
Citation: Balduccini, M.; Barborak,

M.; Ferrucci, D. Pushing the Limits of

Clingo’s Incremental Grounding and

Solving Capabilities in Practical

Applications. Algorithms 2023, 16, 169.

https://doi.org/10.3390/a16030169

Academic Editor: Martin Gebser

Received: 16 February 2023

Revised: 15 March 2023

Accepted: 18 March 2023

Published: 20 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Pushing the Limits of Clingo’s Incremental Grounding and
Solving Capabilities in Practical Applications
Marcello Balduccini 1,2,*, Michael Barborak 1 and David Ferrucci 1

1 Elemental Cognition, Inc., New York, NY 10169, USA; mikeb@ec.ai (M.B.); davef@ec.ai (D.F.)
2 Department of Decision & System Sciences, Erivan K. Haub School of Business, Saint Joseph’s University,

Philadelphia, PA 19131, USA
* Correspondence: marcellob@ec.ai

Abstract: Incremental techniques aim at making it possible to improve the performance of the
grounding and solving processes by reusing the results of previous executions. Clingo supports
both incremental grounding and incremental solving computations. In order to leverage incremental
computations in clingo, the incremental fragments of ASP programs must satisfy certain safety-
related conditions. In a number of problem domains and reasoning tasks, these conditions can
be satisfied in a fairly straightforward way. However, we have observed that in certain practical
applications, satisfying the conditions becomes more challenging, to the point that it is sometimes
unclear how or even if it is possible to leverage incremental computations. In this paper, we report
our findings, and ultimate success, with the use of incremental grounding and solving techniques
in one of these challenging cases. We describe the domain, which is linked to a large practical
application, discuss the challenges we faced in attempting to leverage incremental computations, and
then describe the techniques that we developed, in particular at the level of methods for encoding
the domain knowledge and of algorithms supporting the intended interleaving of grounding and
solving. We believe that our findings may provide valuable information to practitioners facing similar
challenges and ultimately increase the adoption of clingo’s incremental capabilities for complex
practical applications.

Keywords: answer set programming; multi-shot solving; durative actions; durative fluents; reasoning
about actions and change

1. Introduction

Answer Set Programming (ASP) [1,2] provides a convenient paradigm for tackling
complex modeling and reasoning tasks. In many cases, the performance of ASP-based
solutions is also sufficient for practical applications, as demonstrated by a healthy stream
of publications (see, e.g., [3]).

Since the first demonstration of the viability of ASP for practical, industry-sized
applications [4], the community has experienced a constant alternation between more chal-
lenging application domains, more sophisticated modeling constructs, and correspondingly
more powerful solving technologies.

Typically, the computation of the answer sets of ASP programs is performed in two
steps, the grounding step and the solving step, discussed later. In recent years, the clingo
solver [5] introduced support for incremental (or “multi-shot”) computations in both
grounding and solving [6–8]. As long as the conditions of the Module Theorem are
satisfied [9,10], the computation of answer sets of an ASP program can be performed
incrementally. This often leads to substantial performance improvements, since one can
leverage and build upon the results of previous, computationally smaller, runs.

In our use of ASP for practical applications, we recently found ourselves faced with
the task of computing the evolution of the state of a dynamic domain [11,12], and while

Algorithms 2023, 16, 169. https://doi.org/10.3390/a16030169 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16030169
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://doi.org/10.3390/a16030169
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16030169?type=check_update&version=1

Algorithms 2023, 16, 169 2 of 23

the use of ASP for such a task is not new, our situation was complicated by a number of
factors. At its core, our application [13,14] formalized and reasoned about policies [15]
aimed at determining an individual’s readiness to perform activities (work, school, sports,
etc.) during the peak of the COVID-19 pandemic. At that time, the task of easing COVID-19
lockdown restrictions was complicated due to a variety of factors, including the uncertainty
about the way in which the virus spread and the challenges in adapting pre-existing
environments that were not meant to limit the spread of such an aggressive airborne virus.
A practice commonly used with the aim of reducing risks consisted in adopting policies
that determined an individual’s fitness to access an environment or perform an activity.
For instance, for an employee to be granted access an office environment on a given day,
the person may be required to have been symptom-free for the past 24 h and not have
been in contact with sick individuals for the past 7 days. A student returning to campus
from another state may be required to have tested negative for COVID-19 in the past
5 days or he/she would have to quarantine for 14 days; then again, in some policies it
was possible to shorten such quarantines under certain very specific conditions (e.g., a
particular battery of tests providing the necessary results), but it was also possible that
the quarantine would need to be extended if other conditions became true (e.g., having
certain symptoms). Policies often became very complex to both describe and understand.
Due to how rapidly conditions and recommendations were changing, and to the many
ramifications of resuming regular activities or not, it was paramount to have tools that
simplified the task of developing and enforcing policies. Particularly, it was essential
to enable (1) the rapid development of policies, (2) trust that the implementation of the
policies reflected the original intent, and (3) transparency of the decisions made by such
implementations. From the perspective of an application aimed at serving as a decision-
support system for sizable communities such as universities or large companies, each with
its own policies:

• Modeling the policies involved capturing potentially complex interactions among
time-delayed ramifications of observations;

• Histories of observations may have to be considered for each individual;
• The application needed to address a continuous stream of observations about both cur-

rent moments as well as past time periods, due to testing and communication backlogs;
• Past observations may cause the withdrawal of previously held expectations, and thus

have to be addressed non-monotonically;
• Because the system was intended to be accessed not only by administrators through

their workstations but also by community members directly on their smartphones,
the system had to be capable of producing a snapshot of a user’s readiness state weeks
into the future in real time;

• Finally, the system was ultimately intended to be hosted on a large cloud infrastructure
where computation may need to be moved from one node to another on very short
notice. As a result, it had to be possible to conduct all computations in a stateful
manner, so that the state of the computation could be saved and reloaded when
execution was moved from a node to another.

Consequently, there were a number of important requirements imposed on the reason-
ing component: the component had to be able to generate and reason about trajectories often
exceeding 100 discrete time steps and expected to be 3–5 times longer after deployment; the
domain involved the need to represent wall-clock time and durative aspects, either in the
form of actions with duration or of (default) fluents with duration; the reasoning component
had to be capable of producing a full trajectory in no more than 5 s on average.

Preliminary experiments showed that single-shot computation with clingo was prob-
lematic, since the execution times for representative examples were frequently well over 5 s
and in approximately 20–25% of cases were above the timeout threshold of 1 h. While the
use of incremental computations to speed up the computation was attractive, it was made
complicated by the fact that straightforward encodings led to the violation of the conditions
of the Module Theorem, making it impossible to apply the current incremental technologies.

Algorithms 2023, 16, 169 3 of 23

In this paper, we report on an approach whose development was prompted by the
application described above. The approach leverages incremental techniques for the
computation of long (100 or more discrete time steps) trajectories of a dynamic domain
in the presence of durative actions or fluents. The approach leverages an incremental, fix-
point computation, which not only ensures the satisfaction of the conditions of the Module
Theorem and the applicability of clingo’s incremental API, but also yields substantial
performance improvements over the non-incremental alternatives. In our experiments, the
computations never timed out and the average time was well within the 5 s threshold even
on household hardware. This confirms the exceptional capabilities of clingo’s support for
incremental computations and demonstrates that certain restrictions on the use of such
features can be overcome with suitable representation techniques and algorithms.

Specifically, the contributions of this paper are: (a) an approach for representing
knowledge about the durative aspects of dynamic domains that is suitable for processing
with incremental techniques; (b) a set of algorithms that leverage clingo’s incremental
computation capabilities while avoiding problems related to the conditions of the Module
Theorem and substantially improve performance compared to non-incremental approaches;
(c) another set of algorithms that build upon the core ones to provide features useful for
use in user-facing applications and in cloud-based execution platforms.

The paper is organized as follows. We begin by providing an introduction on necessary
background concepts. That is followed by Section 3, where we describe our approach to
representing knowledge in a way that is suitable for incremental computations. In the
following two sections, we discuss the algorithms we developed for leveraging clingo’s
support for incremental computations. In Section 6, we report on our experimental evalua-
tion of the approach. Sections 7 and 8 discuss extensions of the approach that are geared
toward practical use in user-facing applications. We close the paper by summarizing our
work and drawing conclusions.

2. Preliminaries

ASP is a declarative programming paradigm based on logic programming under the
answer set semantics. An ASP program Π is a set of rules of the following form:

c← a1, . . . , am, not b1, . . . , not bn (1)

where c, ai’s, and bi’s are first-order literals and do not represent (default) negation.Intuitively,
a rule states that if ais are believed to be true and none of the bis are believed to be true, then
c must be true. c is called the head of the rule and a1, . . . , am, not b1, . . . , not bn is its body.
Additionally, given a rule r, r+ and r−, respectively, called the positive and negative body,
denote the sets {a1, . . . , am} and {b1, . . . , bn}. If the body of a rule is absent, the rule is called
fact, its head is always true, and the← symbol is omitted. If the head of a rule is absent,
then the rule is called constraint (or denial), and its body is never allowed to be satisfied.

A rule that contains first-order variables is called non-ground and it is considered to be
a shortcut for the set of its ground instances, i.e., the ground rules that can be obtained by
replacing the variables by all possible ground terms of the language. The semantics of ASP
programs, discussed next, is thus given in terms of ground programs, i.e., sets of ground rules.

Let Π be a ground program. An interpretation I of Π is a set of ground literals
occurring in Π. The body of a rule r is satisfied by I if r+ ⊆ I and r− ∩ I = ∅. A rule r
is satisfied by I if the body of r is satisfied by I implies I |= c. When c is absent, r is a
constraint and is satisfied by I if its body is not satisfied by I. I is a model of Π if it satisfies
all rules in Π.

For an interpretation I and a program Π, the reduct of Π with regard to I (denoted
by ΠI) is the program obtained from Π by deleting (i) each rule r such that r− ∩ I 6= ∅,
and (ii) all expressions of the form not a in the bodies of the remaining rules. Given an
interpretation I, observe that the program ΠI is a program with no occurrence of not a. An
interpretation I is an answer set of Π if I is the least model (with regard to ⊆) of ΠI .

Algorithms 2023, 16, 169 4 of 23

Several extensions have been introduced to simplify the use of ASP. In this paper,
we make use of a restricted form of the aggregate #min of clingo, where an expression
v = #min{X : p(X), q(X), . . .} is true if v is equal to the minimum (numerical) value of X
such that p(X), q(X), . . . are true. We also use the shorthand p(x; y)← Γ to denote the set
of rules p(x)← Γ and p(y)← Γ.

While for our application we rely on action languages [11] for a compact and high-level
representation of policies, for simplicity of presentation in this paper we represent the
behavior of the domain directly using ASP rules. We follow the typical approach for such
a representation—see, e.g., [4]. Let A be a set of actions and F be a set of fluents, where
a fluent is a (Boolean) property of the domain whose truth value may change over time.
Let T be a set of integers intuitively corresponding to discrete time steps in the evolution
of the state of the domain. A fluent literal is a fluent f or its (classical) negation ¬ f . A
state is a complete and consistent set of fluent literals from F . (Without loss of generality,
for sake of simplicity we adopt a simpler definition than that of [2]). A literal of the form
h(f , t) (resp., ¬h(f , t)) indicates that fluent f is true (or false) at time step t. A literal o(a, t)
indicates that action a occurs at time step t. A literal time(t) indicates that t belongs to T . A
literal next(t, t′) states that t < t′ are immediately consecutive steps from T , in the sense
that there is no other time step t′′ such that t < t′′ < t′. The set of laws (often called action
description) that affect the evolution of the state of the domain is represented by means of
ASP rules. For example, a dynamic causal law stating that pushing a button b of a given light
bulb l to light up may be captured by a rule:

h(on(l), T′)← next(T, T′), o(push(b), T). (2)

A state constraint stating that, when the light bulb is on, it is also hot, may be captured
by a rule:

h(hot(l), T)← time(T), h(on(l), T). (3)

The description of the behavior of the system (at least in simple cases) is completed by
the inertia axioms [16,17], which intuitively state that things tend to stay as they are. They
can be compactly represented in ASP with rules such as

h(F, T′)← next(T, T′), h(F, T), not h(¬F, T′).
h(¬F, T′)← next(T, T′), h(¬F, T), not h(¬F, T′).

(4)

A thorough discussion on dynamic domains and on their representation in ASP is
beyond the scope of this paper. We refer the interested reader to [11] for details.

Next, we provide a basic introduction on the support for incremental computations in
clingo. Due to the complexity of the topic, we limit the scope of the discussion to only what
is strictly necessary for the description of our approach, and refer the interested reader
to [6,7] for a thorough discussion. Additionally, we focus our discussion to the incremental
computation facilities provided by clingo 5.4.0, the version of the solver available at the
time of the development of our approach.

Incremental ASP programs. For incremental computations, an ASP program is concep-
tually partitioned into one or more modules. Each module is identified by a directive of
the form:

#program id(par1, par2, . . .) (5)

where id is a unique identifier for the module (in practice, clingo allows for repeated
#program directives, but all rules labeled by such directives are internally combined into
the same, unique module) and par1, par2, . . . is a potentially empty list of constant symbols
acting as parameters of the module. Such parameters are allowed to occur in the rules of
the module in any place that is syntactically valid for a constant symbol. The only module
that clingo processes by default is the base module, which takes no parameters. All other
modules can be dynamically added to the computation by the programmer. When that
happens, the programmer will also specify the values of the module’s parameters, if any. If

Algorithms 2023, 16, 169 5 of 23

the module has parameters, then what is added to the computation is the instance of the
module with regard to the parameter values provided, where instance in this case refers to
the set of rules obtained by replacing, in all rules of the module, all parameters’ constant
symbols by their corresponding values.

Clingo allows a programmer to label certain literals as external. Such a label indicates
to clingo that the truth value of those literals may be determined by rules added to the
program at a later time, or even by direct truth assignment by the programmer via the
assign_external(l) and release_external(l) API functions. In terms of internal handling of
rules, clingo treats external literals as module inputs, which prevents those literals and the
rules that contain them from being simplified away when their truth value is undefined.
External literals are declared by directives of the form:

#external l(~x) : c1(~y1), c2(~y2), . . . (6)

where ~x, and ~yi’s are sequences of ASP variables, l(~x) is the (non-ground) literal being
declared external, and c1(~y1), c2(~y2) are a potentially empty set of conditions refining of
which the subset of the ground instances of l(~x) is to be declared external. For practical
purposes, one can view the role of the elements of the directive to be similar to those of
a rule of the form l(~x) ← c1(~y1), c2(~y2), although of course an #external directive has no
bearing on the truth value of l(~x). External declarations are convenient, in combination with
assign_external(l) and release_external(l), for enabling and disabling parts of a module,
or of a module as a whole, because they act together in dynamically asserting that a
literal, which may be in the body of a rule, is true or false. The recommended practice [7]
for designing a set of rules that can be removed from a program being processed in an
incremental fashion is to introduce suitable external literals in their bodies. When the
external literals are set to true (via assign_external(l)), the rules are enabled and used by
the solver. When the rules are to be removed from the program, the external literals that
control their application are set to false and released by means of release_external(l). When
that happens, one should also call clingo function cleanup(), which adjusts the internal
state of grounder and solver after information has been retracted.

Incremental computations in clingo. As we mentioned earlier, clingo supports both
incremental grounding and incremental solving. Incremental grounding refers to the ability
to ground modules in separate stages. When a module is grounded (or an instance of a
module, when the module has parameters), it is added to the set of ground rules that clingo
maintains. Incremental solving refers to clingo’s ability to store and update the state of
the search process across multiple solving calls. When a new solve() call is performed
by a programmer, clingo uses the current state of the search process as the starting point
of the computation. This approach can potentially yield substantial time savings. As a
(trivial) example, consider the case in which one has already grounded and solved a large
ASP program and is now interested in adding a new rule. As long as the rule satisfies
certain properties, clingo can simply update the truth values of the literals affected by the
new rule and avoid repeating the computations linked with the initial program. To make
this possible, clingo allows for incremental grounding and solving steps to be interleaved,
making it possible for one to ground and solve part of a program, then ground an additional
module with respect to the set of ground literals determined by the previous grounding and solving
run. As a result, the grounding of the new module may be substantially smaller and
cheaper to compute than if the initial program and the new module had been grounded in
a single operation.

The Module Theorem. The conditions under which modules can incrementally added to
an existing program are given by the Module Theorem [9,10]. We provide here a summary
of this topic adapted from [7]. A moduleM is a triple 〈P, I, O〉 consisting of a ground logic
program P along with sets I and O of ground input and output literals such that:

Algorithms 2023, 16, 169 6 of 23

1. I ∩O = ∅,
2. A(P) ⊆ I ∪O, and
3. H(P) ⊆ O

where H(P) is the set of heads from all rules of P and A(P) = H(P)∪⋃
r∈P r+ ∪ r−. A set X

of ground literals is an answer set of a module P if X is an answer set of P∪ {a. | a ∈ I ∩X}.
Two modules P1 = 〈P1, I1, O1〉 and P2 = 〈P2, I2, O2〉 are compositional if

• O1 ∩O2 = ∅, and
• O1 ∩ C = ∅ or O2 ∩ C = ∅ for every strongly connected component C of P1 ∩ P2.

The join of P1 and P2 is the module P1 + P2 defined as:

〈P1 ∪ P2, (I1 \O2) ∪ (I2 \O1), O1 ∪O2〉. (7)

According to the Module Theorem, if P1 and P2 are compositional, then (a) their join
P1 + P2 is defined and (b) its answer sets can be obtained from the answer sets of P1 and
P2 as follows:

A set X of ground literals is an answer set of P1 + P2 iff X = X1 ∪ X2 for answer sets X1
and X2 of P1 and P2 respectively, such that X1 ∩ (I2 ∪O2) = X2 ∩ (I1 ∪O1).

Two very important ramifications of the definition of compositionality and of its
role in the Module Theorem are that (i) all rules defining a (ground) literal must belong
to the same module, and that (ii) all positive rule cycles must remain confined within
individual modules. These requirements impose significant restrictions on the applicability
of incremental computations in clingo. Consider for instance the following program:

#program base.
#external r1.
#external r2.
s← r1.
s← r2.

#program moda.
#external r3.
s← r3.

(8)

Furthermore, consider the sequence of clingo calls ground(base); solve(); ground(moda),
which intuitively grounds and solves the base module, and then attempts to ground module
moda. The second call to the ground function will trigger an error, because s is defined in
multiple modules.

3. Domain Representation

As we mentioned earlier, durative elements are an important component of the kinds
of dynamic domains our application was tasked to tackle. For example, according to certain
policies, an individual that had come in contact with sick individuals was not allowed
to return to work for 7 days from the contact. If they happened to come in contact again
with sick individuals during that period, the period would be extended correspondingly.
Information received on positive and negative tests, as well as the types of tests, would
also impact one’s readiness to return to their regular activities.

Another important aspect of the domains we considered is the fact that a number of
their properties appear to lend themselves to be naturally represented as default fluents, i.e.,
fluents whose truth value will default to a set one unless actively changed by other laws.
Assuming that inertial and default fluents are partitioned by a suitable type relation, e.g.,
inertial(f), the inertia axioms shown in Section 2 can be easily restricted to inertial fluents
by adding a condition inertial(F), and the behavior of default fluents can be captured by a
rule such as

h(¬F, T′)← not inertial(F), next(T, T′), not h(F, T′). (9)

Algorithms 2023, 16, 169 7 of 23

Some researchers further distinguish between positively defined default fluents and
negatively defined default fluents depending on their default truth value, and while in
practice we did make this distinction, we disregard this detail for the sake of simplicity of
presentation, and only consider default fluents whose truth value defaults to false.

We should mention here that in the rest of this paper we make the assumption that
action descriptions are deterministic, i.e., they yield no more than one trajectory from any
initial state considered (see, e.g., [18] for a discussion on syntactic conditions that ensure
determinism of action descriptions), and are strongly consistent, in the sense that they yield
at least one trajectory from any initial state considered.

In the context of the domains we tackled, default durative fluents play a critical rule.
For instance, in the example above, by default one was allowed to go to work, but was
disallowed to do so for 7 days from an exposure (or, to be precise, from the latest exposure).
While some of the aspects of durative fluents can be captured by means of actions with
duration, in our application domain durative fluents provide a more natural representation.
As it will become clear later, the results discussed in this paper apply both to durative
fluents and to actions with duration. Thus, without loss of generality, we focus our discussion
on durative fluents.

The representation of the duration of these fluents also requires the ability to reason
about “wall-clock” time. Mechanisms for handling “wall-clock” time in the context of action
languages and ASP-based domain representations have been explored with a certain degree
of success, see, e.g., [19]. These approaches make it possible to model complex continuous
and non-linear dynamics by leveraging Constraint ASP (CASP) [20], which combines ASP
solving with numerical constraint solving. On the other hand, our preliminary evaluation
showed that they also introduce a fair amount of complexity in the representation and
do not appear to solve the performance problems inherent in the handling of trajectories
with 100 or more discrete time steps. We also considered additive fluents [21] for the
representation, but once again they seemed to tackle a somewhat different problem from
ours and did not seem to solve the performance challenges we were facing.

As a result, we opted for a more direct representation of (default) durative fluents and
of “wall-clock” time. In our approach, the numerical value of time steps is associated with
the corresponding “wall-clock” time from a given reference time, while the time resolution
of such time steps is application-dependent. In our case, time steps were associated with
the time elapsed in seconds from the reference time. The amount of time left before a fluent
f returns to its default value is formalized by a literal le f t(f , l, t), intuitively expressing that
there are l time units left (or seconds in our case), at time t, before f returns to its default
(negative) value. Suitable defaults make it possible to calculate the amount of time left at
any time step of interest. Simple extensions of the laws we discussed in Section 2 reset the
amount of time left when necessary, e.g., if an observation is received that the subject was
exposed to a sick individual and, as a result, the isolation is extended.

This approach makes it necessary for the extension of relation time to be determined
by the rules of the program, and based on observed needs. Note that this is different from
typical approaches for reasoning about dynamic domains in ASP, where one relies on the
time relation to be defined as part of the input. Consider a case in which a certain set of
conditions Γ(t) that are true at time t causes default fluent f to become true and remain
true for duration d. In our approach, this is captured by the following set of rules:

h(f , T)← Γ(T).
le f t(f , d, T)← Γ(T).
newtime(T, T + d)← Γ(T).

(10)

The first two rules modify the truth value of the fluent and set the amount of time left
before the fluent reverts to its default value. The third rule is responsible for extending
the timeline: it states that a time step T + d should be added to the timeline if not already
present. (The role of the first argument will become clear later). The timeline is extended
in order to allow for the reasoning component to reason about the point at which the

Algorithms 2023, 16, 169 8 of 23

default will revert to its default value (that is, unless of course other causes intervene to
prevent that).

The formalization of the behavior of durative fluents is thus given by (9) together with:

le f t(F, V − E, T′)←
not inertial(F),
next(T, T′),
E = T′ − T, V − E ≥ 0, % elapsed time
le f t(F, V, T), V > 0,
not willHaveOtherLe f tValue(F, T′).

willHaveOtherLe f tValue(F, T′)←
not inertial(F),
next(T, T′),
le f t(F, V, T),
le f t(F, V′, T′),
E = T′ − T, V − E ≥ 0, % elapsed time
V′ 6= V − E.

le f t(F, 0, T′)←
not inertial(F),
next(T, T′),
le f t(F, 0, T),
not willHaveOtherLe f tValueThan0(F, T′).

willHaveOtherLe f tValueThan0(F, T)←
not inertial(F),
time(T),
le f t(F, V, T),
V 6= 0.

h(F, T′)← not inertial(F), le f t(F, V, T), V > 0, next(T, T′), h(F, T), not h(¬F, T′).

(11)

The first four rules of (11) ensure that the amount of time left is correctly updated
from one time step to the next. The last rule captures the inertial behavior of default fluents
while they are set to true for a certain amount of time.

Due to our use of a sparse representation of the timeline, we also need to refine the
definition of relation next, which is accomplished by the rule:

next(T, T′)←
time(T),
T′ = #min{S : time(S), S > T}.

(12)

Note the use of clingo’s aggregate #min to identify the time step T′ that
immediately follows T.

The ASP-based reasoning component of our application is designed to take in input a
set of observations about the truth value of fluents. In practice, the observations encode
the results and types of tests, information about close contacts and travel, self-reported or
observed symptoms, etc. Following the approaches from the related literature (e.g., [22]),
we represent observations by means of statements of the form

obs(l, t) (13)

where l is a fluent literal and t is a time step. Intuitively, the statement says that the fluent
from which l is formed is true or false, depending on the form of l, at time t. The reasoning
component may also be provided an additional set of time steps for which the component

Algorithms 2023, 16, 169 9 of 23

needs to calculate the corresponding state information. This set of time steps is intended
to be used to allow for the application to query about the state of the domain at times
of interest to the user, which may not necessarily correspond to the time steps for which
observations are provided. In our application, we make the simplifying assumption that
observations are correct, and thus link observations to the state of the domain by means of

h(L, T)← obs(L, T). (14)

A more sophisticated approach is that of using Awareness Axioms [22]. However, such
an approach is outside of the scope of the reasoning task considered here.

The goal of the reasoning component is to provide the user-facing application with
a trajectory. By trajectory in this context we mean a sequence of states γ = 〈s1, s2, . . . , sk〉
where a state s corresponding to a time step t occurs in γ if-and-only-if (a) t is one of the
time steps provided in input to the reasoning component, or (b) the action description
entails a literal newtime(t′, t) for some t′, intuitively meaning that the action description
has requested the introduction of time step t. It is worth noting that, in application domains
in which actions play a role in the evolution of the domain, the notion of trajectory can be
easily extended to include actions, thus aligning it with the traditional notion (e.g., [23]). In
the rest of the paper, we assume the existence of a function timestep-of(s) whose value is
the time step of state s.

4. Incremental Computation: Approach

Algorithm Basic (Algorithm 1), shown below, provides a very simple, non-incremental
method for the calculation trajectories. The algorithm takes as input the pre-determined
set of time steps discussed above (i.e., from observations and queries), as well as a set of
observations. Program Π used by the algorithm contains the action description and the
supporting rules covered earlier. Finally, Basic returns a set of literals that encodes the
trajectory that was computed.

Algorithm 1 Algorithm Basic

Input: p: pre-determined time steps, e.g., from observations and queries, as facts of the
form time(t)

Input: O: a set of observations
Output: an answer set

1: τ ← p
2: repeat
3: A← clingo(Π ∪ τ ∪O) . assumption: clingo() finds a single answer set
4: τ ← τ ∪ {time(t′). | newtime(t, t′) ∈ A}
5: until {t′ | newtime(t, t′) ∈ A} = ∅
6: return A

In spite of its non-incremental nature, in that the solver is executed multiple times
without reusing any knowledge from the prior runs, the algorithm succeeds in making it
possible to extend the timeline as needed, based on the information provided by the rules
of (10), and to only introduce the time steps that are critical for capturing the evolution of
the domain.

While more efficient than naïve approaches, Algorithm 1 involves redundant com-
putations: at every call to the solver, the state of the domain at all time steps from T
is computed from scratch. In order to leverage incremental computations, we adopt an
approach in which we recompute the state of the domain only for the time steps that are
newly introduced.

For this purpose, the ASP program is separated into modules:

• Module base, which contains the rules that are time-independent, such as rules defining
class hierarchies and domain predicates;

Algorithms 2023, 16, 169 10 of 23

• Module time-dependent, which contains the rules that are time-dependent and should
be evaluated incrementally, such as the rules from (10);

• Module output, which contains any rules that are time-dependent and should be
evaluated at the end of the entire computation, i.e., for the purpose of producing
output suitable by user interfaces.

The base and output modules are declared using directives #program base and #program
output, respectively. The time-dependent module is declared by the directives:

#program timedep(t).
#external enabled(T) : time(T), T ≥ t.

(15)

where t is the module’s parameter. Parameter t represents the time step starting from which
the state of the domain must be computed. This enables a detailed control on the parts
of the timeline on which the computation occurs. In order to make this possible, all rules
of time-dependent must include special conditions that make it possible to control when
they should be applied and when they should be retracted. With one exception, discussed
below, every rule of time-dependent must be extended to include the condition:

enabled(t), T ≥ t (16)

where T represents the time step at which the rule is triggered. Intuitively, this condition
checks that the time step T considered by the solver in the grounding of the rule is part of
the fragment of the timeline on which the computation is being performed. For example,
the rules of the form (10) are modified as follows:

h(f , T)← Γ(T), enabled(T), T ≥ t.
le f t(f , d, T)← Γ(T), enabled(T), T ≥ t.
newtime(T, T + d)← Γ(T), enabled(T), T ≥ t.

(17)

Note that the inertia axioms and the rules that capture the semantics of durative fluents
are modified in a similar way. The rule defining next/2 is extended in a slightly different
way, as follows:

next(T, T′)←
time(T),
T′ = #min{S : time(S), S > T},
enabled(T′), T′ ≥ t.

(18)

That is, next(t, t′) is defined only if t′ belongs to the part of timeline being considered.
The above program is processed by Algorithm Incremental (Algorithm 2). A graphical
depiction of the steps of the algorithm is also provided in Figure 1.

The algorithm leverages a fix-point computation to calculate a trajectory in an in-
cremental fashion. The intuition is as follows. The algorithm takes as input a set of
pre-determined time steps, e.g., corresponding to time steps that a user or external ap-
plication would like to query about or about which observations are provided. Step 2
produces the grounding, G, of base, p, O, and timedep(0). Due to the fact that p defines
the pre-determined time steps, ground instances of the rules of timedep(0), which are
time-dependent, are generated. Ground instances of external enabled(T) are also generated
for every time step defined by p. Let us recall that externals are false by default: step 3
changes this by asserting all externals from G true via the corresponding clingo primitive.
At step 4, the answer set A of G is computed. If A does not contain any request for new
time steps, then A encodes the trajectory that Incremental aims at computing. Thus, all that
is left is to ground output incrementally (step 16) and return the answer set of the updated
grounding (step 17).

Algorithms 2023, 16, 169 11 of 23

Ground: base,
observations,

timedep(O) -> G

' ,,,

Enable all time
steps from G

Let A be the
answer set of G

Add to G the Let m be the
�--Yes� smallest time

step introduced
--4) grounding of

timedep(m)

Add to G the
grounding of the ---4)

Let A be the
output module answer set of G

.--4>
Enable time step --� Let A be the

m > answer set of G

Figure 1. Graphical depiction of the steps of Incremental.

Algorithm 2 Algorithm Incremental

Input: p: pre-determined time steps, e.g., from observations and queries, as facts of the
form time(t)

Input: O: a set of observations
Output: an answer set

1: . Expansion phase (base + timedep(0) + p + O)
2: G ← ground(base ∪ timedep(0) ∪ p ∪O)
3: For every external enabled(t) from G, assert enabled(t) true via clingo’s assign_

external()
4: A← solve(G)
5: . end of expansion phase
6: while {t | newtime(t′, t) ∈ A and time(t) 6∈ A} 6= ∅ do
7: m← min{t | newtime(t′, t) ∈ A and time(t) 6∈ A}
8: . Expansion phase
9: G ← ground({time(m).}) . add a new time step to the ground program

10: G ← ground(timedep(m))
11: Assert enabled(m) true using clingo’s assign_external()
12: A← solve(G)
13: . end of expansion phase
14: end while
15: . addition of the output module
16: G ← ground(output)
17: return solve(G)

On the other hand, if the answer set computed at step 4 contains requests for new times
steps, then those requests need to be satisfied. Let us recall that the introduction of a new
time step may affect the calculation of the state of the domain at the time steps that follow
it. For this reason, the algorithm first finds the minimum requested time step, m (step 7).
Next, step 9 adds the requested time step to G. Step 10 adds to G the groundings of all rules
that compute the state of the domain at time steps m and later. Step 11 asserts enabled(m)

Algorithms 2023, 16, 169 12 of 23

and step 12 calculates the updated answer set A of G. At this point, the algorithm verifies
whether A contains any requests for new time steps and the process repeats.

Let us now focus on the soundness and completeness of Algorithm Incremental with
regard to the corresponding non-incremental way of computing the trajectory. To begin,
we define the single-shot version of the program Π used by Incremental, which is obtained
from Π by (a) removing all #program declarations, and (b) adding to each program the
following rules:

#const t = 0.
time(T)← newtime(T′, T).
enabled(T)← time(T).

(19)

The first statement assigns value 0 to constant t, thereby making all conditions of the form
T ≥ t (from the pair of conditions enabled(T), T ≥ t) trivially satisfied. The second statement
ensures that every request for the introduction of a time step is immediately satisfied. The
third statement ensures that all conditions of the form enabled(T) are satisfied whenever T
represents a time step. We denote the single-shot version of a program Π by σ(Π).

The soundness and completeness of Algorithm Incremental is thus given by the
following theorem.

Theorem 1. Given a program Π, set p of pre-determined time steps, and set O of observations, the
trajectory encoded by Incremental(p, O) coincides with the trajectory encoded by the answer set of
clingo(σ(Π) ∪ p ∪O).

Proof. Recall that the action descriptions considered are deterministic and strongly consis-
tent, which means that clingo(σ(Π) ∪ p ∪O) is guaranteed to return a single answer set.
The claim can be proven by induction.

For the base case, one can note that, if the while loop of Incremental is never executed,
then the computation carried out by Incremental is essentially equivalent to that carried out
by clingo(σ(Π) ∪ p ∪O) and thus the trajectories coincide. Along the same lines, if the set
produced by clingo(σ(Π) ∪ p ∪O) does not contain any literal formed by relation newtime,
then the while loop of Incremental is never executed and, once again, the trajectories encoded
by the results of the two computations coincide.

For the inductive case, let us assume that the trajectories produced by the two algo-
rithms share a (non-empty) prefix π and let us show that the next state in both trajectories
(a) is associated with the same time step in both trajectories and (b) is the same in both
cases. Let us begin with (a). Let ti and tc denote the time steps associated with the state
that follows π, respectively, in the trajectory produced by Incremental and in that produced
by clingo. Note that there must exist an iteration of the while loop of Incremental in which
m = ti at step 7. By contradiction, suppose that tc < ti. If that were the case, it would mean
that the bodies of some rules of Π were satisfied at one or more time steps from π, and
caused clingo to conclude newtime(t, tc) for some t. Due to the fact that π is the shared
prefix, then the bodies of same rules would have been satisfied during one of Incremental’s
solve calls, yielding newtime(t, tc) as well. However, if that were the case, ti would coincide
with tc, which causes contradiction. Reasoning in a similar way, we can conclude that it is
impossible that tc > ti. Hence, tc = ti. Furthermore, because the two time steps coincide, it
is easy to see that the corresponding states must also be the same.

5. Efficiency and Finity of Computations

One may notice that the incremental computation performed by Algorithm Incremental
has a potential for being rather wasteful. In fact, of all the time steps that may have been
potentially identified for addition, step 7 only takes one, essentially disregarding other
requests for the addition of time steps that, if satisfied, could speed up the process rather
substantially. In particular, it is not difficult to see that the number of iterations of the
while loop is bound to be proportional to the length of the trajectory returned, which is
undesirable when long trajectories are computed.

Algorithms 2023, 16, 169 13 of 23

Additionally, one should note that action descriptions that contain durative fluents
may sometimes yield infinite trajectories. To see how this may happen, consider fluents
f , g and the corresponding information:

1. f and g are default fluents;
2. if f holds, then g holds for a duration of n units of time;
3. if g is false, then f holds.

Suppose that f is observed to hold at step 0. Statement 2 causes g to hold until time
step n. At step n + 1, g defaults to false and the condition of statement 3 becomes satisfied,
causing f to hold. Again, item 2 causes g to hold until time step (n + 1) + n = 2n + 1. At
step 2n+ 2, g defaults to false again and statement 3 causes f to hold. The same occurs again
at 3n + 3. It is not difficult to see that the process repeats indefinitely, producing an infinite
trajectory. Correspondingly, the Algorithm Incremental will yield infinite computations in
these cases.

Central to overcoming this issue is the following simple but important observation on
Algorithm Incremental:

Theorem 2. Let m̂ be the value of m at step 7 of Incremental during a certain iteration of the while
loop. At every subsequent iteration, the value of m is guaranteed to be no smaller than m̂.

This property motivated the development of Incrementalh (Algorithm 3), shown below.
Incrementalh aims at reducing the number of iterations necessary to compute a trajectory
(at least in the average case) by taking into account a larger portion of the requests for the
introduction of new time steps. Additionally, the algorithm takes as input an additional
parameter h, which acts as a time horizon for the computation. Intuitively, the new
algorithm terminates when all requests for new time steps at a given iteration are for time
steps greater than h. Theorem 2 ensures that no requests for time steps smaller than h are
missed in doing so.

The intuition is as follows. The algorithm takes as input a set of pre-determined time
steps, e.g., corresponding to time steps that a user or external application would like to
query about or about which observations are provided. Step 2 produces the grounding,
G, of base, p, and timedep(0). Due to the fact that p defines the pre-determined time steps,
ground instances of the rules of timedep(0), which are time-dependent, are generated.
Ground instances of external enabled(T) are also generated for every time step defined by p.
Recall that externals are false by default: step 3 changes this by asserting all externals from
G true via the corresponding clingo primitive. At step 4, the answer set A of G is computed.
If A does not contain any request for new time steps, then A encodes the complete trajectory
that Incremental aims at computing. Thus, all that is left is to ground output incrementally
(step 22) and return the answer set of the updated grounding (step 23).

On the other hand, if the answer set computed at step 4 contains requests for new
times steps, then those requests need to be satisfied. Recall that the introduction of a new
time step may affect the calculation of the state of the domain at the time steps that follow
it. For this reason, the algorithm must retract all rules that are related to those time steps.
This process begins with step 8, which finds the minimum requested time step, m.

If m is greater than the requested time horizon h, then the iterations terminate (step 10)
and the computation is finalized (steps 22–23). Step 10 ensures the finity of the returned
trajectories and, correspondingly, of the computation.

If m ≤ h, then step 10 removes from G the groundings of all rules that produce
information about the state of the world at step m or greater. This is accomplished by
setting the corresponding enabled(T) externals to false, which causes those rules to become
inapplicable, and by releasing the externals. By releasing the externals, we ensure that, at
steps 11 and 12, clingo will completely remove from G the groundings of all rules that have
become inapplicable.

Algorithms 2023, 16, 169 14 of 23

Algorithm 3 Algorithm Incrementalh

Input: p: pre-determined time steps, e.g., from observations and queries, as facts of the
form time(t)

Input: O: a set of observations
Input: h: threshold for requests for the creation of new time steps
Output: an answer set

1: . Expansion phase (base + timedep(0) + p + O)
2: G ← ground(base ∪ timedep(0) ∪ p ∪O)
3: For every external enabled(t) from G, assert enabled(t) true via clingo’s

assign_external()
4: A← solve(G)
5: . end of expansion phase
6: while {t | newtime(t′, t) ∈ A and time(t) 6∈ A} 6= ∅ do
7: . Retraction phase
8: m← min{t | newtime(t′, t) ∈ A and time(t) 6∈ A}
9: If m > h then exit while

10: For every external enabled(t) from G such that t ≥ m, assert enabled(t) false and
release it via clingo’s release_external() . i.e., it is no longer an external

11: solve(G) . preparatory step for cleanup()
12: cleanup(G)
13: . end of retraction phase
14: . Expansion phase
15: G ← ground({time(t). | newtime(t′, t) ∈ A and time(t) 6∈ A}) . add new time

steps to the ground program
16: G ← ground(timedep(m))
17: For every external enabled(t) from G such that t ≥ m, assert enabled(t) true
18: A← solve(G)
19: . end of expansion phase
20: end while
21: . addition of the output module
22: G ← ground(output)
23: return solve(G)

It is important to note that this retraction phase is a fundamental step in ensuring the
satisfaction of the Module Theorem in Incrementalh. Without the retraction phase, it is
not difficult to see that rules triggered during the following expansion phase may yield
(ground) literals that are already derived by rules triggered at earlier time steps. This
phenomenon is due to the presence of durative aspects in the action descriptions. If the
language is restricted to traditional inertial and default fluents, then the retraction phase is
not necessary.

Next, step 15 adds the requested time steps to G. Step 16 adds to G the groundings
of all rules that compute the state of the world at time steps m and later. Step 17 asserts
all externals from G true and step 18 calculates the updated answer set A of G. At this
point, the algorithm verifies whether A contains any requests for new time steps and the
process repeats.

One may want to notice that steps 10 and 17 result in the enabling of all time steps
t ≥ m, i.e., of all newly introduced time steps as well as every time step t ≥ m that
previously existed. The reason for enabling the latter set is that the retraction phase
removes all information about the state of the domain at m and later time steps. During the
following solving phase, the information must thus be recomputed. One may be tempted
to think that this recomputation is unnecessary. However, this is not the case, because the
state of domain at a previously existing time step t may be affected by changes occurring at
a newly introduced time step t′ that precedes t.

In comparing step 2–4, 10–12, and 16–18, one may observe that, when time steps greater
than m are already present in the grounding at the time of steps 2–4, the corresponding

Algorithms 2023, 16, 169 15 of 23

rules are grounded and solved once at steps 2–4, then retracted at steps 10–12, and later
regrounded and solved at steps 16–18. Undoubtedly, this process involves some degree of
potential recomputation, but is necessary to ensure the satisfaction of the conditions of the
Module Theorem. Retracting the rules is necessary to ensure that the necessary conditions
are satisfied during the following expansion phase.

Rather than using newtime/2, one may be tempted to introduce new time steps by
means of a relation newtime/1 and correspondingly modified rule from (17):

newtime(T + d)← Γ(T). (20)

However, this rule may in some cases lead to the violation of the conditions of the
Module Theorem. To understand how this may happen, consider time steps t1 < t2 < t3
greater than t and such that t1 and t2 are enabled (i.e., enabled(t1) and enabled(t2) both hold),
and rules at both time steps require the introduction of time step t3 (i.e., newtime(t1, t3) and
newtime(t2, t3) both hold). Suppose that a retraction phase occurs (steps 8–12) to a time step
m such that t1 < m < t2. In the following expansion phase (steps 15–18), the ASP program
will effectively consist of two modules: a module P1 containing ground rules corresponding
to time steps 0 through m− 1, and a module P2 containing ground rules corresponding
to time steps m and greater. It is not difficult to see that each module contains a ground
instance of the above definition of newtime/1 that defines newtime(t3). This violates the
condition of the Module Theorem according to which O1 ∩O2 = ∅. The use of relation
newtime/2 in place of newtime/1 prevents this from happening, because module P1 defines
newtime(t1, t3) and module P2 defines a different literal newtime(t2, t3).

The soundness and completeness of Incrementalh are given by the following theorem.

Theorem 3. Given a program Π, set p of pre-determined time steps, set O of observations, and time
horizon h. If clingo(σ(Π)∪ p∪O) terminates, then the trajectory encoded by Incrementalh(p, O, h)
coincides with the trajectory encoded by the answer set of clingo(σ(Π) ∪ p ∪O).

Proof. The proof easily follows from Theorem 1. The key is to note that:

• At each iteration, Incrementalh is guaranteed to introduce at least the same time step
introduced by Incremental;

• The retraction phase preserves all (ground) rules for time steps prior to m.

6. Experimental Evaluation

In order to evaluate the performance of Incrementalh, we compared its execution time
against that of a single-shot (i.e., non-incremental) execution of clingo. To do this, we
generated sets of observations about sequences of time steps of progressively increasing
length from 1 to 114 steps, representing a typical test input for the user-facing application.
Then, we ran the instances with both Incrementalh and clingo (in single-shot mode) in order
to calculate the corresponding trajectories. The single-shot version of the program was
obtained as described in Section 4.

The experiments were executed on a computer running CentOS 7, equipped with
an Intel Xeon CPU E5-2699 v3 at 2.30 GHz, 24 GB RAM, and using clingo 5.4.0, the
version of clingo for whose incremental API Incrementalh was developed. Incrementalh was
implemented in Python and configured as clingo’s control custom loop for the incremental
runs. Every run was set up with a timeout of 1 h. The results are shown in Figures 2–4.

Clingo in single-shot timed out 23 times out of 114, i.e., about 20% of the time. The
average execution time of the instances that did not time out was 7.3 s, with a standard
deviation of 16.7 and a maximum execution time of 141.39 s. If one factors in the instances
timed out, then the average time increased to 732.1 s.

Algorithms 2023, 16, 169 16 of 23

Incrementalh never timed out. The average execution time was within the requirements
for practical use, with an average time of 4.1 s, a standard deviation of 2.4, and a maximum
execution time of 10.4 s.

Comparing the performance of the two provides some clear indications of the greater
consistency of Incrementalh. To begin with, the 23 timeouts of the single-shot version are
of course extremely problematic for practical use. Incrementalh does not pose such an
issue since it never timed out. Having said that, before the experimental phase of this
project, we were unsure how Incrementalh would compare with the single-shot version
on instances where the latter would not time out. In fact, Incrementalh involves a rather
complex algorithm that is implemented in Python and runs as clingo’s control loop. The
single-shot version, on the other hand, relies on clingo’s default control loop, which is
written in highly optimized C/C++. On simpler instances, we suspected that the single-shot
version may be faster. Furthermore, while indeed there is a number of simple instances
in which the single-shot version is marginally faster, its performance rapidly degrades,
as indicated by the higher values of average time (7.3 s–or 732.1 s!–vs. 4.1 s), standard
deviation (16.7 vs. 2.4), and substantially higher maximum execution time (141.3 s vs.
10.4 s). All in all, our experiments demonstrate the exceptional capabilities of clingo’s
support for incremental computations, which enabled us to develop an ASP-based solution
that featured consistently fast execution. The results also demonstrate the practical viability
of our approach for extending the use of incremental computations to situations where
straightforward encodings fail to satisfy the conditions of the Module Theorem.

An noteworthy observation on the single-shot instances that resulted in a time out is
that, in all cases, the computation timed out during the grounding phase of the process.
In fact, it would appear that, in those instances, the size of the grounding grows very
dramatically, ultimately leading to either a time out or, if no time out is set, to an out-of-
memory condition. We believe this to be an observation that has important implications on
which other possible approaches are applicable to this problem. We comment on this topic
in Section 10.

0

500

1000

1500

2000

2500

3000

3500

4000

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0

1

1
0

5

1
0

9

1
1

3

All Instances

Incremental Single-shot

Figure 2. Comparison of the execution times for all instances.

Algorithms 2023, 16, 169 17 of 23

0

20

40

60

80

100

120

140

160

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91

Non-timeout Instances

Incremental Single-shot

Figure 3. Comparison of the execution times for all instances that did not time out.

0

1

2

3

4

5

6

7

8

9

10

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91

Non-timeout Instances (10 sec detail)

Incremental Single-shot

Figure 4. Comparison of the execution times for all instances that did not time out, 0–10 s detail.

7. Practical Extensions: Accommodating Incremental Observations

In this and later parts of this paper, we focus on extensions of Algorithm Incrementalh

(Algorithm 4) that are of practical interest.
One may observe that Algorithm Incrementalh (Algorithm 4) leverages clingo’s incre-

mental infrastructure to improve performance for a given set of observations and queries.
However, if further observations become available at a later time, the entire algorithm needs
to be executed again. The refinement of Incrementalh shown below, called Incremental+, can
incrementally integrate observations as well. Incremental+ requires the output module to
be modified to include a directive:

#external output_enabled. (21)

Additionally, every rule of the module must be expanded to include the condition
output_enabled. This modification enables Incremental+ to enable and disable the output
module as needed.

Algorithms 2023, 16, 169 18 of 23

Algorithm 4 Algorithm Incremental+

Input: p: pre-determined time steps, e.g., from observations and queries, as facts of the
form time(t)

1: . Expansion phase (base + timedep(0))
2: G ← ground(base ∪ timedep(0) ∪ p)
3: For every external enabled(t) from G, assert enabled(t) true via clingo’s

assign_external()
4: A← solve(G)
5: . end of expansion phase
6: if {t | newtime(t′, t) ∈ A and time(t) 6∈ A} = ∅ then
7: m← ⊥
8: else
9: m← min{t | newtime(t′, t) ∈ A and time(t) 6∈ A}

10: end if
11: O← ∅
12: while true do
13: while m 6= ⊥ do
14: . Retraction phase
15: For every external enabled(t) from G such that t ≥ m, assert enabled(t) false and

release it via clingo’s release_external() . i.e., it is no longer an external
16: solve(G) . preparatory step for cleanup()
17: cleanup(G) . clingo primitive for retracting previous conclusions
18: . end of retraction phase
19: . Expansion phase
20: G ← ground({time(t). | newtime(t′, t) ∈ A and time(t) 6∈ A}) . add new time

steps to the ground program
21: G ← ground(timedep(m) ∪O) . inject the observations
22: For every external enabled(t) from G such that t ≥ m, assert enabled(t) true
23: A← solve(G)
24: . end of expansion phase
25: if {t | newtime(t′, t) ∈ A and time(t) 6∈ A} = ∅ then
26: m← ⊥
27: else
28: m← min{t | newtime(t′, t) ∈ A and time(t) 6∈ A}
29: end if
30: end while
31: . addition of the output module
32: G ← ground(output)
33: assert output_enabled true
34: output solve(G)
35: . end of addition of the output module
36: receive O . receive new observations. Assumption: O 6= ∅
37: assert output_enabled false
38: m = min{timestep-of(o) | o ∈ O}
39: end while

Differently from Incrementalh, Incremental+ does not terminate and thus does not return
any value. Rather, it assumes a two-way communication with the caller via primitives
output and receive. The former is used to send an answer set to the caller and the latter is
used to fetch a new set of observations from the caller. Incremental+ relies on the assumption
that observations are never withdrawn, but while it is possible to lift this assumption, doing
so is beyond the scope of this paper.

The overall flow of Incremental+ is as follows. At first, the algorithm is started and
given a set of pre-determined time steps. These are used for the first iterative computation,
which follows the same approach of Incrementalh, incrementally adding new time steps as
prescribed by the durative state constraints of the program. At the end of that computation,

Algorithms 2023, 16, 169 19 of 23

the output module is added and the corresponding answer set sent to the caller (step 34).
Then, the algorithm waits for new observations (step 36). When those are received, the
output module is removed from the program (step 37), since its conclusions will need to
be completely reevaluated later. Then, the smallest time step m among those of the new
observations is found (step 38). This step assumes the existence of a function timestep-of
that returns the time step of the observation provided to it. The algorithm, then, returns
to step 13, where a retraction phase occurs, aimed at removing from the program all rules
related to time step m and later time steps. Following this, the computation follows the
same flow of Incrementalh, eventually resulting in an updated answer set being passed to
the caller at step 34, after which Incremental+ returns to waiting for new observations.

8. Computation from a Saved State

While Incremental+ often makes it possible to efficiently incorporate new observations,
it has two potential drawbacks:

• If the observations receive require backtracking to a much earlier time step, the
resulting computation may be slow. In our experiments, we observed instances in
which the algorithm took about 20 s for computing the states corresponding to a
timeline that contained observations for a certain collection of time steps, while the
algorithm was able to complete the computation in about 8 s when provided all
relevant time steps at the beginning of the computation.

• Incremental+ stores the information about the search space in memory. Thus, the use
of Incremental+ may not be feasible on cloud platforms where service instances are
frequently terminated (possibly without warning) and restarted.

Thus, in this section we discuss a different approach, in which we build once again
upon Algorithm Incrementalh to make it possible to efficiently resume the computation from
a saved state. This approach relies on a slight modification of Algorithm Incrementalh, called
Algorithm Incrementalc, which takes an additional input argument s, which is a set of facts
encoding a previously saved state of the domain. The facts include not only information
about which fluents literals are true in that state, but also (a) information about the amount
of time left for durative fluents and (b) facts of the form time(t) for any future time step that
needs to be considered in the evaluation of the behavior of durative fluents. The algorithm
also assumes that the time step of s is included in input argument p. Step 2 of Incrementalh

is modified as follows:

G ← ground(base ∪ timedep(0) ∪ s ∪ p ∪O) (22)

that is, s is included in the initial grounding process. The entire list of steps of Algorithm
Incrementalc is not given due to the simplicity of the modifications.

Rather than always starting its computation from scratch, Incrementalc is capable of
beginning its computation from a previously computed state of the domain. The algorithm
builds upon the observation that, even in the presence of durative fluents, every state of
a trajectory depends solely on the state that precedes it (as well as any actions that may
occur in it). Therefore, executing Incrementalc on a previously saved state does not hinder
the correctness of its computation. The soundness and completeness of Incrementalc with
regard to Incrementalh is ensured by the following property:

Lemma 1. Let ts be the time step of saved state s. The value of m at step 8 of Incrementalc (refer to
the same-numbered step of Algorithm 3) is guaranteed to be greater than ts.

Incrementalc is leveraged by Algorithm 5, shown below.

Algorithms 2023, 16, 169 20 of 23

Algorithm 5 Algorithm UpdateCache

Input: h: threshold for requests for the creation of new time steps
Input: 〈sj, . . . , sk〉: a previously computed trajectory
Input: Or: the set of all previously received observations
Input: On: a set of newly acquired observations
Output: s f , . . . , st: updated trajectory

1: n← min{t | obs(f , v, t) ∈ On}
2: . Check if some of the newly acquired observations predate step j
3: if n < j then
4: . If so, we recompute the trajectory from scratch
5: p = {time(0).} ∪ {time(t). | t ∈ I or obs(f , v, t) ∈ Or ∪On)}
6: A← Incrementalh(p, Or ∪On, h)
7: τ = extract-trajectory(A)
8: else
9: I = {j, . . . , k}

10: p = {time(t). | t ∈ I or obs(f , v, t) ∈ On}
11: . Find the saved state right before the first observation
12: m = max{i | i ∈ I and i ≤ n}
13: A← Incrementalc(p, On, h, sm)
14: 〈sM, . . . , sl〉 = extract-trajectory(A)
15: m′ = max{i | i ∈ I and i < m}
16: τ = 〈sj, . . . , sm′ , sm, . . . , sl〉
17: end if
18: return τ

The algorithm relies on the assumption that the user maintains a record of the latest
saved trajectory as well as of all previously received observations. When new observations
become available, the user invokes UpdateCache. Then, UpdateCache determines the smallest
time step that is affected by the new observations and incrementally updates the remaining
part of the trajectory, returning the result of the computation. Intuitively, the trajectory will
then be saved by the user for later reuse, when new observations are received.

It is not difficult to see that the algorithm can seamlessly handle cases in which earlier
parts of the trajectory are missing, e.g., if they have been dropped to save memory. If new
observations correspond to states that pre-date the first state of the trajectory, UpdateCache
falls back to recomputing the trajectory from scratch using the record of all observations.

Due to these features, UpdateCache is suitable for use on cloud platforms where nodes
may be terminated and restarted, as well as in cases in which memory constraints prevent
one from saving a complete trajectory. Under those conditions, UpdateCache is still capable
of leveraging clingo’s incremental computation capabilities and of avoiding recomputations
whenever possible.

9. Related Work

We already discussed the literature that is conceptually closest to our work, namely [19],
which explored mechanisms for handling “wall-clock” time in the context of action lan-
guages and ASP-based domain representations, and [21], where additive fluents were
investigated. The body of literature on linear temporal logics (LTLs) [24,25] is also rele-
vant to the representation and reasoning about “wall-clock” time. Particularly interesting
are the line of research on linear dynamic logic on finite traces (LTLf) [26–28], as well as
the integration of LTLs with ASP [29], but while all of these approaches provide useful
and convenient solutions to the representational problem related to “wall-clock” time, it is
not immediately clear whether they provide a solution to the computational problem that
we faced.

More closely related to our computational problem is the recent work on
overgrounding [30]. Overgrounding provides a “ground-once-solve-many” approach
for the efficient processing of a continuous stream of data by limiting the number of times

Algorithms 2023, 16, 169 21 of 23

the corresponding ASP program is grounded. There are two important aspects that, in our
opinion, limit the potential applicability of overgrounding to the problem at hand. First
of all, overgrounding is most appropriate for a stream of data in which the new data is
about more recent time points than the prior data. In our case, the new data may be about
past time points, e.g., newly received information about tests (or exposure) that occurred
in the past. Second, as we noted in Section 6, in the instances that are problematic for
single-shot solving, it is the grounding process that times out due to a dramatic growth of
the grounding of the program. Since overgrounding essentially relies on building a larger
grounding than needed in order to accommodate future inputs without further grounding,
it is difficult to see how the overgrounding technique may help address the performance
issues that motivated our work without major modifications.

It is worth pointing out that research has been recently conducted at the intersection
of ASP and high-utility pattern mining (HUPM). The work in [31] describes an approach
that lifts the typical assumption according to whcih each item of a knowledge base is
associated with a single utility. It is conceivable that approaches of this kind may provide
insights into alternate techniques for improving efficiency in the context of the problems
considered in this paper. Additionally, it may be interesting to investigate how HUPM may
be leveraged go beyond the reasoning task considered here, and particularly for mining the
data received by the system and identify potentially relevant patterns, such as unexpected
virus propagation pathways.

Finally, other solvers with multi-shot capabilities have been recently released, e.g., [8].
An investigation on the relationship between our techniques and the multi-shot computa-
tion capabilities provided by these solvers is certainly important, but beyond the scope of
the present paper.

10. Conclusions

Incremental techniques aim at making it possible to improve the performance of
the grounding and solving processes by reusing the results of previous executions. ASP
solver clingo supports both incremental grounding and incremental solving computations.
In order to leverage incremental computations in clingo, the modules of ASP programs
must satisfy certain safety-related conditions related to the Module Theorem. In a number
of problem domains and reasoning tasks, these conditions can be satisfied in a fairly
straightforward way. However, in certain practical applications, satisfying the conditions
becomes more challenging, to the point that it is sometimes unclear how or even if it is
possible to leverage incremental computations.

In this paper, we reported on our success in leveraging clingo’s support for incremental
computations in one such practical application, where ASP was used for formalizing and
reasoning about COVID-19 policies. Generally speaking, the task of focus was that of
calculating the trajectories of dynamic domains in the presence of durative aspects, such as
(default) durative fluents. This paper discussed a number of algorithms that we developed
to enable the use of incremental computations in these situations in which straightforward
encodings do not seem to be viable due to the constraints of the Module Theorem. Our
experimental evaluation showed that our approach allows one to leverage incremental
computations in an effective way, yielding substantially improved performance and a
substantially improved ability to consistently produce a result within a reasonable amount
of time regardless of the complexity of the trajectory being computed.

In terms of concrete contributions, our paper provided an approach for representing
dynamic domains that are suitable for incremental techniques despite the presence of dura-
tive components, algorithms that leverage clingo’s incremental computation capabilities
and avoid problems related to the conditions of the Module Theorem, and a demonstration
of the substantial advantages of these algorithms over non-incremental approaches when
it comes to efficiency of computation. Our results confirm the exceptional capabilities of
clingo’s incremental computations and demonstrate that restrictions on the use of such
features can be overcome with suitable representation techniques and algorithms.

Algorithms 2023, 16, 169 22 of 23

While our approach provides an efficient way for addressing the domains discussed
in this paper, there are two potential limitations that we have identified, and that are
worth considering. Upon inspection of the use of the retraction and expansion phases
in Algorithm Incrementalh, one can see that there is a worst-case scenario in which the
retraction phase removes all time points added by the previous expansion phase but
one. In those cases, one would be better off using Algorithm Incremental instead. The
other limitation was already discussed in Section 6: Incrementalh, at least in its current
form, is fairly computationally heavy compared to the default control loop in clingo.
As a result, in particularly simple instances, the single-shot version may outperform
Incrementalh, although in our experiments the single-shot version was never more than
marginally faster. Overcoming these potential limitations will be the subject of future
research. We also plan to conduct a more thorough experimental evaluation spanning over
multiple domains.

Author Contributions: Conceptualization, M.B. (Marcello Balduccini) and M.B. (Michael Barborak);
methodology, M.B. (Marcello Balduccini) and M.B. (Michael Barborak); software, M.B. (Marcello
Balduccini) and M.B. (Michael Barborak); validation, M.B. (Marcello Balduccini), M.B. (Michael
Barborak) and D.F.; formal analysis, M.B. (Marcello Balduccini); investigation, M.B. (Marcello
Balduccini), M.B. (Michael Barborak) and D.F.; resources, D.F.; data curation, M.B. (Marcello
Balduccini) and M.B. (Michael Barborak); writing—original draft preparation, M.B. (Marcello
Balduccini) and M.B. (Michael Barborak); writing—review and editing, M.B. (Michael Barborak); visu-
alization, M.B. (Michael Barborak); supervision, D.F.; project administration, D.F.; funding acquisition,
D.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gelfond, M.; Lifschitz, V. Classical Negation in Logic Programs and Disjunctive Databases. New Gener. Comput. 1991, 9, 365–385.

[CrossRef]
2. Marek, V.W.; Truszczynski, M. Stable Models and an Alternative Logic Programming Paradigm. In The Logic Programming

Paradigm: A 25-Year Perspective; Springer: Berlin/Heidelberg, Germany, 1999; pp. 375–398.
3. Falkner, A.; Friedrich, G.; Schekotihin, K.; Taupe, R.; Teppan, E.C. Industrial Applications of Answer Set Programming. KI–Kunstl.

Intell. 2018, 32, 165–176. [CrossRef]
4. Balduccini, M.; Gelfond, M.; Nogueira, M. Answer Set Based Design of Knowledge Systems. Ann. Math. Artif. Intell. 2006,

47, 183–219. [CrossRef]
5. Gebser, M.; Kaufmann, B.; Neumann, A.; Schaub, T. Conflict-Driven Answer Set Solving. In Proceedings of the Twentieth

International Joint Conference on Artificial Intelligence (IJCAI’07), Hyderabad, India, 6–12 January 2007 ; pp. 386–392.
6. Kaminski, R.; Schaub, T.; Wanko, P. A Tutorial on Hybrid Answer Set Solving with Clingo. In Proceedings of the Thirteenth

International Summer School of the Reasoning Web (RW-2017), London, UK, 7–11 July 2017; pp. 167–203.
7. Gebser, M.; Kaminski, R.; Kaufmann, B.; Schaub, T. Multi-shot ASP Solving with Clingo. J. Theory Pract. Log. Program. (TPLP)

2019, 19, 27–82. [CrossRef]
8. Calimeri, F.; Ianni, G.; Pacenza, F.; Perri, S.; Zangari, J. ASP-Based Multi-Shot Reasoning via DLV2 with Incremental Ground-

ing. In Proceedings of the Fourteenth International Symposium on Practical Aspects of Declarative Languages (PADL 2012),
Philadelphia, PA, USA, 23–24 January 2012; Number 7149 in Lecture Notes in Artificial Intelligence (LNCS); Russo, C.,
Zhou, N.F., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–9.

9. Oikarinen, E.; Janhunen, T. Modular Equivalence for Normal Logic Programs. In Proceedings of the Seventeenth European
Conference on Artificial Intelligence (ECAI’06), Riva del Garda, Italy, 1 September 2006; pp. 412–416.

10. Janhunen, T.; Oikarinen, E.; Tompits, H.; Woltran, S. Modularity Aspects of Disjunctive Stable Models. J. Artif. Intell. Res. 2009,
35, 813–857. [CrossRef]

11. Gelfond, M.; Lifschitz, V. Action Languages. Electron. Trans. AI 1998, 3, 193–210.
12. Baral, C.; Gelfond, M. Reasoning Agents in Dynamic Domains. In Logic-Based Artificial Intelligence ; Springer: Boston, MA, USA,

2000; pp. 257–279.
13. Balduccini, M. People, Ideas, and the Path Ahead. In Proceedings of the 24th International Symposium on Practical Aspects of

Declarative Languages (PADL 2022), Philadelphia, PA, USA, 17–18 January 2022; Lecture Notes in Artificial Intelligence (LNCS),
2022; Volume 13165.

http://doi.org/10.1007/BF03037169
http://dx.doi.org/10.1007/s13218-018-0548-6
http://dx.doi.org/10.1007/s10472-006-9026-1
http://dx.doi.org/10.1017/S1471068418000054
http://dx.doi.org/10.1613/jair.2810

Algorithms 2023, 16, 169 23 of 23

14. Available online : https://www.billboard.com/pro/super-bowl-halftime-show-covid-safety-coronavirus/ (accessed on 10
January 2023).

15. Available online : https://www.cdc.gov/coronavirus/2019-ncov/community/guidance-business-response.html (accessed on 10
January 2023).

16. McCarthy, J. Programs with Common Sense. In Proceedings of the Teddington Conference on the Mechanization of Thought
Processes, London, Her Majesty’s Stationary Office, 1959; pp. 75–91. Available online: https://books.google.com.hk/books?
hl=zh-CN&lr=&id=ig8mHog30X0C&oi=fnd&pg=PA54&dq=%7BPrograms+with+%7BCommon+%7BSense.&ots=fmkH502
LFW&sig=Bvb--R1ln9kYZ8TMMEG2lWg0_pI&redir_esc=y#v=onepage&q=%7BPrograms%20with%20%7BCommon%20%7
BSense.&f=false (accessed on 10 January 2023).

17. Hayes, P.J.; McCarthy, J. Some Philosophical Problems from the Standpoint of Artificial Intelligence. In Machine Intelligence 4;
Meltzer, B., Michie, D., Eds.; Edinburgh University Press: Edinburgh, UK, 1969; pp. 463–502.

18. Balduccini, M. Answer Set Based Design of Highly Autonomous, Rational Agents. Ph.D. Thesis, Texas Tech University, Lubbock,
TX, USA, 2005.

19. Chintabathina, S.; Watson, R. A New Incarnation of Action Language H. In Logic Programming, Knowledge Representation, and
Nonmonotonic Reasoning: Essays Dedicated to Michael Gelfond on the Occasion of His 65th Birthday; Balduccini, M., Son, T.C., Eds.;
Lecture Notes in Artificial Intelligence (LNCS); Springer: Berlin/Heidelberg, Germany, 2011; pp. 560–575.

20. Balduccini, M.; Lierler, Y. Constraint Answer Set Solver EZCSP and Why Integration Schemas Matter. J. Theory Pract. Log.
Program. (TPLP) 2017, 17, 462–515. [CrossRef]

21. Lee, J.; Lifschitz, V. Additive Fluents. In Proceedings of the Answer Set Programming: Towards Efficient and Scalable Knowledge
Representation and Reasoning, Stanford, CA, USA, 26–28 March 2001 .

22. Balduccini, M.; Gelfond, M. Diagnostic reasoning with A-Prolog. J. Theory Pract. Log. Program. (TPLP) 2003, 3, 425–461. [CrossRef]
23. McCain, N. Causality in Commonsense Reasoning about Actions. Ph.D. Thesis, University of Texas, Austin, TX, USA, 1997.
24. Kamp, J. Tense Logic and the Theory of Linear Order. Ph.D. Thesis, University of California, Los Angeles, CA, USA, 1968.
25. Pnueli, A. The Temporal Logic of Programs. In Proceedings of the 18th Annual Symposium on Foundations of Computer Science,

Providence, RI, USA, 31 October–2 November 1977; pp. 46–57.
26. Giacomo, G.D.; Vardi, M. Linear temporal logic and linear dynamic logic on finite traces. In Proceedings of the Twenty-Third

International Joint Conference on Artificial Intelligence, Beijing China, 3–9 August 2013.
27. Giacomo, G.D.; Stasio, A.D.; Fuggitti, F.; Sasha, R. Pure-Past Linear Temporal and Dynamic Logic on Finite Traces. In Proceedings

of the Twenty-Ninth International Joint Conference on Artificial Intelligence, Yokohama, Japan, 7–15 January 2020; pp. 4959–4965.
28. Giacomo, G.D.; Murano, A.; Patrizi, F.; Perelli, G. Timed Trace Alignment with Metric Temporal Logic over Finite Traces.

In Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning, Online, 3–12
November 2021; pp. 227–236.

29. Aguado, F.; Aguado, F.; Dieguez, M.; Perez, G.; Schaub, T.; Schuhmann, A.; Vidal, C. Linear-Time Temporal Answer Set
Programming. J. Theory Pract. Log. Program. (TPLP) 2023, 23, 2–56. [CrossRef]

30. Calimeri, F.; Ianni, G.; Pacenza, F.; Perri, S.; Zangari, J. Incremental Answer Set Programming with Overgrounding. J. Theory
Pract. Log. Program. (TPLP) 2019, 19, 957–973. [CrossRef]

31. Cabalar, P.; Terracina, G. An Answer Set Programming Based Framework for High-Utility Pattern Mining Extended with
Facets and Advanced Utility Functions. In Proceedings of the Rules and Reasoning: 5th International Joint Conference
(RuleML + RR 2021), Online, 8–15 September 2021; pp. 13–15.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.billboard.com/pro/super-bowl-halftime-show-covid-safety-coronavirus/
https://www.cdc.gov/coronavirus/2019-ncov/community/guidance-business-response.html
https://books.google.com.hk/books?hl=zh-CN&lr=&id=ig8mHog30X0C&oi=fnd&pg=PA54&dq=%7BPrograms+with+%7BCommon+%7BSense.&ots=fmkH502LFW&sig=Bvb--R1ln9kYZ8TMMEG2lWg0_pI&redir_esc=y#v=onepage&q=%7BPrograms%20with%20%7BCommon%20%7BSense.&f=false
https://books.google.com.hk/books?hl=zh-CN&lr=&id=ig8mHog30X0C&oi=fnd&pg=PA54&dq=%7BPrograms+with+%7BCommon+%7BSense.&ots=fmkH502LFW&sig=Bvb--R1ln9kYZ8TMMEG2lWg0_pI&redir_esc=y#v=onepage&q=%7BPrograms%20with%20%7BCommon%20%7BSense.&f=false
https://books.google.com.hk/books?hl=zh-CN&lr=&id=ig8mHog30X0C&oi=fnd&pg=PA54&dq=%7BPrograms+with+%7BCommon+%7BSense.&ots=fmkH502LFW&sig=Bvb--R1ln9kYZ8TMMEG2lWg0_pI&redir_esc=y#v=onepage&q=%7BPrograms%20with%20%7BCommon%20%7BSense.&f=false
https://books.google.com.hk/books?hl=zh-CN&lr=&id=ig8mHog30X0C&oi=fnd&pg=PA54&dq=%7BPrograms+with+%7BCommon+%7BSense.&ots=fmkH502LFW&sig=Bvb--R1ln9kYZ8TMMEG2lWg0_pI&redir_esc=y#v=onepage&q=%7BPrograms%20with%20%7BCommon%20%7BSense.&f=false
http://dx.doi.org/10.1017/S1471068417000102
http://dx.doi.org/10.1017/S1471068403001807
http://dx.doi.org/10.1017/S1471068421000557
http://dx.doi.org/10.1017/S1471068419000292

	Introduction
	Preliminaries
	Domain Representation
	Incremental Computation: Approach
	Efficiency and Finity of Computations
	Experimental Evaluation
	Practical Extensions: Accommodating Incremental Observations
	Computation from a Saved State
	Related Work
	Conclusions
	References

