to computing answer sets of an ASP program,

consisting of the ASP encoding of the domain model, together with a set of rules infor-

mally stating that the agent can perform any action at any time (see e.g. [26]).

This technique relies upon the fact that the answer sets of the ASP encoding of

the domain model together with facts encoding the initial situation and occurrence of

actions are in one-to-one correspondence with the corresponding paths in the transition

diagram. This result, as well as most of the results used in this and the next section, is

from [7]. We invite the interested reader to refer to that paper for more details. Simple

iterative modifications of the basic approach allow one to find shortest plans, i.e. plans

that span the smallest number of steps.

To see how this works in practice, let us denote by AD the ac-

tion description from the previous section, and consider a simple encod-

ing, O1, of the initial state from Example 1, which includes the facts

{holds(locked(sw1),0), ¬holds(closed(sw1),0), ¬holds(on(b1),0)} (more sophisti-

cated encodings are also possible). A simple yet general planning module PM1, which

finds plans of up to n steps, consists of the rule:

occurs(A,S) OR ¬occurs(A,S)← cS≤ S < cS +n.

where A ranges over agent actions, S over steps, and cS denotes the current step (0 in

this scenario). Informally, the rule says that any agent action A may occur at any of the

next n steps starting from the current one. The answer sets of program Π1 = AD∪O1∪
PM1 encode all possible trajectories, of length n, from the initial state. For example,

the trajectory corresponding to the execution of unlock(sw1) is encoded by the answer

set O1∪{occurs(unlock(sw2),0), ¬holds(locked(sw2),1), ¬holds(on(b1),1), . . . }.
Note that ¬holds(on(b1),1) is obtained from O1 and the inertia axioms.

To eliminate the trajectories that do not correspond to plans, we add to Π1 the

following rules:
goal achieved← holds(on(b1),S).
← not goal achieved.

which informally say that goal on(b1) must be achieved. Let us denote the new

program by Π
′
1. It is not difficult to see that the previous set of literals is not

an answer set of Π
′
1. On the other hand, (if n ≥ 2) Π

′
1 has an answer set con-

taining O1 ∪ {occurs(unlock(sw1),0),¬holds(locked(sw1),1),occurs( f lip(sw1),1),
holds(closed(sw1),2),holds(on(b1),2)}, which encode the trajectory corresponding

to the execution of the sequence 〈unlock(sw1), f lip(sw1)〉.
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4 Interpretation Scenario

Another important feature of the AAA architecture is the agent’s ability to interpret

unexpected observations. Consider for instance the scenario:

Example 2 Initially, all of the bulbs of circuit C0 are off, all switches open and locked,

and all of the components are working correctly. The agent wants to turn on b1. After

planning, the agent executes the sequence 〈unlock(sw1), f lip(sw1)〉, and notices that

b1 is not lit.

The observation is unexpected, as it contradicts the expected effects of the actions the

agent just performed. Intuitively, a possible explanation of this discrepancy is that b1

blew up while the agent was executing the actions (recall that all of the components

were initially known to be working correctly). Another explanation is that the battery

ran down.1

To find out which explanation corresponds to the actual state of the world, the agent

will need to gather additional observations. For example, to test the hypothesis that the

bulb blew up, the agent might check the bulb. Suppose it is found to be malfunctioning.

Then, the agent can conclude that blow up(b1) occurred in the past. The fact that b1 is

not lit is finally explained, and the agent proceeds to step 3, where it re-plans.

The component responsible for the interpretation of the observations, often called

diagnostic component, is described in detail in [7]. Two key capabilities are needed

to achieve the behavior described above: the ability to detect unexpected observations,

and the ability to find sequences of actions that, had they occurred undetected in the

past, may have caused the unexpected observations. These sequences of actions corre-

spond to our notion of explanations.

The detection of unexpected observations is performed by checking the consis-

tency of the ASP program, Πd , consisting of the encoding of the domain model, to-

gether with the history of the domain, and the Reality Check Axioms and Occurrence-

Awareness Axiom, both shown below. The history is encoded by statements of the form

obs(F,S, truth val) (where truth val is either t or f , intuitively meaning “true” and

“false”) and hpd(A,S), where F is a fluent and A an action. An expression obs(F,S, t)
(respectively, obs(F,S, f )) states that F was observed to hold (respectively, to be false)

at step S. An expression hpd(A,S) states that A was observed to occur at S. The Real-

ity Check Axioms state that it is impossible for an observation to contradict the agent’s

expectations:
← holds(F,S),obs(F,S, f ).
←¬holds(F,S),obs(F,S, t).

Finally, the Occurrence-Awareness Axiom ensures that the observations about the oc-

currences of actions are reflected in the agent’s beliefs: occurs(A,S)← hpd(A,S). It

can be shown that program Πd is inconsistent if-and-only-if the history contains unex-

pected observations.

To find the explanations of the unexpected observations, the agent needs to search

for sequences of exogenous actions that would cause the observations (possibly indi-

rectly), if they had occurred in the past.

1Of course, it is always possible that the bulb blew up and the battery ran down, but we do not believe

this should be the first explanation considered by a rational agent.
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In the early stages of our research, we investigated reducing this task to reason-

ing with ASP [6, 7]. Although the results were positive, we were not able to find an

elegant way to specify, in ASP, that diagnoses should be minimal. That led us to the

development of CR-Prolog [8, 2, 5], which solves the issue with minimal diagnoses

and, overall, allows for rather elegant, declarative formalizations.

In CR-Prolog, programs consist of regular ASP rules and of cr-rules. A cr-rule is

a statement of the form r : l0
+
← l1, . . . , lm,not lm+1, . . . ,not ln, where r is a (possibly

compound) term denoting the name of the cr-rule and li’s are ASP literals. The rule

intuitively says “if l1, . . . , lm hold and there is no reason to believe lm+1, . . . , ln, l0 may

possibly hold, but that happens rarely.” Informally, this possibility should be used only

if the regular rules alone are not sufficient to form a consistent set of beliefs. In the

CR-Prolog terminology, we say that cr-rules are used to restore consistency. The name

of the cr-rule is used in specifying preferences between cr-rules. The interested reader

can find more about preferences in [8].

As described in [10], the exogenous nature of an action e can be formalized in CR-

Prolog by one or more cr-rules of the form (cr-rules are not needed to encode the direct

and indirect effects of the action): r(e,S) : occurs(e,S)
+
← Γ, where Γ is a condition

under which the exogenous action may occur. The rule informally states that, under

those conditions, the exogenous action may possibly occur, but that is a rare event.

Then, let EX be the set of cr-rules:

r(run down(BAT T ),S) : occurs(run down(BAT T ),S)
+
← .

r(blow up(B),S) : occurs(blow up(B),S)
+
← .

informally stating that run down(BAT T ) and blow up(B) may possibly (but rarely)

occur. Consider now program Π2 consisting of AD and the encoding of the initial state

O1 from the previous section2, together with the Occurrence-Awareness Axiom, EX ,

and the history H1 = {hpd(unlock(sw1),0), hpd( f lip(sw1),1), obs(on(b1),2, f )}.
It is not difficult to show that the answer sets of Π2 correspond to the set-theoretically

minimal explanations of the observations in H1. If no unexpected observation is present

in H1, the answer sets encode an empty explanation. Furthermore, specifying prefer-

ences between cr-rules allows one to provide information about the relative likelihood

of the occurrence of the exogenous actions. More details can be found in [9].

In the next section, we discuss the specification of policies in the AAA architecture.

5 Policies and Reactivity

Here by policy we mean the description of those paths in the transition diagram that

are not only possible but also acceptable or preferable. The ability to specify poli-

cies is important to improve both the quality of reasoning (and acting) and the agent’s

capability to react to the environment.

In this section we show how the AAA architecture, and in particular the under-

lying ASP language, allows one to easily specify policies addressing both aspects.

2The initial state described by O1 could also be re-written to use statements obs(F,S, truth val).
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We begin by considering policies allowing one to improve the quality of reason-

ing. More details can be found in [1, 10]. In the circuit domain, one policy ad-

dressing this issue could be “do not replace a good bulb.” The policy is motivated

by the consideration that, although technically possible, the action of replacing a

good bulb should in practice be avoided. A possible ASP encoding of this policy is

← occurs(replace(B),S),¬holds(ab(B),S). Note that, although the rule has the same

form as the executability conditions, it is conceptually very different. Also note that

this is an example of a strict policy because it will cause the action of replacing a good

bulb to be always avoided.

Often it is useful to be able to specify defeasible policies, i.e. policies that are

normally complied with but may be violated if really necessary. Such policies can be

elegantly encoded using CR-Prolog. For example, a policy stating “if at all possible,

do not have both switches in the closed position at the same time” can be formalized

as:
← holds(closed(sw1),S),holds(closed(sw2),S),

not can violate(p1).

r(p1) : can violate(p1)
+
← .

The first rule says that the two switches should not be both in the closed position unless

the agent can violate the policy. The second rule says that it is possible to violate the

policy, but only if strictly necessary (e.g., when no plan exists that complies with the

policy).

Now we turn our attention to policies improving the agent’s capability to react to

the environment. When an agent is interacting with a changing domain, it is often

important for the agent to be able to perform some actions in response to a state of the

world. An example is leaving the room if a danger is spotted. Intuitively, selecting the

actions to be performed should come as an immediate reaction rather than as the result

of sophisticated reasoning. We distinguish two types of reaction: immediate reaction

and short reaction. Immediate reaction is when actions are selected based solely upon

observations. An example from the circuit domain is the statement “if you observe

a spark from closed switch SW , open it,” which can be formalized as (assume SW is

unlocked and fluent spark f rom(SW ) is available):

occurs( f lip(SW ),S)← obs(spark f rom(SW ),S), obs(closed(SW ),S).

A short reaction is the occurrence of an action triggered by the agent’s beliefs.

This includes conclusions inferred from observations and possibly other beliefs.

An example is the statement “if a battery is failing, replace it,” encoded as:

occurs(replace(BAT T ),S)← holds( f ailing(BAT T ),S). It is worth noting that simi-

lar policies can also be used, in reasoning about multi-agent environments, to model

the behavior of the other agents [4].

6 Implementation of the AAA Architecture

A prototype that implements the AAA architecture is available from:

http://krlab.cs.ttu.edu/∼marcy/APLAgentMgr/. The program, called

APLAgent Manager, is implemented in Java and allows the user to specify
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observations (Figure 2), execute a number of iterations of the Observe-Think-Act

Loop, and inspect the agent’s decisions (Figure 3) and expectations about the future

(Figure 4). APLAgent Manager comes with pre-compiled implementations of the

Observe-Think-Act Loop, but also allows using a customized version of the loop.

Figure 2: Specifying observations at a

given time step.
Figure 3: Ready to perform an action.

Figure 4: Inspecting the agent’s expec-

tations about the state of the world. Figure 5: Editing a planning module.

When using the pre-compiled implementations of the Observe-Think-Act Loop,

APLAgent Manager expects the user to provide formalizations of the domain and of

the reasoning modules written in ASP (Figure 5).3 More information, as well as a

tutorial, can be found on the APLAgent Manager web page.

7 Conclusions

In this paper we have described an ASP-based architecture for intelligent agents capa-

ble of reasoning about and acting in changing environments. The design is based upon

a description of the domain that is shared by all of the reasoning modules. The genera-

tion and execution of plans are interleaved with detecting, interpreting, and recovering

from, unexpected observations. Although here we focused on explaining unexpected

observations by hypothesizing the undetected occurrence of exogenous actions, the ar-

chitecture has also been extended with a reasoning module capable of modifying the

domain description by means of inductive learning [3]. An initial exploration of the

issues of inter-agent communication and cooperation can be found in [16]. Dealing

with multiple, even prioritized, goals is also possible [4].

3In the current version, by default the system is not configured for CR-Prolog, but the user can easily add

support for CR-Prolog as well as for any other solver.
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