A Framework for Interleaving
Planning-while-Learning and Execution

Marcello Balduccini

Centro di Ricerca “Informatica Interattiva”
Universita degli Studi dell’Insubria
via Ravasi 2, [-21100 Varese (Italy)
ph:+39-332-250212 fax:+39-332-281308

e-mail: marcy@mail.varbio.unimi.it

Abstract. Interacting with the environment in presence of incomplete
information requires the ability to acquire new knowledge from the inter-
action with the environment and to employ it when deliberating about
which actions to execute. The ability to identify a particular environ-
mental behaviour by inspecting perceptual feedback greatly contributes
to completing the knowledge available to the agent. This paper intro-
duces a formal framework for interleaving planning-while-learning and
execution in partially specified environments. Planning-while-learning
combines conventional planning with the search of the environmental
behaviour model that best fits the experienced behaviour of the environ-
ment. Heuristics for early termination of planning and assumptions are
used in order to reduce the cost of planning. Sufficiency conditions are
given that guarantee the soundness and the completeness of the agent’s
control system w.r.t. the environmental model and the goal.

1 Introduction

In the area of intelligent autonomous agents and of autonomous robots,
many different approaches have been attempted to reconcile the need to
carefully plan sequences of actions with the need to interact timely with
a rapidly evolving environment.

Some researchers have proposed to substitute planning with more light-
weighted reasoning techniques, like behaviours ([9], [8]), policies ([3], [4],
[10], [2]) and others. The drawback of these solutions is that, while they
solve the problem of a timely interaction with the environment, they pose
new problems because of the general reduction in the representation and
reasoning power.

On the other hand, other researchers have developed solutions which re-
duce the cost of planning, but do not affect the representation and rea-
soning ability. State of the art approaches ([11], [12], [1], [6], [7]) adopt
early termination heuristics, assumptive planning, abstract planning, of-
ten combined together, to form a powerful reasoning device able to in-
teract timely with the environment.

Even if it is a widely spread opinion that learning may increase the auton-
omy of both agents and robots by allowing them to refine their a-priori

environmental model according to the empirical experience, examples of
well formalized frameworks for agents integrating learning and planning
while acting timely with the environment are rare ([7]).

The present paper tries to fill this lack by introducing a formal frame-
work for interleaving planning-while-learning and execution in partially
specified environments. In presence of incomplete information, interleav-
ing ([5]) is a very efficient way to perform planning, since it allows to
exploit the perceptual feedback from the environment in order to in-
crease the knowledge available to the agent before a new planning phase
is started, thus reducing its computational cost. Planning-while-learning
([14]) combines conventional planning with the search, within a given
initial set, of the environmental behaviour model that best fits the expe-
rienced behaviour of the environment.

Our approach is based upon Nourbakhsh’s work on the interleaving of
planning and execution ([11], [12]) and Safra’s and Tennenholtz’s paper
on planning-while-learning ([14]); particular attention is paid to the suf-
ficiency conditions that guarantee the soundness and the completeness of
the agent’s control system w.r.t. the environmental model and the goal.
Heuristics for early termination of planning and assumptions about both
the current state of the world and the actual environmental behaviour
are used in order to reduce the cost of the planning process.

The paper is structured as follows. In Sect. 2 we introduce our version
of Nourbakhsh’s framework for the interleaving of planning and execu-
tion, which represents the state of the art in this area. It will constitute
the basis for Sect. 3, where we describe our framework for interleav-
ing planning-while-learning with execution and deal with soundness and
completeness. In Sect. 4 we compare our work with relevant research in
this area. In Sect. 5 we draw the conclusions from our work and highlight
possible future developments.

2 Interleaving Planning and Execution

With respect to modeling a robot’s interaction with the environment,
Nourbakhsh ([11]) has shown that the world may be viewed as a system
made up of two distinct, interacting parts: the robot and its environ-
ment, which are connected only by the percept and the action streams.
In our framework, a percept is formally defined as a vector representing
the instantaneous image of the robot’s inputs. An action is a vector rep-
resenting the instantaneous image of the robot’s outputs.

The interaction between the agent and the environment is modeled as
the interaction between two finite automata, the robot finite automaton
and the environment finite automaton.

The robot finite automaton or rfa is defined as a tuple <P, B, A, int,
ext,b>, where:

— P is a set of input objects (the agent’s possible percepts);

— B is a set of internal states;

— A is the set of output objects (the agent’s possible actions);

— int is a function P x B — B that updates the robot’s internal state;

— ext is a function B — A that prescribes the robot’s output;
— b is a member of B (the robot’s initial internal state).

The environmental finite automaton or efa is defined as a tuple

<A, S, P,do, see, s>, where:

— A is the environment’s set of input objects (the robot’s actions);
S is the environment’s set of states;
P is the environment’s set of output objects (the robot’s percepts);
do is a function A x S — S that updates the environment’s state;
see is a function S — P that updates the robot’s percept;

s is a member of S (the initial state of the world).

O

O

<

<

<

(a)

(b)

()

Fig. 1. (a) A simple maze. (b) An incompletely specified maze. (c) A maze with objects

with incompletely specified behaviour.

Ezample 1. Suppose that our robot is put in the maze depicted in Fig.
1(a) at position (1,1). The robot has four binary inputs, corresponding
to four wall detectors, placed one on each side of the robot. Three actions
are available: ahead, turn-left and turn-right. The control system of the
robot is programmed to go ahead whenever possible and to turn left
otherwise. The <rfa,efa> system for this setting may be described as
follows:

— P is the set of all binary-valued vectors of length 4;

A = {ahead, turn—Ileft, turn—right};

S is the set of tuples <maze—conf,pos> where maze—conf is the
configuration of the maze shown in Fig. 1(a) and pos is the position
of the robot, ranging all over the maze, and its bearing (n,s,e,w);

s is the tuple <maze—conf,(1,1,e)>;

B = {ahead—clear,ahead—blocked, start} where start represents the
robot’s initial state, when nothing is known yet about the sensors’

state;

b is set to start;

do updates the position of the robot according to the action per-

formed;

see returns the value of the input channels of the robot according to

the position of the walls around the robot;

— int is defined as follows:

int(p, b) = ahead—clear if ahead-bit of pis 0
P:9) =\ ahead—blocked if ahead-bit of pisl’

— ext is defined as follows:

cat(b) = ahead if b = ahead—clear
| turn—left if b = ahead—blocked °

In many cases, the unreliability of sensors and effectors, as well as in-
complete knowledge about the environment, prevent the designer from
coming up with an efa, which by definition doesn’t permit to express
incomplete information.
For this reason we introduce a partially specified environmental fi-
nite automaton or pefa, which is defined as a tuple <A, S, P, effect, sense,
I>, where:
— A, S and P are defined like in efa;
— effect is a function A x P(S) — P(S) that updates the environment’s
set of possible states;
— sense is a function P x P(S) — P(S) that returns the maximal
subset of the second argument consistent with the robot’s percept;
— I is a subset of P(S) (the set of possible initial states of the world).
The pefa makes it possible to express incomplete information by reason-
ing in terms of the set of the environment’s possible states (the so-called
state-set).

Ezample 2. Suppose that our robot is put in the maze depicted in Fig.
1(b). There is incomplete information about the initial position, which
may be either (1,1) or (5,3) or (4,5), and about its initial bearing, like
shown in figure. There is incomplete knowledge, as well, about the walls
drawn in grey: only one of them exists, but it is not known which one.
The other features of the environment are like in Example 1.

The pefa for this setting may be described as follows:

— P and A are defined like in Example 1;

— S is the set of tuples <maze—conf, pos> where maze—conf is one of
the two possible configurations of the maze shown in Fig. 1(b) and
pos is defined like in Example 1;

— I is the set of tuples <maze—conf, pos>, where maze—conf is one of
the two possible configurations of the world and pos is either (1,1, ¢)
or (5,3, w) or (4,5,n);

— effect(a,S") and sense(p, S’) are defined following the environment’s
specifications.

Intuitively, many efa’s are “compatible” with a given pefa. We formally
define the notion of consistency as follows:

Definition 1. A pefa <A, S, P, effect, sense, I> is consistent with an efa
<A, S, P, do, see, s> iff:

1. V§8' C S Vp e P sense(p,S’) D {5|5€ S’ A see(3) = p};

2. VS' C S Va € A effect(a,S’) D {5|3s' (s’ € S As=do(a,s'))};

3. sel.

Consistency of a pefa with an efa guarantees that a state-set tracker
(see Definition 3), applied to an environment modeled by the efa, tracks
the environment using the information provided by the pefa, despite its
incompleteness.

Now we can define the planning problem in terms of a pefa and a goal. A
problem instance is a tuple <pefa, G> where pefa is defined as usual and
G is a set of state sets, representing the disjunction of mutually exclusive
goals, each expressed by a state set. The concept of solution of a planning
problem is formalized by the following definitions.

Definition 2. Satisfaction of a goal G by a state-set I is expressed by
the relation satisfies(I,G) defined upon P(S) x P(P(S)) as follows:
satisfies(I,G) <= Jg (g € GAI Cyg).

Definition 3. A state set tracker (sst) for a pefa <A, S, P, effect, sense,
I> and an action-percept history o = {a1,p1,a2,p2,--.,0n,Pn} S a
robot finite automaton <P, B, A int,ext,bi> where: (1) B = P(S); (2)
int(pi, bi) = sense(ps, effect(as, b;)); (3) ext(b;) = ai; (4) by = 1.

Definition 4. An rfa is a solution to a problem instance <pefa, G> iff,
for every efa consistent with pefa, given the action-percept history a =
{a1,p1,02,p2,.--,an,pn} of the system <rfa,efa>, the state set tracker
sst(pefa,a) in system < sst,efa> computes bp s.t. satisfies(bn,G) is
true.

In our approach we employ conditional planning to build plans leading
to the goal®; search for solution plans is performed in the space of state-
sets.
The interleaving of planning and execution is achieved by splitting the
planning process in several planning episodes which are alternated to
execution (see [11], [5], [13], [6], [1], [7])).
We divide the monolithic planning process into smaller planning episodes
by acting along two dimensions:
— early termination heuristics (ETH) cause interruption of a planning
episode before a solution plan is found (see [6], [7]);
— assumptions about the current state-set reduce the size of the search
space, simplifying the planning process as well.

A great deal of early termination heuristics have been investigated by
the researchers. We distinguish between early termination rules, which
preserve the soundness and the completeness of the control system of
the robot? (e.g. the viable plan termination rule and the forced plan
termination rule in [11]), and early termination heuristics, which don’t
preserve them (e.g. the resource-based termination heuristics in [6]).
Assumptive planning is realized by means of the state selection function
which is applied to the current state-set at the beginning of each planning
episode.

! Conditional plans prescribe the action to be performed according to every history
of percepts that can be encountered at execution time ([11]). For example, “reach-
elevator; if elevator-present then use-elevator else use-stairs” is a fragment of a
conditional plan for reaching the ground floor.

2 w.r.t. the goal specified and the environmental model.

Definition 5. The state selection function is a function sel: P(S) —
P(S) used to select, within the given state-set, those states which are
deemed relevant with respect to the current situation.

A function sel is a state selection function iff VI (I C S = sel(I) C I).

A general scheme of an rfa implementing interleaved planning and ex-
ecution by means of both early termination heuristics and assumptive
planning can be given in algorithmic form as follows:

Algorithm 1 (et-CSEL). Given:

— a pefa <A, S, P, effect, sense, I>;

— a state of state-sets G (the goal of the agent);

— a state selection function sel;

— a function et—plan that, given the current state-set J, the current
goal G and the effect and sense functions, returns a conditional plan
which may be either a solution plan or a partial plan (if an early
termination heuristic was applied);

— the relation satis fies;

— a function first which returns the first action of a conditional plan;

compute:

Let p = current percept

I = sense(p,I)

if satisfies(I,G) then terminate

J = sel(I)

CPlan = et—plan(J, G, effect, sense)
Let a = first(C Plan)

I = effect(a, I)

output = a

goto 1

© 0RO ot~

The algorithm performs continuous selection ([11]): assumptions and
plans are recomputed from scratch after the execution of every action.
The drawback of this approach is that the total conditional planning
cost may be much higher than in an algorithm in which replanning oc-
curs only when strictly needed. However, in domains with incomplete
information, in which the knowledge carried by the percepts plays a fun-
damental role, the tight interleaving of planning and execution imposed
by Algorithm 1 can have significant benefits.
The planning algorithm implementing et—plan is specified as follows:
Algorithm 2 (et—plan). Given:

— a state-set I representing the current state-set;

— a state of state-sets G representing the goal of the agent;

— the effect and sense functions;

— a relation check—ETH that checks whether early termination heuris-

tics can be triggered;

— a function nondet that performs non-deterministic choice;

— the set A of possible actions and the set P of possible percepts;
compute:
. if satisfies(I, @) then return
. if check—ETH(I) then return
. a = nondet(A)
. I' = effect(a,I)
. for every p € P do:
I" = sense(p,I')
. et—plan(I", G, effect, sense)

RSN E N SN

3 Interleaving Planning-while-Learning and
Execution

The basic framework (the pefa framework) that we have presented so far
makes it possible to cope with environments about which only incomplete
information is available.
Three forms of incomplete information can be handled:
— partial knowledge about the initial state of the world (represented
by the set I);
— partial knowledge about the behaviour of the environment (repre-
sented by the effect function);
— unreliability of sensory information (represented by the sense func-
tion).
In many cases, the performance of the agent might be improved by tun-
ing the description of the environment’s behaviour at run-time. This
contrasts with the a-priori specification of the effect function given in
the pefa.
The idea behind planning-while-learning is that the agent is given a set of
possible behaviours of the environment before interaction starts; while
interaction with the world progresses, the agent uses the information
available through sensors to select, from the initial set, the behaviour
which best fits the experienced behaviour of the environment.
In order to specify a set of possible environment’s behaviours we in-
troduce a planning-while-learning environmental finite state au-
tomaton or plefa, defined as a tuple <A, S, P, E, update, sense, F, I >
where:
— A, S, P, sense, I are defined like in pefa;
— E C P(S)A*P) is the set of the possible behaviours of the envi-
ronment;
— update is a function P(E) x P(S) x A x P(S) — P(FE) that updates
the set of possible behaviours of the environment;
— F C E is the set of the possible initial behaviours of the world;

Ezample 3. Suppose that our robot is put in the maze depicted in Fig.
1(c). Besides the specifications of Example 2 the cells with the grid can
either prevent robot’s crossing or make the robot advance of two cells
instead of just one or have no special effect. The behaviour is unknown,
but it is fixed over time and is the same for all the cells. The plefa for
this setting may be described as follows:

— P, A, S, I and sense are defined like in Example 2;

— E = F = {b1,b,b3}, where b; are the effect functions corresponding

to the behaviours described above.

The definitions that follow describe the concept of solution to a problem
instance and the relation among plefa, pefa and efa.

Definition 6. The effect function w.r.t. a set of behaviours F is a func-
tion effectr: A x P(S) — P(S) which describes the consequences of an
action from a state-set according to every behaviour belonging to the
gwen behaviour-set: VI C S Va € A effectr(a,I) = |J{I'|T (b €
FAba,I)=T1")}.

Definition 7. A state-behaviour set tracker (sbt) for a plefa <A, S, P, E,
update, sense, F, I> and an action-percept history a = {a1,p1,a2,p2,.--,
DnsGn} 18 a robot finite automaton <P, B, A int,ext,bi> where:

— B={<s,e> |s€P(S)NeeP(E)},

— int(pi, b;) =<sit1,update(es, i, as, Si+1)>, where

si+1 = sense(p;, effecte; (ai, ;) and b; =<si,e;>;
— ext(b;) = aq;
—bi=1.

Definition 8. A plefa < A, S, P, E,update, sense, F, I > is consistent
with a pefa <A, S, P,effect, sense, I> iff, for every efa consistent with
pefa, the action-percept history a = {a1,p1,a2,p2,...,an,pn} of the
system < rfa,efa > makes the state-behaviour set tracker sbt(plefa,)
compute e, = {effect} for an index k < n when applied to the system
<sbt,efa>.

Definition 9. A plefa < A, S, P, E,update, sense, F,I > is consistent
with an efa <A, S, P,do, see, s> iff there exists a pefa such that:

1. the plefa is consistent with the pefa, and

2. the pefa is consistent with the efa.

Definition 10. An rfa is a solution to a problem instance <plefa, G>
iff, for every efa consistent with plefa, given the action-percept history
a = {a1,p1,a2,p2,...,an,Pn} of the system <rfa,efa>, the state-behaviour
set tracker sbt(plefa,) in system <sbt,efa> computes s, s.t. satisfies(sn,
G) is true.

The conditional planning approach that we use in our extended frame-
work (the plefa framework) performs a search in the space of the couples
<state-set, behaviour-set>.

The fact that the behaviour-set is part of the search space results in being
it possible for the agent to build plans which take into account also the
information gained about the environment’s behaviour: early identifica-
tion of the actual behaviour is essential for a successful interaction with
the world, since sequences of actions may exist which lead to the goal
for some possible behaviours but make the goal unreachable for other
possible behaviours.

We represent the evolution of the world during interaction by means of
a state-behaviour set graph.

Definition 11. A state-behaviour set graph is a directed bipartite graph

with effectory nodes and perceptory nodes.

An effectory node is a tuple < state-set, behaviour-set > with action-

labeled arcs leading away from it. Each action arc labeled with action

a connects an effectory node <Si1,B1> to a perceptory node <Sa, B1>

iff So = effectp, (a,S1) where effects, is the effect function w.r.t. By.

A perceptory node is a tuple < state-set, behaviour-set > with percept-

labeled arcs leading away from it. Each percept arc labeled with percept p

connects a perceptory node <S1,B1> to an effectory node <Sa, Ba> iff
sense(p, S1) = Sa.

An effectory node <Si1,B1> is connected to another effectory node <

Ss, Ba> through a perceptory node <Sa, B1> iff B» = update(Bi, S1,a, S3)
where a is the action labeling the arc from <S1, B1> to <S2, B1>.

In the plefa framework the interleaving of planning-while-learning and
execution is obtained by means of early termination heuristics and as-
sumptions.

Assumptions can be made either about the current state-set, like in the
pefa framework, or about the current behaviour-set. In fact, the current
behaviour-set can be quite large and it can contain elements which are
not likely to represent the actual behaviour of the environment.
Planning using a large behaviour-set can be very time consuming, there-
fore making appropriate assumptions about which behaviours are more
likely to represent the actual environmental behaviour can result in a
relevant performance improvement.

Definition 12. The behaviour selection function is a function sely: P(E)
— P(E) used to select, among a set of possible behaviours, those which
are considered relevant with respect to the current situation.

A function sely is a behaviour selection function iff VF(F C E =
sely(F) C F).

We give now a simple algorithm for implementing interleaved planning-
while-learning and execution by means of both early termination heuris-
tics and assumptive planning:

Algorithm 3 (pl-CSEL). Given:

- aplefa <A, S, P, E,update, sense, F, I>;

a state of state-sets G (the goal of the agent);

— state and behaviour selection functions sel and sely;

— a function et—plan,; that, given the current state-set J, the current
behaviour-set C, the current goal G and the update and sense func-
tions, returns a conditional plan;

— the relation satisfies and the function first (see Algorithm 1);

compute:

Let p = current percept

I = sense(p,I)

if satisfies(I,G) then terminate
J = sel(I)

C = sely(F)

CPlan = et—plan,,(J, C, G, update, sense)
Let a = first(C Plan)

I' = effectr(a,I)

output = a

10. Let p = current percept

11. T' = sense(p,I")

12. F = update(F,1,a,I')

18. I=T

14. goto 8

© %D G Colo ~

The planning algorithm implementing et—plan,, is specified as follows:

Algorithm 4 (et—plany). Given:
— a state-set I representing the current state-set;
— a state-set F' representing the current behaviour-set;
— a state of state-sets G representing the goal of the agent;

— the update and sense functions;
— a relation check"ETH and a function nondet (see Algorithm 2);
— the set A of possible actions and the set P of possible percepts;
compute:
. if satisfies(I,G) then return
. if check—ETH(I) then return
. a = nondet(A)
. I' = effectr(a, I)
. for every p € P do
I" = sense(p,I')
F' = update(F,1,a,1")
. et—planpl(I”, F, G, update, sense)

SIS ESNEOE S SO

3.1 Theoretical Properties of the plefa framework

We briefly introduce the theoretical properties of the algorithms of the
plefa framework, namely Algorithms 3 and 4. Sufficiency conditions for
the soundness and the completeness of our rfa w.r.t. a given problem
instance <plefa, G> will be presented. Similar results regarding the pefa
framework and the control system built upon Algorithms 1 and 2, to-
gether with proofs, can be found in [11].

Note that we restrict our attention to semistatic environments, where
the world does not change sensibly during deliberation.

Definition 13. An rfa is sound w.r.t. a problem instance <plefa, G>
iff for each efa consistent with the plefa, if system <rfa,efa> terminates
at time tn, then s, makes true satisfies(sn, G), where s, is intended in
the sense of Definition 7.

Definition 14. An rfa is sound w.r.t. the plefa framework iff, for any
problem instance II, the rfa is sound w.r.t. II.

Definition 15. Given a conditional plan P and a plefa, we define the
overlay of P onto the plefa as the state-behaviour set graph corresponding
to the possible traces of P’s execution according to the environmental
model specified by the plefa.

Definition 16. Given a conditional plan P and a problem instance <
plefa, G>, we say that P goes from I to G iff, in the overlay of P onto
the plefa, each fringe node T makes true satisfies(T, Q).

Definition 17. An rfa is complete w.r.t. a problem instance <plefa, G>
iff if there exists a conditional plan P going from I to G then the rfa is
a solution.

Definition 18. An rfa is complete w.r.t. the plefa framework iff, for
any problem instance II, the rfa is complete w.r.t. II.

Definition 19. Given a problem instance < plefa,G >, a state selec-
tion function sel is weak iff Vf € E Vs € I (3r € S(path;(s,r) A
—path;(r,s))) = s € sel(I), where path; denotes that there ewists an
action-labeled path of length 1 in the partial state-behaviour set graph,
using {f} as the initial behaviour set, from state s to state r.

Definition 20. Given a problem instance <plefa, G>, a behaviour selec-
tion function sely is weak iff Vs,r € I (3f € E(path; (s, r)A-path,(r,s)))
= f € sely(F).

Definition 21. Given a problem instance <plefa, G>, there is effectory
expansion ff 3f € E Ja€ A AIC S |f(a,I)| > |I].

Definition 22. In a sense similar to [14] we say that the update func-
tion employs monotonic learning iff VF CE VI, I'CS Va€ A
update(F,I,a,I') C F.

Theorem 1. Algorithm 8 (pl-CSEL) is sound and complete w.r.t. the
plefa framework under the following conditions:

et—plan,,; is implemented with breadth-first search®;

the initial state set is finite;

the state selection function sel is weak;

the behaviour selection function sely is weak;

there is no effectory erpansion;

learning is monotonic.

S Grds Codo

Proof. The theorem was proved for the pefa by Nourbahsh (see Theorems
5.2, 6.2 and 6.3 in [11]). The result can be extended to the plefa by not-
ing that, under condition 6, the set of possible environmental behaviours
eventually converges to a singleton because of the definitions of solution
to a problem instance and of consistent efa. O

4 Related Work

Nourbakhsh [11], [12]) deals with the interleaving of planning and exe-
cution in much the same way as we did in Sect. 2. He introduces also
abstract planning, in which a partial order of pefa’s is given, each cor-
responding to a different abstraction level. No attempt is made to learn
the behaviour of the environment.

Safra and Tennenholtz ([14]) introduce a framework for planning while
learning that they employ for a computational study on the subject.
Their framework allows to specify a set of possible behaviours, of which
only one element at a time can be selected as the possible actual be-
haviour of the environment. It is easy to show that their framework is a
special case of our plefa framework.

5 Conclusions

We have presented a framework for interleaving planning-while-learning
and execution and have introduced sufficiency conditions for the sound-
ness and the completeness of the control system of an agent built upon
our framework. Though supported by the encouraging results of Nour-
bakhsh’s work, the plefa framework needs empirical testing in order to
assess its advantages over the other approaches. Future work will be fo-
cused on the introduction of abstract planning and inductive learning in
our framework.

3 and using the Viable Plan Termination Rule ([11]).

6

Acknowledgments

Alessandro Provetti provided invaluable constant support throughout
the whole writing of this paper. Illah Nourbakhsh gave me precious
suggestions on a number of studies related to the present work and
was very patient in replying to many questions about his framework.
This research was partially supported by Progetto cofinanziato (ex 40%)
MURST “Agenti Intelligenti: interazione ed acquisizione di conoscenza”.

References

[1]

(8]
[9]

[10]

[11]

[12]

[13]

[14]

Marcello Balduccini and Gaetano A. Lanzarone. Autonomous semi-
reactive agent design based on incremental inductive learning in
logic programming. In Wiebe Van der Hoek, Yves Lesperance, and
Rich Scherl, editors, Logical Approaches to Agent Modeling and De-
sign, Proceedings of the ESSLLI’97 Symposium, pages 1-12, 1997.
Chitta Baral and Son Cao Tran. Relating theories of actions and
reactive control. Transactions on Artificial Intelligence, 2:211-271,
1998.

C. Boutilier, T. Dean, and S. Hanks. Decision-theoretic planning:
Structural assumptions and computational leverage. Journal of Ar-
tificial Intelligence Research, 11:1-94, 1999.

Marco Dorigo. Editorial introduction to the special issue on learn-
ing autonomous robots. IEEE Transactions on Systems, Man, and
Cybernetics, 26(3):361-364, 1996. Part B.

R. Fikes. Monitored execution of robot plans produces by strips.
Technical Report 55, Stanford Research Institute, 1971.

R. A. Kowalski. Using meta-logic to reconcile reactive with ratio-
nal agents. Meta-logic and Logic Programming, pages 227242, Jan
1995.

John E. Laird and Paul S. Rosenbloom. Integrating execution, plan-
ning, and learning in soar for external environments. In Proceed-
ings of the 8th National Conference on Artificial Intelligence, pages
1022-1029, 1990.

Pattie Maes. Designing Autonomous Agents: Theory and Practice
from Biology to Engineering and Back. MIT Press, 1990.

Pattie Maes and Rodney A. Brooks. Learning to coordinate be-
haviours. In Proceedings of the 8th National Conference on Artificial
Intelligence, pages 796-802, 1990.

David E. Moriarty, Alan C. Schultz, and John J. Grefenstette. Evo-
lutionary algorithms for reinforcement learning. Journal of Artificial
Intelligence Research, 11:241-276, 1999.

Illah Nourbakhsh. Interleaving Planning and Ezecution for Au-
tonomous Robots. Kluwer Academic Publishers, 1997.

Illah Nourbakhsh. Using abstraction to interleave planning and
execution. In Proceedings of the Third Biannual World Automaton
Congress, 1998.

E. Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial
Intelligence, 5:115-135, 1974.

S. Safra and M. Tennenholtz. On planning while learning. Journal
of Artificial Intelligence Research, 2:111-129, 1994.

