
The AAA Architecture: An Overview

Marcello Balduccini∗ and Michael Gelfond
Computer Science Department

Texas Tech University
Lubbock, TX 79409 USA

marcello.balduccini@gmail.com, michael.gelfond@ttu.edu

Abstract

This paper describes the AAA architecture for intelli-
gent agents reasoning about, and acting in, a changing
environment. The architecture is based on a simple con-
trol loop. Both the description of the domain’s behavior
and the reasoning components are written in Answer Set
Prolog. The architecture is designed to make the agents
capable of planning and of detecting, interpreting, and
recovering from, unexpected observations. Overall, the
design and the knowledge bases are elaboration toler-
ant. Another distinguishing feature of the architecture
is that the same domain description is shared by all the
reasoning components.

Introduction
In this paper we describe the AAA architecture for intelligent
agents capable of reasoning about, and acting in, a changing
environment.1

The AAA architecture is used for the design and imple-
mentation of software components of such agents and is ap-
plicable if: (1) The world (including an agent and its en-
vironment) can be modeled by a transition diagram whose
nodes represent physically possible states of the world and
whose arcs are labeled by actions. The diagram therefore
contains all possible trajectories of the system; (2) The agent
is capable of making correct observations, performing ac-
tions, and remembering the domain history; (3) Normally
the agent is capable of observing all relevant exogenous
events occurring in its environment. The agent, whose mem-
ory contains knowledge about the world and agents’ capabil-
ities and goals,

1. Observes the world, explains the observations,b and up-
dates its knowledge base;

2. Selects an appropriate goal, G;

3. Finds a plan (sequence of actions a1, . . . ,an) to achieve G;

4. Executes part of the plan, updates the knowledge base,
and goes back to step 1.

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
∗Present address: Eastman Kodak Company, Rochester, NY

14650-2204 USA
1AAA stands for “Autonomous Agent Architecture.”

The loop is called the Observe-Think-Act Loop. The knowl-
edge of the AAA agent is encoded by a knowledge base
in knowledge representation language Answer Set Prolog
(ASP) or its extensions (Gelfond & Lifschitz 1991; Balduc-
cini & Gelfond 2003b; Baral 2003). ASP is selected be-
cause of its ability to represent various forms of knowledge
including defaults, causal relations, statements referring to
incompleteness of knowledge, etc. This contributes to mak-
ing the overall design and knowledge bases elaboration tol-
erant (McCarthy 1998). A knowledge base (or program) of
ASP describes a collection of answer sets – possible sets of
beliefs of a rational agent associated with it. The agent’s rea-
soning tasks, including those of explaining unexpected ob-
servations and planning, can be reduced to computing (parts
of) answer sets of various extensions of its knowledge base.
In the case of original ASP, such computation can be rather
efficiently performed by ASP solvers, which implement so-
phisticated grounding algorithms and suitable extensions of
the Davis-Putnam procedure. Solvers for various extensions
of ASP expand these reasoning mechanisms by abduction
(Balduccini 2007a), constraint solving algorithms and reso-
lution (Mellarkod & Gelfond 2007), and even some forms
of probabilistic reasoning (Gelfond, Rushton, & Zhu 2006).

This architecture was suggested in (Baral & Gelfond
2000). Most of its refinements were modular (Balduccini
& Gelfond 2003a; Balduccini, Gelfond, & Nogueira 2006;
Balduccini 2007b). Throughout the paper we illustrate the
architecture and its use for agent design using the scenarios
based on the electrical circuit described below. The example
is deliberately simple but we hope it is sufficient to illus-
trate the basic ideas of the approach. It is important to note,
though, that the corresponding algorithms are scalable. In
fact, they were successfully used in rather large, industrial
size applications (Balduccini, Gelfond, & Nogueira 2006).

The rest of the paper is organized as follows. We begin by
describing the behavior of a simple circuit. Next, we discuss
how the agent finds plans and explanations for unexpected
observations. Finally, we give a brief summary of the se-
mantics of ASP and conclude the paper.

Building the Action Description
The electrical circuit used in this paper is depicted in Figure
1. Circuit C0 consists of a battery (batt), two safety switches
(sw1, sw2), and two light bulbs (b1, b2). By safety switches

sw2

b1 b2batt

sw1
−

+

Figure 1: C0: A simple electrical circuit

we mean switches with a locking device. To move a switch
from its current position, the switch must first be unlocked.
The switch is automatically locked again after it is moved.
If all the components are working properly, closing a switch
causes the corresponding bulb to light up. Next, we describe
in more detail how we model the circuit, and introduce some
useful terminology.

The state of the circuit is modeled by the following fluents
(properties whose truth changes over time): closed(SW):
switch SW is closed; locked(SW): switch SW is locked;
on(B): bulb B is on; ab(B): bulb B is malfunctioning;
down(BAT T): battery BAT T has run down. When a fluent
f is false, we write ¬ f .

The agent interacts with the circuit by means of the
following actions: f lip(SW): move switch SW from
open to closed, or vice-versa; unlock(SW): unlock SW ;
replace(BAT T); replace(B): replace the battery or a bulb.

Sometimes actions occur in the domain that are not con-
trolled by the agent (e.g., a bulb blowing up). These actions
are called exogenous. Relevant exogenous actions for this
domain are: run down(BAT T): battery BAT T runs down;
blow up(B): B blows up. Note that actions can occur con-
currently. We distinguish between elementary actions, such
as the ones listed above, and compound actions, i.e. sets
of elementary actions, intuitively corresponding to the con-
current execution of their components. In the rest of this
paper we abuse notation slightly and denote singletons by
their unique component. Similarly, we use the term “action”
to denote both elementary and compound actions.

The behavior of the domain is described by laws. De-
pending on the approach used, the laws can be written using
action languages (Gelfond & Lifschitz 1998) and later trans-
lated to ASP, or encoded directly in ASP. For simplicity, in
the examples in this paper we use the direct encoding in ASP.
A possible encoding of the effects of actions unlock(SW)
and close(B) is:

¬holds(locked(SW),S +1)← occurs(unlock(SW),S).

holds(closed(SW),S +1)← occurs(f lip(SW),S),
¬holds(closed(SW),S).

¬holds(closed(SW),S +1)← occurs(f lip(SW),S),
holds(closed(SW),S).

holds(on(B),S)← holds(closed(SW),S),
connected(SW,B),¬holds(ab(B),S),
¬holds(down(batt),S).

where SW,B,S are variables ranging, respectively, over
switches, bulbs, and non-negative integers denoting steps in
the evolution of the domain. The first law intuitively states
that unlocking SW causes it to become unlocked. Laws de-
scribing, such as this, the direct effects of actions are some-
times referred to as dynamic laws. The second and third laws
encode the effect of flipping a switch. The last law says that,
if SW is closed and connected to some bulb B in working
order while the battery is not down, then B is lit. Note that
this law describes the indirect effect, or ramification, of an
action. Such laws are sometimes called static laws or state
constraints.

Similar laws encode the effects of the other actions, as
well as the behavior of malfunctioning bulbs and battery.
The encoding of the model is completed by the following
general-purpose axioms:

holds(F,S +1)← holds(F,S),not ¬holds(F,S +1).
¬holds(F,S +1)←¬holds(F,S),not holds(F,S +1).

where F ranges over fluents, S over steps. The rules encode
the principle of inertia “things normally stay as they are.”

Planning Scenario
Let us now look at a scenario in which the main reasoning
component is planning. We will use this scenario to illustrate
how planning is performed in the AAA architecture.
Example 1 Initially, all the bulbs of circuit C0 are off, all
switches open and locked, and all the components are work-
ing correctly. The agent wants to turn on b1.
The intended agent behavior is the following. At step 1 of
the Observe-Think-Act loop, the agent gathers observations
about the environment. In general, the observations need
not be complete, or taken at every iteration. Let us assume
however for simplicity that at the first iteration of the agent’s
observations are complete. At step 2, the agent selects goal
G = on(b1). At step 3, it looks for a plan to achieve G and
finds 〈unlock(sw1), f lip(sw1)〉. Next, the agent executes
unlock(sw1), records the execution of the action, and goes
back to observing the world.

Suppose the agent observes that sw1 is unlocked. Then,
no explanations for the observations are needed. The
agent proceeds through steps 2 and 3, and selects the plan
〈 f lip(sw1)〉. Next, it executes f lip(sw1) and observes the
world again. Let us assume that the agent indeed finds out
that b1 is lit. Then, the agent’s goal is achieved.

The key feature that allows to exhibit the behavior
described above is in the capability to find a sequence
of actions 〈a1, . . . ,ak〉 that achieves G. The task in-
volves both selecting the appropriate actions, and order-
ing them suitably. For example, the sequence of actions
〈unlock(sw2), f lip(sw1)〉 is not a good selection, while
〈 f lip(sw1),unlock(sw1)〉 is improperly ordered.

To determine if a sequence of actions achieves the goal,
the agent uses its knowledge of the domain to predict the
effect of the execution of the sequence. This is accom-
plished by reducing planning to computing answer sets of
an ASP program, consisting of the ASP encoding of the do-
main model, together with a set of rules informally stating

that the agent can perform any action at any time (see e.g.
(Lifschitz 1999; Nogueira et al. 2001)).

This technique relies on the fact that the answer sets of
the ASP encoding of the domain model together with facts
encoding the initial situation and occurrence of actions are
in one-to-one correspondence with the corresponding paths
in the transition diagram. This result, as well as most of the
results used in this and the next section, are from (Balduccini
& Gelfond 2003a). We invite the interested reader to refer
to that paper for more details. Simple iterative modifications
of the basic approach allow one to find shortest plans, i.e.
plans that span the smallest number of steps.

To see how this works in practice, let us denote by AD the
action description from the previous section, and consider
a simple encoding, O1, of the initial state from Example 1,
which includes statements

holds(locked(sw1),0),¬holds(closed(sw1),0),
¬holds(on(b1),0)

(more sophisticated types of encoding are possible.). A sim-
ple yet general planning module PM1, which finds plans of
up to n steps, consists of the rule:

occurs(A,S) OR ¬occurs(A,S)← cS≤ S < cS +n.

where A ranges over agent actions, S over steps, and cS de-
notes the current step (0 in this scenario). Informally, the
rule says that any agent action A may occur at any of the next
n steps starting from the current one. The answer sets of the
program Π1 = AD∪O1∪PM1 encode all of the possible tra-
jectories, of length n, from the initial state. For example, the
trajectory corresponding to the execution of unlock(sw1) is
encoded by the answer set:

O1∪{occurs(unlock(sw2),0),¬holds(locked(sw2),1),
¬holds(on(b1),1), . . .}.

Note that¬holds(on(b1),1) is obtained by O1 and the inertia
axioms.

To eliminate the trajectories that do not correspond to
plans, we add to Π1 the following rules,

goal achieved← holds(on(b1),S).
← not goal achieved.

which informally say that goal on(b1) must be achieved. Let
us denote the new program by Π′1. It is not difficult to see
that the previous set of literals is not an answer set of Π′1. On
the other hand, (if n≥ 2) Π′1 has an answer set containing

O1∪{occurs(unlock(sw1),0),¬holds(locked(sw1),1),
occurs(f lip(sw1),1),holds(closed(sw1),2),
holds(on(b1),2)},

which encodes the trajectory corresponding to the execution
of the sequence 〈unlock(sw1), f lip(sw1)〉.

Interpretation Scenario
To illustrate how a AAA agent interprets its observations
about the world, let us consider the following example.

Example 2 Initially, all the bulbs of circuit C0 are off, all
switches open and locked, and all the components are work-
ing correctly. The agent wants to turn on b1. After planning,
the agent executes the sequence 〈unlock(sw1), f lip(sw1)〉,
and notices that b1 is not lit.

The observation is unexpected, as it contradicts the effect of
the actions the agent just performed. A possible explanation
for this discrepancy is that b1 blew up while the agent was
executing the actions (recall that all the components were
initially known to be working correctly). Another explana-
tion is that the battery ran down.2

To find out which explanation corresponds to the actual
state of the world, the agent will need to gather additional
observations. For example, to test the hypothesis that the
bulb blew up, the agent will check the bulb. Suppose it is
indeed malfunctioning. Then, the agent can conclude that
blow up(b1) occurred in the past. The fact that b1 is not lit
is finally explained, and the agent proceeds to step 3, where
it re-plans.

The component responsible for the interpretation of the
observations, often called diagnostic component, is de-
scribed in detail in (Balduccini & Gelfond 2003a). Two
key capabilities are needed to achieve the behavior described
above: the ability to detect unexpected observations, and
that of finding sequences of actions that, had they occurred
undetected in the past, may have caused the unexpected ob-
servations. These sequences of actions correspond to our
notion of explanations.

The detection of unexpected observations is performed
by checking the consistency of the ASP program, Πd , con-
sisting of the encoding of the domain model, together with
the history of the domain, and the Reality Check Ax-
ioms and Occurrence-Awareness Axiom, both shown be-
low. The history is encoded by statements of the form
obs(F,S, truth val) (where truth val is either t or f , intu-
itively meaning “true” and “false”) and hpd(A,S), where F
is a fluent and A an action. An expression obs(F,S, t) (re-
spectively, obs(F,S, f)) states that F was observed to hold
(respectively, to be false) at step S. An expression hpd(A,S)
states that A was observed to occur at S. The Reality Check
Axioms state that it is impossible for an observation to con-
tradict the agent’s expectations:

← holds(F,S),obs(F,S, f).
←¬holds(F,S),obs(F,S, t).

Finally, the Occurrence-Awareness Axiom ensures that the
observations about the occurrences of actions are reflected
in the agent’s beliefs:

occurs(A,S)← hpd(A,S).

It can be shown that program Πd is inconsistent if-and-only-
if the history contains unexpected observations.

To find the explanations of the unexpected observations,
the agent needs to search for sequences of exogenous actions
that would cause the observations (possibly indirectly), if

2Of course, it is always possible that the bulb blew up and the
battery ran down, but we do not believe this should be the first
explanation considered by a rational agent.

they had occurred in the past. A simple diagnostic module
DM1 is the one consisting of the rule:

occurs(E,S) OR ¬occurs(E,S)← S < cS.

where E ranges over exogenous actions, and S, cS are as
in the planning module. Informally, the rule says that any
exogenous action E may have occurred at any time in the
past.

To see how DM1 works, consider the program Π2 consist-
ing of AD and the encoding of the initial state O1 from the
previous section3, together with the Occurrence-Awareness
Axiom, module DM1, and the history

H1 = {hpd(unlock(sw1),0),hpd(f lip(sw1),1),
obs(on(b1),2, f)}.

It can be shown that the answer sets of Π2 are in one-to-one
correspondence with all the trajectories from the initial state
that include all the actions that the agent has observed, plus a
number of additional exogenous actions. That is, the answer
sets of Π2 will encode the trajectories corresponding to the
sequences of actions:
〈{unlock(sw1),run down(batt)}, f lip(sw1)〉
〈unlock(sw1),{ f lip(sw1),blow up(b2)}〉
〈{unlock(sw1),blow up(b2)},{ f lip(sw1),blow up(b1)}〉

...
Note that the first and third sequences of actions explain the
observation about b1 from H1, while the second one does
not. The sequences of actions that do not explain the unex-
pected observations can be discarded by means of the Re-
ality Check Axiom. Let Π′2 consist of Π2 and the Reality
Check Axiom. It is not difficult to see that no answer set
of Π′2 encodes the second sequence, while there are answer
sets encoding the first and third.

It should be noted that some of the explanations found by
DM1 are not minimal (in set-theoretic sense). For example,
the third explanation above is not minimal, because remov-
ing blow up(b2) yields another valid explanation. Diagnos-
tic algorithms have been developed that extend the approach
shown here to find minimal diagnoses. Another technique,
which we discuss in the next section, avoids the use of such
algorithms by employing a recent extension of ASP for the
formalization of exogenous actions.

It is worth noticing that the technique described here to
interpret observations is remarkably similar to that used for
planning. In fact, the interpretation of observations is essen-
tially reduced to “planning in the past.” More importantly,
the planning and diagnostic reasoning components share the
same knowledge about the domain.

To see the interplay between interpretation of the obser-
vations and planning, consider the following scenario.
Example 3 Initially, all bulbs are off, all switches open and
locked, and all the components are working correctly. The
agent wants to turn on b1 and b2. The agent is also given
the additional constraint that bulbs cannot be replaced while
they are powered.

3The initial state described by O1 could be re-written to use
statements obs(F,S, truth val), but that is out of the scope of the
paper.

A sequence of actions expected to achieve this goal
is 〈unlock(sw1), f lip(sw1),unlock(sw2), f lip(sw2)〉. Let us
suppose that this is the plan found at step 3 of the Observe-
Think-Act loop. The agent will then execute part of the plan
– suppose, unlock(sw1) – and observe the world again. As-
suming that there are no unexpected observations, the agent
proceeds with the rest of the plan4 and executes f lip(sw1).
This time, the agent finds that b1 is not lit and hypothesizes
that b1 blew up at step 1. To store this piece of information,
it then adds a statement hpd(blow up(b1),1) to the history
of the domain.5

The agent now looks for a new plan. Because of the ad-
ditional constraint on bulb replacement, the agent will have
to flip sw1 open before replacing b1. A possible plan that
achieves the goal from the new state of the world is:

〈 f lip(sw1),replace(b1), f lip(sw1),unlock(sw2), f lip(sw2)〉.

The agent then proceeds with the execution of the plan, and,
assuming that no other unexpected observations are encoun-
tered, will eventually achieve the goal.

CR-Prolog to Interpret the Observations
In this section we discuss a modification of the AAA ar-
chitecture based on a different technique for the interpre-
tation of the agent’s observations. This technique allows
a more elegant representation of exogenous actions, which
includes the formalization of information about relative the
likelihood of their occurrence, and guarantees that all of the
explanations returned by the diagnostic module are minimal
(in set-theoretic sense).

The approach is based on the use of the extension of ASP
called CR-Prolog (Balduccini & Gelfond 2003b; Balduccini
2007a). In CR-Prolog, programs consist of regular ASP
rules, and of cr-rules and preferences over cr-rules. A cr-
rule is a statement of the form:

r : l0
+
← l1, . . . , lm,not lm+1, . . . ,not ln.

where r is the name of the cr-rule and li’s are ASP literals.
The rule says “if l1, . . . , lm hold and there is no reason to
believe lm+1, . . . , ln, l0 may possibly hold, but that happens
rarely.” Informally, this possibility should be used only if
the regular rules alone are not sufficient to form a consis-
tent set of beliefs. In the CR-Prolog terminology, we say
that cr-rules are used to restore consistency. Preferences are
atoms of the form pre f er(r1,r2), where r1 and r2 are cr-rule
names. The statement informally means that r2 should be
considered only if using r1 does not restore consistency.

To see how cr-rules work, consider the answer sets of
the program P1 = {p← q. p← u. s← not s,not p. r1 :

4In the AAA architecture, checking for the need to re-plan can
be reduced to checking if any unexpected observations were de-
tected.

5Storing in the history the conclusions obtained during the in-
terpretation of observations can cause problems if evidence col-
lected at later iterations of the loop invalidates the hypothesis, but
we will not discuss more sophisticated methods of recording his-
tory because of space considerations.

q +
← not t.}. Because the regular rules of P1 alone are in-

consistent,6 r1 is applied, yielding the (unique) answer set
{q, p}. On the other hand, let us consider the program, P2,
obtained by adding rule {u.} to P1. Now the regular rules
are sufficient to form a consistent set of beliefs ({u, p}).
Therefore, the cr-rule is not applied, and the answer set of
P2 is {u, p}. The program P4 = P1 ∪ {r2 : u +

← .} has two
answer sets, {q, p}, {u, p}, because either cr-rule can be
applied (but not both, because that would involve the un-
necessary application of one of them). Finally, the pro-
gram P5 = P4 ∪{pre f er(r1,r2).} has only one answer set,
{q, p}, because the preference statement prevents r2 from
being considered if r1 restores consistency.

Cr-rules and preferences are particularly useful in encod-
ing information about unlikely events, such as exogenous
actions. As described in (Balduccini, Gelfond, & Nogueira
2006), an exogenous action e can be formalized in CR-
Prolog by one or more cr-rules of the form:

r(e,S) : occurs(e,S)
+
← Γ. (1)

where Γ is a condition under which the exogenous action
may occur. The rule informally states that, under those con-
ditions, the exogenous action may possibly occur, but that is
a rare event. Let us now see how it is possible to encode the
relative likelihood of the occurrence of exogenous actions.
Let us consider two exogenous actions e1 and e2. To formal-
ize the fact that e1 is more likely to occur than e2, we write
pre f er(r(e1,S),r(e2,S)).

Because cr-rules are applied only if needed, testing for
unexpected observations and generating an explanation can
be combined in a single step. Going back to Example 2, let
EX be the set of cr-rules:

r(run down(BAT T),S) : occurs(run down(BAT T),S)
+
← .

r(blow up(B),S) : occurs(blow up(B),S)
+
← .

informally stating that run down(BAT T) and blow up(B)
may possibly (but rarely) occur. Consider now program Π3
obtained from Π2 by replacing DM1 by EX . It is not difficult
to show that the answer sets of Π3 correspond to the minimal
explanations of the observations in H1. If no unexpected
observations are present in H1, the answer sets will encode
an empty explanation.

The preference statements of CR-Prolog can be used to
provide information about the relative likelihood of the oc-
currence of the exogenous actions. For example, the fact
that run down(BAT T) is more likely than blow up(B) can
be encoded by a statement
{pre f er(r(run down(BAT T),S),r(blow up(B),S)).}.

To see how all this works, consider program Π4, obtained
by adding the above preference statement to Π3. It is not
difficult to show that Π4 has only two answer sets, encoding
the preferred, minimal explanations corresponding to the se-
quences of actions:

〈{unlock(sw1),run down(batt)}, f lip(sw1)〉
〈unlock(sw1),{ f lip(sw1),run down(batt)}〉.

6Inconsistency follows from the third rule and the fact that p is
not entailed.

It is worth noticing that the non-monotonic nature of CR-
Prolog makes it possible, for explanations, which had pre-
viously not been considered (because non-minimal or less-
preferred), to be selected when new information becomes
available. For example, if we update P4 to include additional
information that the battery is not down, we obtain two (dif-
ferent) answer sets, encode the explanations corresponding
to the less-preferred explanations:

〈{unlock(sw1),blow up(b1)}, f lip(sw1)〉
〈unlock(sw1),{ f lip(sw1),blow up(b1)}〉.

In the next section, we discuss the specification of policies
in the AAA architecture.

Policies and Reactivity
In this paper, by policy we mean the description of those
paths in the transition diagram that are not only possible but
also acceptable or preferable.

The ability to specify policies is important to improve
both the quality of reasoning (and acting) and the agent’s
capability to react to the environment.

In this paper we show how the AAA architecture, and in
particular the underlying ASP language, allows one to easily
specify policies addressing both issues.

We begin by considering policies allowing one to improve
the quality of reasoning. More details can be found in (Bal-
duccini 2004; Balduccini, Gelfond, & Nogueira 2006). In
the circuit domain, one policy addressing this issue could be
“do not replace a good bulb.” The policy is motivated by the
consideration that, although technically possible, the action
of replacing a good bulb should in practice be avoided. A
possible ASP encoding of this policy is:

← occurs(replace(B),S),¬holds(ab(B),S).

Note that, although the rule has the same form of the exe-
cutability conditions, it is conceptually very different. Also
note that this is an example of a strict policy because it
will cause the action of replacing a good bulb to be always
avoided.

Often it is useful to be able to specify defeasible policies,
that is policies that are normally complied with but may be
violated if really necessary. Such policies can be elegantly
encoded using CR-Prolog. For example, a policy stating “if
at all possible, do not have both switches in the closed posi-
tion at the same time” can be formalized as:

← holds(closed(sw1),S),holds(closed(sw2),S),
not can violate(p1).

r(p1) : can violate(p1)
+
← .

The first rule says that the two switches should not be both
in the closed position unless the agent can violate the policy.
The second rule says that it is possible to violate the policy,
but only if strictly necessary (e.g., when no plan exists that
complies with the policy).

Now let us turn our attention to policies improving the
agent’s capability to react to the environment. When an
agent is interacting with a changing domain, it is often im-
portant for the agent to be able to perform some actions in

response to a state of the world. An example is leaving the
room if a danger is spotted. Intuitively, selecting the ac-
tions to be performed should come as an immediate reac-
tion rather than as the result of sophisticated reasoning. We
distinguish two types of reaction: immediate reaction and
short reaction. Immediate reaction is when actions are se-
lected based solely on observations. An example from the
circuit domain is the statement “if you observe a spark com-
ing from a switch, open it,” which can be easily formalized
as (we assume the availability of a fluent spark f rom(SW)):

occurs(close(SW),S)← obs(spark f rom(SW),S).

A short reaction is the occurrence of an action triggered by
the agent’s beliefs. This includes conclusions inferred from
observations and possibly other beliefs. An example is the
statement “if a battery is failing, replace it,” encoded as:

occurs(replace(BAT T),S)← holds(f ailing(BAT T),S).

Appendix: Semantics of ASP
In this section we summarize the semantics of ASP. Recall
that an ASP rule is a statement of the form

h1 OR . . . OR hk← l1, . . . , lm,not lm+1, . . . , ln.
where hi’s and li’s are literals (atoms or their strong nega-
tion, e.g. ¬a). The intuitive meaning of the rule is “if
l1 . . . lm hold and there is no reason to believe lm+1 . . . ln, a
rational reasoner should believe one of hi’s.” Given a rule
r, we call {h1 . . .hk} the head of r, denoted by head(r);
l1, . . . , lm, lm+1, . . . , ln is called the body of r (body(r));
pos(r) and neg(r), respectively, denote {l1, . . . , lm} and
{lm+1, . . . , ln}. A program is a set of rules. A default-
negation-free program is a program whose rules do not con-
tain default negation “not.” We say that a set of literals S is
closed under a default-negation-free program Π if, for every
rule r of Π, head(r)∩S 6= /0 whenever pos(r) ⊆ S. A set of
literals S is consistent if it does not contain two complemen-
tary literals f , ¬ f . A consistent set of literals S is an answer
set of a default-negation-free program Π if S is the smallest
set closed under Π. Given an arbitrary program Π and a set
S of literals, the reduct ΠS is obtained from Π by deleting:
(1) each rule, r, such that neg(r)\S 6= /0, and (2) all formulas
of the form not l in the bodies of the remaining rules. A set
of literals S is an answer set of a program Π if it is an answer
set of ΠS.

Conclusions
In this paper we have described the ASP-based AAA ar-
chitecture for intelligent agents capable of reasoning about
and acting in changing environments. The design is based
on a description of the domain’s behavior that is shared by
all of the reasoning modules. We hope we demonstrated
how the agent’s ability to generate and execute plans is in-
terleaved with detecting, interpreting, and recovering from,
unexpected observations. Although in this paper we focused
on explaining unexpected observations by hypothesizing the
undetected occurrence of exogenous actions, the architec-
ture has also been extended with reasoning modules capa-
ble of modifying the domain description by means of in-
ductive learning (Balduccini 2007b). An initial exploration

of the issues of inter-agent communication and cooperation
can be found in (Gelfond & Watson 2007). A prototype
of the implementation of the architecture can be found at:
http://krlab.cs.ttu.edu/∼marcy/APLAgentMgr/.

Acknowledgments: The development of the AAA archi-
tecture was supported in part by NASA contract NASA-
NNG05GP48G and ATEE/DTO contract ASU-06-C-0143.

References
Balduccini, M., and Gelfond, M. 2003a. Diagnostic rea-
soning with A-Prolog. Journal of Theory and Practice of
Logic Programming (TPLP) 3(4–5):425–461.
Balduccini, M., and Gelfond, M. 2003b. Logic Programs
with Consistency-Restoring Rules. In Doherty, P.; Mc-
Carthy, J.; and Williams, M.-A., eds., International Sympo-
sium on Logical Formalization of Commonsense Reason-
ing, AAAI 2003 Spring Symposium Series, 9–18.
Balduccini, M.; Gelfond, M.; and Nogueira, M. 2006. An-
swer Set Based Design of Knowledge Systems. Annals of
Mathematics and Artificial Intelligence.
Balduccini, M. 2004. USA-Smart: Improving the Quality
of Plans in Answer Set Planning. In PADL’04, Lecture
Notes in Artificial Intelligence (LNCS).
Balduccini, M. 2007a. CR-MODELS: An Inference En-
gine for CR-Prolog. In LPNMR 2007, 18–30.
Balduccini, M. 2007b. Learning Action Descriptions with
A-Prolog: Action Language C. In Amir, E.; Lifschitz, V.;
and Miller, R., eds., Procs of Logical Formalizations of
Commonsense Reasoning, 2007 AAAI Spring Symposium.
Baral, C., and Gelfond, M. 2000. Reasoning Agents In
Dynamic Domains. In Workshop on Logic-Based Artificial
Intelligence, 257–279. Kluwer Academic Publishers.
Baral, C. 2003. Knowledge Representation, Reasoning,
and Declarative Problem Solving. Cambridge University
Press.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. New Generation
Computing 365–385.
Gelfond, M., and Lifschitz, V. 1998. Action Languages.
Electronic Transactions on AI 3(16).
Gelfond, G., and Watson, R. 2007. Modeling Cooperative
Multi-Agent Systems. In Proceedings of ASP’07, 67–81.
Gelfond, M.; Rushton, N.; and Zhu, W. 2006. Combining
Logical and Probabilistic Reasoning. In AAAI 2006 Spring
Symposium, 50–55.
Lifschitz, V. 1999. Action Languages, Answer Sets, and
Planning. The Logic Programming Paradigm: a 25-Year
Perspective. Springer Verlag, Berlin. 357–373.
McCarthy, J. 1998. Elaboration Tolerance.
Mellarkod, V. S., and Gelfond, M. 2007. Enhancing ASP
Systems for Planning with Temporal Constraints. In LP-
NMR 2007, 309–314.
Nogueira, M.; Balduccini, M.; Gelfond, M.; Watson, R.;
and Barry, M. 2001. An A-Prolog decision support system
for the Space Shuttle. In PADL 2001, 169–183.

