
Model-Based Reasoning for Complex Flight Systems

Marcello Balduccini and Michael Gelfond
Computer Science Department

Texas Tech University
{balduccini, mgelfond }@cs.ttu.edu

This paper gives an overview of the design of a decision support system for the Space Shuttle that has the ability
to find (usually in a matter of seconds) provably correct plans to achieve a given goal in the presence of single or
multiple failures in the Reaction Control System (RCS). This tool includes a complete model of the RCS, includ-
ing wiring and plumbing diagrams. Both the models and the reasoning modules were designed in the context
of a project aimed at demonstrating the applicability of the knowledge representation declarative language
A-Prolog, and of the answer set programming methodology in particular, to medium-size, knowledge-intensive
applications. The project also demonstrated that A-Prolog allows a modular organization of knowledge, en-
abling knowledge module reuse, as well as testing (and debugging) of single knowledge modules, rather than of
the entire knowledge base as a whole. The techniques used in the development of our decision support system
are general enough to allow for the modeling of many other flight systems, and for the execution of reasoning
tasks other than planning, including fault detection and diagnosis.

I. Introduction

The research presented in this paper is rooted in recent developments in several areas of AI. Advances in the work
on semantics of negation in logic programming1,2 and on formalization of common-sense reasoning3,4 led to the de-
velopment of the knowledge representation language A-Prolog, an entirely declarative language used in this paper to
encode the domain knowledge, and to the A-Prolog based programming methodology called answer set programming
(ASP).5,6 Insights on the nature of causality and its relationship with answer sets of logic programs7–9 determined
the way we characterize effects of actions and solve the frame, ramification, and qualification problems which, for
a long time, caused difficulties in modeling reasoning about dynamic domains. Work on propositional satisfiability
influenced the development of algorithms for computing answer sets of A-Prolog programs and programming sys-
tems10–12 implementing these algorithms. Last, but not least, we build on earlier work on applications of answer set
programming to planning.13,14

The goal of this paper is to show an overview of the design of a decision support system for the Space Shuttle (USA-
Advisor) that has the ability to find (usually in a matter of seconds) provably correct plans to achieve a given goal in the
presence of single or multiple failures in the Reaction Control System (RCS). The RCS is the system that is primarily
used to perform rotational and translational movements during flight. It is a rather complex physical system, that
includes12 tanks,44 jets,66 valves,33 switches, and around40 computer commands (computer-generated signals).

USA-Advisor contains a complete model of the RCS, including wiring and plumbing diagrams. Both model and
reasoning modules were designed in the context of a project aimed at demonstrating the applicability of A-Prolog, and
of ASP in particular, to medium-size, knowledge-intensive applications. The project also demonstrated that A-Prolog
allows a modular organization of knowledge, enabling knowledge module reuse, as well as testing (and debugging)
of single knowledge modules, rather than of the entire knowledge base as a whole. The techniques used in the
development of our decision support system are general enough to allow for the modeling of many other flight systems,
and for the execution of reasoning tasks other than planning, including fault detection and diagnosis.

To understand the functionality of USA-Advisor, let us imagine a Shuttle’s flight controller who is considering how to
prepare the Shuttle for a maneuver when faced with a collection of faults present in the RCS (for example, switches
and valves can be stuck in various positions, electrical circuits can malfunction in various ways, valves can be leaking,
jets can be damaged, etc). In this situation, the controller needs to find a sequence of actions (a plan) to set the Shuttle
ready for the maneuver. USA-Advisor is designed to facilitate this task. The controller can use it to test if a plan,

1 of 9

American Institute of Aeronautics and Astronautics



which he came up with manually, will actually be able to prepare the RCS for the desired maneuver. Most importantly,
USA-Advisor can be used to automatically find such a plan. It is worth stressing that, because of the possibility of
mathematically demonstrating that the reasoning modules work correctly, USA-Advisor (and its successors) can also
provide immediate on-board support for future unmanned and human space missions, not only as a decision support
system, but also as a control system.

In the next section we give a brief introduction to the design of the system.

II. System’s Design

USA-Advisor consists of a collection of largely independent A-Prolog modules, represented by lp-functionsa, and
a graphical Java interface. The interface gives a simple way for the user to enter information about the history of
the RCS, its faults, and the task to be performed. The A-Prolog modules are organized in knowledge modules and
reasoning modules. Each knowledge module contains a different part of the knowledge about the domain of the RCS,
while each reasoning module is responsible for performing a different reasoning task. At the moment there are two
possible types of tasks:

• checking if a sequence of occurrences of actions in the history of the system satisfies a given goal,G;

• finding a plan forG of a length not exceeding some number of steps,N .

The set of A-Prolog modules that are used depends on the particular task being performed (e.g. detailed knowledge
about electrical circuits is included only in presence of electrical faults). Based on the information provided by the user,
the graphical interface verifies that the input is complete, selects an appropriate combination of modules, assembles
everything into an A-Prolog program,Π, and passesΠ as an input to an inference engine for computing its answer
sets. (The inference engine used in USA-Advisor isSMODELSb.)

The results of the reasoning task are then extracted from the answer sets ofΠ. The interpretation of the contents of
the answer sets depends, again, on the reasoning task being performed. In our approach, the task of verifying the
correctness of a sequence of actions is reduced to checking if programΠ has at least an answer set. On the other hand,
the planning module is designed so that there is a one-to-one correspondence between the plans and the answer sets of
Π. Extraction and displaying of the results is performed by the Java interface.

In the rest of this section we give a more detailed description of particular knowledge modules. These modules consist
of A-Prolog rules of the form

l0 : −l1, . . . , lm, not lm+1, . . . , not ln.

whereli’s are atoms following essentially the same syntax as Prolog atoms. The intuitive reading of such a rule is
“if l1, . . . , lm are true and there is no reason to believe thatlm+1, . . . , ln hold, thenl0 is true.” For a more thorough
description of the syntax and semantics of A-Prolog and (some of) its extensions, the reader can refer to.1,2,15

A. Plumbing module

The Plumbing Module (PM ) models the plumbing system of the RCS, which consists of a collection of tanks, jets
and pipe junctions connected through pipes. The flow of fluids through the pipes is controlled by valves. The system’s
purpose is to deliver fuel and oxidizer from tanks to the jets needed to perform a maneuver. The structure of the
plumbing system is described by a directed graph,Gr, whose nodes are tanks, jets and pipe junctions, and whose arcs
are labeled by valves. The possible faults of the system at this level are leaky valves, damaged jets, and valves stuck
in some position.

The purpose ofPM is to describe how faults and changes in the position of valves affect the pressure of tanks, jets
and junctions. In particular, when fuel and oxidizer flow at the right pressure from the tanks to a properly working jet,
the jet is considered ready to fire. In order for a maneuver to be started, all the jets it requires must be ready to fire.
The necessary condition for a fluid to flow from a tank to a jet, and in general to any node ofGr, is that there exists a
path without leaks from the tank to the node and that all valves along the path are open.

aBy an lp-function we mean programΠ of A-Prolog with input and output signaturesσi(Π) andσo(Π) and a setdom(Π) of sets of literals
from σi(Π) such that, for anyX ∈ dom(Π), Π ∪X is consistent, i.e. has an answer set.

bhttp://www.tcs.hut.fi/Software/smodels

2 of 9

American Institute of Aeronautics and Astronautics



The rules ofPM define a function which takes as input the structural description,Gr, of the plumbing system, its
current state, including position of valves and the list of faulty components, and determines: the distribution of pressure
through the nodes ofGr; which jets are ready to fire; which maneuvers are ready to be performed. In our approach, the
state of the plumbing system (as well as of the electrical system shown later) consists of the set of fluents (properties
of the domain whose truth depends on time) which are true in that state.

To illustrate the issues involved in the construction ofPM , let us consider the definition of fluent
pressurized by(N, Tk), describing the pressure obtained on a nodeN by a tankTk. Some special nodes, the helium
tanks, are always pressurized. For all other nodes, the definition is recursive. It says that any nodeN1 is pressurized
by a tankTk if N1 is not leaking and is connected by an open valve to a nodeN2 which is pressurized byTk.

Representation of this definition in most logic programming languages, including Prolog, is problematic, since the
corresponding graph can contain cycles. The ability of A-Prolog to express and to reason with recursion allows us to
use the following concise definition of pressure on non-tank nodes.

h(pressurized_by(N1,Tk),T) :-
not tank_of(N1,R),
not h(leaking(N1),T),
link(N2,N1,V),
h(in_state(V,open),T),
h(pressurized_by(N2,Tk),T).

The high level of abstraction of A-Prolog is confirmed by the relatively small number of rules present in the knowledge
modules of USA-Advisor. For example, the Plumbing Module consists of approximately 40 rules.

B. Valve control module

The flow of fuel and oxidizer propellants from tanks to jets is controlled by opening/closing valves along the path.
The state of valves can be changed either by manipulating mechanical switches or by issuing computer commands.
Switches and computer commands are connected to the valves, they control, by electrical circuits.

The action of flipping a switchSw to some positionS normally puts a valve controlled bySw in this position.
Similarly for computer commands. There are, however, three types of possible failures: switches and valves can be
stuck in some position, and electrical circuits can malfunction in various ways. Substantial simplification of theV CM
module is achieved by dividing it in two parts, calledbasicandextendedV CM modules.

At the basic level, it is assumed that all electrical circuits are working properly and therefore are not included in the
representation. The extended level includes information about electrical circuits and is normally used when some of
the circuits are malfunctioning. In that case, flipping switches and issuing computer commands may produce results
that cannot be predicted by the basic representation.

1. Basic valve control module

At this level, theV CM deals with a set of switches, computer commands and valves, and connections among them.
The input of the basicV CM consists of the initial positions and faults of switches and valves, and the sequence of
actions defining the history of events. The module implements an lp-function that, given this input, returns positions
of valves at the current moment of time. This output is used as input to the plumbing module. The possible faults of
the system at this level are valves and switches stuck at some position(s).

Effects of actions in the basicV CM are described in a variant of action languageB,16 which contains both static and
dynamic causal laws, as well as impossibility conditions. Our version ofB uses a slightly different syntax to avoid
lists and nesting of function symbols, because of limitations of the inference engines currently available. The use ofB
allows to prove correctness of logic programming implementation of causal laws.17 (Of course, it does not guarantee
correctness of the causal lawsper se. This can only be done by domain experts.) The complexity of this representation
makes it hard to employSTRIPS-like formalisms.

The following rules show an example of syntax and use of our version ofB. The first is a dynamic causal rule stating
that, if a properly working switchSw is flipped to stateS at timeT , thenSw will be in this state at the next moment
of time.

3 of 9

American Institute of Aeronautics and Astronautics



h(in_state(Sw,S),T+1) :-
occurs(flip(Sw,S),T),
not stuck(Sw).

A static connection between switches and valves is expressed by the next rule. This static law says that, under normal
conditions, if switchSw controlling a valveV is in some stateS (different fromgpcc) at timeT , thenV is also in this
state at the same time.

h(in_state(V,S),T) :-
controls(Sw,V),
h(in_state(Sw,S),T),
neq(S,gpc),
not h(ab_input(V),T),
not stuck(V),
not bad_circuitry(V).

The conditionnot badcircuitry(V) is used to stop this rule from being applied when the circuit connectingSw andV
is not working properly. (Notice that the previous dynamic rule, instead, is applied independently of the functioning
conditions of the circuit, since it is related only to the switch itself.) If the switch is in a position,S1, different from
gpc, and a computer command is issued to move the valve to positionS2, then there is a conflict in caseS1 6= S2.
This is an abnormal situation, which is expressed by fluentab input(V ). When this fluent is true, negation as failure
is used to stop the application of this rule. In fact, the final position of the valve can only be determined by using the
representation of the electrical circuit that controls it. This will be discussed in the next section.

2. Extended valve control module

The extendedV CM encompasses the basicV CM and also includes information about electrical circuits, power and
control buses, and the wiring connections among all the components of the system.

The lp-function defined by this module takes as input the same information accepted by the basicV CM , together with
faults on power buses, control buses and electrical circuits. It returns the positions of valves at the current moment of
time, exactly like the basicV CM .

Since (possibly malfunctioning) electrical circuits are part of the representation, it is necessary to compute the signals
present on all wiring connections, in order to determine the positions of valves. The signals present on the circuit’s
wires are generated by the Circuit Theory Module (CTM), included in the extendedV CM . Since this module was
developed independently to address a different collection of tasks,18 its use in this system is described in a separate
section.

There are two main types of valves in the RCS: solenoid and motor controlled valves. Depending on the number
of input wires they have, motor controlled valves are further divided in 3 sub-types. While at the basicV CM level
there is no need to distinguish between these different types of valves, they must be taken into account at the extended
level, since the type determines the number of input wires of the valve. In all cases, the state of a valve is normally
determined by the signals present on its input wires.

For the solenoid valve, its two input wires are labeledopenandclosed. If the openwire is set to 1 and theclosedwire
is set to 0, the valve moves to state open. Similarly for the state closed. The following static law defines this behavior.

h(in_state(V,S1),T) :-
input(W1,V),
input(W2,V),
input_of_type(W1,S1),
input_of_type(W2,S2),
h(value(W1,1),T),
h(value(W2,0),T),
neq(S1,S2),
not stuck(V).

cA switch can be in one of three positions: open, closed, or gpc. When it is in gpc, the state of the valve is determined by input from the on-board
computer.

4 of 9

American Institute of Aeronautics and Astronautics



The state of all other types of valves is determined in much the same way. The only difference is in the number of
wires that are taken into consideration.

The output signals of switches, valves, power buses and control buses are also defined by means of static causal laws.

At this level, the representation of a switch is extended by a collection of input and output wires. Each input wire is
associated to one and only one output wire, and every input/output pair is linked to a position of the switch. When
a switch is in positionS, an electrical connection is established between inputWi and outputWo of the pair(s)
corresponding toS. Therefore, the signal present onWi is transferred toWo, as expressed by the following rule.

h(value(Wo,X),T) :-
h(in_state(Sw,S),T),
connects(S,Sw,Wi,Wo),
h(value(Wi,X),T).

TheV CM consists of 36 rules, not including the rules of the Circuit Theory Module.

C. Circuit theory module

The Circuit Theory Module (CTM ) is a general description of components of electrical circuits. It can be used as
a stand-alone application for simulation, computation of the topological delay of a circuit, detection of glitches, and
abduction of the circuit’s inputs given the desired output.

TheCTM is employed in this system to model the electrical circuits of the RCS, which are formed by digital gates
and other electrical components, connected by wires. Here, we refer to both types of components asgates. The
structure of an electrical circuit is represented by a directed graphE where gates are nodes and wires are arcs. A gate
can possibly have a propagation delayD associated with it, whereD is a natural number (zero indicates no delay).
All signals present in the circuit are expressed in 3-valued logic (0, 1, u). If no value is present on a wire at a certain
moment of timeT then it is said to be unknown (u) atT .

This module describes the normal and faulty behavior of electrical circuits with possible propagation delays and 3-
valued logic.

In CTM , input wiresof a circuit are defined as the wires coming from switches, valves, computer commands, power
buses and control buses.Output wiresare those that go to valves. TheCTM is an lp-function that takes as input
the description of a circuitC, the values of signals present on its input wires, the set of faults affecting its gates, and
determines the values on the output wires ofC at the current moment of time.

We allow for standard faults from the theory of digital circuits.19,20 A gateG malfunctions if its output, or at least one
of its input pins, are permanently stuck on a signal value. The effect of a fault associated to a gate of the direct graph
E only propagates forward.

CTM contains two sets of static rules. One of them is used for the representation of the normal behavior of gates,
while the other expresses their faulty behavior. To illustrate how the normal behavior of gates is described in the
CTM , let us consider the case of the Tri-State gate. This type of component has two input wires, of which one is
labeledenable. If this wire is set to 1, the value of the other input is transferred to the output wire. Otherwise, the
output is undefined. The following rule describes the normal behavior of the Tri-State gate when it is enabled.

h(value(W,X),T+D) :-
delay(G,D),
input(W1,G),
input(W2,G),
type_of_wire(W2,G,enable),
neq(W1,W2),
h(value(W1,X),T),
h(value(W2,1),T),
output(W,G),
not is_stuck(W,G).

5 of 9

American Institute of Aeronautics and Astronautics



It is interesting to discuss how faults are treated when they occur on the input wire of a gate. Let us consider the
case of a gateG with an input wire stuck at valueX. This wire is represented as two unconnected wires,W and
stuck wire(W ), corresponding to the normal and faulty sections of the wire. The faulty part is stuck at valueX,
while the value ofW is computed by normal rules depending upon its connection to the output of other gates. Rules
for gates with faulty inputs usestuck wire(W ) as input wire. The example below is related to a Tri-State gate with
the non-enable wire stuck toX.

h(value(W,X),T+D) :-
delay(G,D),
input(stuck_wire(W1),G),
input(W2,G),
type_of_wire(W2,G,enable),
neq(W1,W2),
h(value(stuck_wire(W1),X),T),
h(value(W2,1),T),
output(W,G),
not is_stuck(W,G).

Notice that conditionnot is stuck(W,G)prevents the above rules from being applied when the output wire is stuck.
Whenever an output wire is stuck atX, the corresponding rule guarantees that its signal value is alwaysX.

The behavior of a circuit is saidnormal if all its gates are functioning correctly. If one or more gates of a circuit
malfunction then the circuit is calledfaulty.

The description of faulty electrical circuit(s) is included as part of the RCS representation. However, it is not necessary
to add the description of normal circuits controlling a valve(s) since the program can reason about effects of actions
performed on that valve through the basicV CM . This allows for an increase in efficiency when computing models of
the program.

The Circuit Theory Module contains approximately 50 rules.

D. Planning module

This module establishes the search criteria used by the program to find a plan, i.e. a sequence of actions that, if
executed, would achieve the goal. The modular design of USA-Advisor allows to create of a variety of such modules.

The structure of the Planning Module (PlM ) follows the generate and test approach described in.13,14 Since the
RCS contains more than 200 actions, with rather complex effects, and may require very long plans, this standard
approach needs to be substantially improved. This is done by addition of various forms of heuristic, domain-dependent
informationd. In particular, the generation part takes advantage of the fact that the RCS consists of three, largely
independent, subsystems. A plan for the RCS can therefore be viewed as the composition of three separate plans that
can operate in parallel. Generation is implemented using the following rule:

1{occurs(A,T): action_of(A,R)}1 :-
subsystem(R),
not goal(T,R).

This rule states that exactly one action for each subsystem of the RCS should occur at each moment of time, until the
goal is reached for that subsystem.

In the RCS, the common task is to prepare the Shuttle for a given maneuver. The goal of preparing for such a maneuver
can be split into several subgoals, each setting some jets, from a particular subsystem, ready to fire. The overall goal
can therefore be stated as a composition of the goals of individual subsystems containing the desired jets, as follows:

goal :-
goal(T1,left_rcs),
goal(T2,right_rcs),
goal(T3,fwd_rcs).

dNotice that the addition does not affect the generality of the algorithm.

6 of 9

American Institute of Aeronautics and Astronautics



The plan testing phase of the search is implemented by the following constraint

:- not goal.

which eliminates the models that do not contain plans for the goal.

Splitting into subsystems allows us to improve the efficiency of the module substantially.

The module also contains other domain-dependent as well as domain-independent heuristics. The reasons for adding
such heuristics are two-fold: first, to eliminate plans which are correct but unintended, and second, to increase effi-
ciency. A-Prolog allows a concise representation of these heuristics as constraint rules. This can be demonstrated by
means of the following examples.

Some heuristics are instances of domain-independent heuristics. They express common-sense knowledge like “under
normal conditions, do not perform two different actions with the same effect.” In the RCS, there are two different types
of actions that can move a valveV to a stateS: a) flipping to stateS the switch,Sw, that controlsV , or b) issuing the
(specific) computer commandCC capable of movingV to S. In A-Prolog we can write this heuristic as follows

:- occurs(flip(Sw,S),T),
controls(Sw,V),
occurs(CC,T1),
commands(CC,V,S),
not bad_circuitry(V).

More domain-dependent rules embody common-sense knowledge of the type “do not pressurize nodes which are
already pressurized.” In the RCS, some nodes can be pressurized through more than one path. Clearly, performing
an action in order to pressurize a node already pressurized will not invalidate a plan, but this involves an unnecessary
action. Although we do not discuss optimality of plans in this paper, the shortest sequence of actions to achieve the
goal is a good candidate as the optimal plan(s). The following constraint eliminates models where more than one path
to pressurize a nodeN2 is open.

:- link(N1,N2,V1),
link(N1,N2,V2),
neq(V1,V2),
h(in_state(V1,open),T),
h(in_state(V2,open),T),
not stuck(V1,open),
not stuck(V2,open).

As mentioned before, some heuristics are crucial for the improvement of the planner’s efficiency. One of them states
that “a normally functioning valve connecting nodesN1 andN2 should not be open ifN1 is not pressurized.” This
heuristic clearly prunes a significant number of unintended plans. It is represented by a constraint that discards all
plans in which a valveV is opened before the node, preceding it, is pressurized.

:- link(N1,N2,V),
h(in_state(V,open),T),
not h(pressurized_by(N1,Tk),T),
not has_leak(V),
not stuck(V).

The efficiency improvement offered by domain-dependent heuristics has not been studied mathematically. However,
experiments showed impressive results. In the case of tasks involving a large number of faults, for example, the
introduction of some of the most effective heuristics reduced the time required to find a plan from hours to seconds.

7 of 9

American Institute of Aeronautics and Astronautics



III. Conclusion

In this paper we described a medium size decision support system written in A-Prolog. This application requires
modeling of the operation of a fairly complex subsystem of the Space Shuttle at a level suitable for use by the Shuttle’s
flight controllers. Work for the deployment of this tool at United Space Alliance is under way (most of the refinement
is expected to regard the user interface).

The techniques used to design USA-Advisor are general enough to be applicable to many other flight systems, and to
allow for the execution of reasoning tasks other than planning, including fault detection and diagnosis. To verify that,
we have already implemented a simple diagnostic module based on techniques from.21 The diagnostic module takes
in input a history of occurrences of actions and a set of observations on the state of the RCS after such actions have
been performed, and returns the smallest collection of faults that would cause the observed behavior (other types of
minimization are possible, e.g. preference-based). It is important to stress that the use of the diagnostic module does
not require the modification of the model of the RCS. In fact, our diagnostic module is run in conjunction with the
same knowledge modules used for planning. We believe that this is an important property of our approach, resulting
from both the modularity of the design and the expressive power of A-Prolog. This property allows a high degree
of knowledge reuse, which is essential in cases where a substantial effort has to be made to verify that the model is
correct with respect to the physical system.

This project showed the advantages of A-Prolog with respect to standard Prolog, evident even in the case of plan
checking. An important methodological lesson we learned from this exercise is the importance of careful initial design.
For instance, introduction of junction nodes in the model of the Plumbing Module of the RCS substantially simplified
the resulting program. We are also satisfied with our use of the Java interface for selecting modules necessary for
solving a given problem, and integrating these modules into a final A-Prolog program. Structuring most modules
as lp-functions contributed to the reusability and proof of correctness of the integratione. Such proof is especially
important due to the critical nature of the RCS.

From the point of view of the research on planning, this work shows a system of substantial size built on theory of ac-
tions and change. In particular, it is worth stressing the key role of static causal laws in our model. It is unclear whether
the use ofSTRIPS-like languages containing only dynamic causal laws is sufficient for a concise representation of
the RCS, and especially of the extendedV CM .

The use of A-Prolog allowed us to deal with recursive causal laws, which may pose a problem to more classical
planning methods. (Partial solution to this problem is suggested in,22 where the authors useCCALC23 to reduce the
computation of answer sets to the computation of models of some propositional formula. They give a sufficient con-
dition of the correctness of such transformation. Unfortunately, the idea does not apply here, since the corresponding
graph is not acyclic.)

Recent work in planning drew attention to the problem of finding a language which would allow a declarative and
efficient representation of heuristic information.24–27 We believe that this paper demonstrates that a large amount of
such information can be naturally expressed in A-Prolog. Moreover, its use dramatically improves efficiency of the
planner (which is not always the case for satisfiability based planners.)

Finally, this paper demonstrates that the concept of modularity can be applied to A-Prolog programs, and how the
use of modules allows planning to be easily and naturally performed at different levels of abstraction (i.e. if no
electric faults are present, the detailed behavior of electrical circuits can be abstracted upon by just selecting the proper
modules). The modular organization of knowledge made it possible for each knowledge module to be developed and
tested, to a large extent, separately from the other modules. This has substantially simplified the next stage of the
development, when we have begun using the modules together.

IV. Acknowledgements

This project was partially supported by United Space Alliance under contract NAS9-20000.

eTo give an example of what we learned here, let us consider the following situation: suppose you have lp-functionsf andg correctly imple-
menting the plumbing and basicV CM modules of the system; integration of these modules leads to the creation of new lp-functionh = f ◦ g. It
is known that, due to non-monotonicity of A-Prolog, logic programming representation of this function cannot always be obtained by combining
together rules off andg. In our case, however, a general theorem17 can be used to check if this is indeed the case. We are currently working on
formulating and proving the correctness of the complete integration.

8 of 9

American Institute of Aeronautics and Astronautics



References
1Gelfond, M. and Lifschitz, V., “The stable model semantics for logic programming,”Proceedings of ICLP-88, 1988, pp. 1070–1080.
2Gelfond, M. and Lifschitz, V., “Classical negation in logic programs and disjunctive databases,”New Generation Computing, 1991, pp. 365–

385.
3Moore, R. C., “Semantical considerations on nonmonotonic logic,”Proceedings of the 8th International Joint Conference on Artificial

Intelligence, Morgan Kaufmann, Aug 1983, pp. 272–279.
4Reiter, R., “A Logic for Default Reasoning,”Artificial Intelligence, Vol. 13, No. 1–2, 1980, pp. 81–132.
5Lifschitz, V., “Answer set programming and plan generation,”Artificial Intelligence, Vol. 138, 2002, pp. 39–54.
6Subrahmanian, V. S., “Relating Stable Models and AI Planning Domains,”Proceedings of ICLP-95, 1995.
7Gelfond, M. and Lifschitz, V., “Representing Action and Change by Logic Programs,”Journal of Logic Programming, Vol. 17, No. 2–4,

1993, pp. 301–321.
8McCain, N. and Turner, H., “A causal theory of ramifications and qualifications,”Artificial Intelligence, Vol. 32, 1995, pp. 57–95.
9Turner, H., “Reprenting Actions in Logic Programs and Default Theories: A Situation Calculus Approach,”Journal of Logic Programming,

Vol. 31, No. 1-3, Jun 1997, pp. 245–298.
10Calimeri, F., Dell’Armi, T., Eiter, T., Faber, W., Gottlob, G., Ianni, G., Ielpa, G., Koch, C., Leone, N., Perri, S., Pfeifer, G., and Polleres,

A., “The DLV System,”Proceedings of the 8th European Conference on Artificial Intelligence (JELIA 2002), edited by S. Flesca and G. Ianni, Sep
2002.

11Cholewinski, P., Marek, V. W., and Truszczynski, M., “Default Reasoning System DeReS,”International Conference on Principles of
Knowledge Representation and Reasoning, Morgan Kaufmann, 1996, pp. 518–528.

12Niemela, I. and Simons, P., “Smodels - an implementation of the stable model and well-founded semantics for normal logic programs,”
Proceedings of the 4th International Conference on Logic Programming and Non-Monotonic Reasoning (LPNMR’97), Vol. 1265 ofLecture Notes
in Artificial Intelligence (LNCS), 1997, pp. 420–429.

13Dimopoulos, Y., Koehler, J., and Nebel, B., “Encoding planning problems in nonmonotonic logic programs,”Proceedings of the 4th Euro-
pean Conference on Planning, Vol. 1348 ofLecture Notes in Artificial Intelligence (LNCS), 1997, pp. 169–181.

14Lifschitz, V., Action Languages, Answer Sets, and Planning, The Logic Programming Paradigm: a 25-Year Perspective, Springer Verlag,
Berlin, 1999, pp. 357–373.

15Niemela, I. and Simons, P.,Extending the Smodels System with Cardinality and Weight Constraints, Logic-Based Artificial Intelligence,
Kluwer Academic Publishers, 2000, pp. 491–521.

16Gelfond, M. and Lifschitz, V., “Action languages,”Electronic Transactions on AI, Vol. 3, No. 16, 1998, pp. 193–210.
17Gabaldon, A. and Gelfond, M., “From Functional Specifications to Logic Programs,”Proceedings of the International Logic Programming

Symposium (ILPS’97), 1997.
18Balduccini, M., Gelfond, M., and Nogueira, M., “A-Prolog as a tool for declarative programming,”Proceedings of the 12th International

Conference on Software Engineering and Knowledge Engineering (SEKE’2000), 2000, pp. 63–72.
19Kohavi, Z.,Switching and Finite Automata Theory, McGraw–Hill CS Series, 1978.
20Micheli, G. D.,Synthesis and Optimization of Digital Circuits, McGraw–Hill Series in Electrical and Computer Engineering, 1994.
21Balduccini, M. and Gelfond, M., “Diagnostic reasoning with A-Prolog,”Journal of Theory and Practice of Logic Programming (TPLP),

Vol. 3, No. 4–5, Jul 2003, pp. 425–461.
22Erdem, E. and Lifschitz, V., “Transitive closure, answer sets and predicate completion,”Working Notes of AAAI Spring Symposium, 2001,

pp. 60–65.
23McCain, N.,Causality in commonsense reasoning about actions, Ph.D. thesis, University of Texas, 1997.
24Bacchus, F. and Kabanza, F., “Planning for Temporally Extended Goals,”Annals of Mathematics and Artificial Intelligence, Vol. 22, No.

1-2, 1998, pp. 5–27.
25Finzi, A., Pirri, F., and Reiter, R., “Open World Planning in the Situation Calculus,”Proceedings of the 17th National Conference of Artificial

Intelligence (AAAI’00), 2000, pp. 754–760.
26Huang, Y., Kautz, H., and Selman, B., “Control Knowledge in Planning: Benefits and Tradeoffs,”Proceedings of the 16th National Confer-

ence of Artificial Intelligence (AAAI’99), 1999, pp. 511–517.
27Kautz, H. and Selman, B., “The Role of Domain-Specific Knowledge in the Planning as Satisfiability Framework,”Proceedings of AIPS’98,

1998.

9 of 9

American Institute of Aeronautics and Astronautics


