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ABSTRACT
In this paper we study the problems involved in designing an intelligent agent that interacts with an unknown
environment and builds an inductive model of it which is incrementally updated during interaction. The project
belongs to the context of logic programming and is aimed at the construction of a learner and a planner - the base
components of the agent - sharing the same knowledge base (the model of the environment), which is represented in
extended propositional language. This paper is particularly dedicated to describing the problems related both to the
definition of the knowledge representation formalism and to learning, which is symbolic, inductive and incremental.
This approach to building intelligent agents differs from the current literature about this subject, since for the first
time we try to adopt a general-purpose inductive symbolic learner for the learning component of an agent which
interacts with the environment in real-time. All the project choices will be oriented to balancing the need for reduced
computational costs with the ability to reach the assigned goals in complex environments and in an acceptable time;
this trade-off, as we will see, influences both the choice of the knowledge representation language and the reasoning
techniques, which must not only be extremely efficient, but also very well integrated among themselves.

                                                       
* This research is in part supported by the ex-40% MURST Project “Knowledge Representation and Automated Reasoning”.

1. State of the art and
objective definition

In this paper we introduce a new agent model which
autonomously interacts with an unknown environment
and builds an incremental and inductive model of it by
means of symbolic learning.

This is a novel approach in that it integrates in a
single model both symbolic inductive incremental
learning and planning / execution; in the current
literature these two activities are dealt with separately
and we are aware of no attempt to investigate how the
characteristics of the learning and of the planning
component are influenced by the fact that they have to
co-operate and to feature both real-time responses and
good performance in complex environments.

Our agent is semi-reactive in that its overall structure
is based upon a hybrid design, unifying the rational
and the reactive agent design approaches, which is
similar to the one introduced in [Kowalski, 1995]
(examples on the reactive and rational approaches may
be found in [Laird and Rosenbloom, 1990], [Maes and
Brooks, 1990] and [Maes, 1990]).

In this paper we focus the attention on the problems
associated with designing the learning component, and

for sake of simplicity we won’t go into detail about the
problems related to resource sharing between the
components of the agent. With respect to the different
approaches to symbolic inductive learning ([Clark and
Niblett, 1989], [Ginsberg, 1990], [Muggleton, 1987],
[Quinlan, 1993], [Bratko et al., 1996], [Langley and
Simon, 1995], [Lavrac and Dzeroski, 1994], [De
Raedt, 1996]), we have chosen to build the learner
around a propositional attribute value language
extended with predicative elements. This choice
guarantees both good expressive power, which in turn
lets the agent handle complex environments, and
reduced cost of the learning algorithm, which allows
real-time responses.

In the first sections of this paper we describe the
language and the reasoning techniques of the learning
component of the agent. Later on we try to
characterize a whole class of learners, suitable as
agent’s learning components, by means of an abstract
learner; in order to give a concrete example of the
power of this abstraction, we show how it is possible to
specialize the algorithm to two well-known learners,
such as CN2 and AQR (which are propositional batch
learners), and to the learner of our agent (which is
semi-predicative and incremental).

The agent is developed in Prolog, in the context of
logic programming, and its performance is currently
being tested on simulated two dimensional
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environments by means of a client-server multi-user
environment for agent development and
experimentation that we have created on purpose.

2. Knowledge
representation

The model the agent builds expresses the transition
rules among the states of the environment. We
represent each state as a tuple of attribute value pairs.

Since we believe that the developed language may
easily adapt to the needs of both components, the
learner and the planner share the same knowledge
representation formalism.

We chose to represent the environment’s model by
means of rulesets, rather than decision trees; this
choice is motivated by considering that it’s frequently
necessary to modify only some fragments of the
knowledge base during the knowledge revision phase -
which is cheaper than a large-scale change - but using
decision trees may often bring, even in these cases, to
review the entire tree structure, which worsens
performance. For the same reason it was decided to
use unordered rulesets, rather than ordered ones.

A transition rule has a premise, which describes the
state in which the environment is at time t, and a
consequence, represented by an attribute value pair,
indicating which value that attribute will take in the
representation of the environment at time t+1.

The class of environments that our agent model has to
cope with can be characterized, with the terminology
of [Russell and Norvig, 1995], as inaccessible,
deterministic, nonepisodic, static and discrete. Briefly,
this principally means that the next state of the
environment is completely determined by the current
state and the actions selected by the agents
(determinism), but that the agent’s sensory apparatus
doesn’t necessarily detect all the aspects that are
relevant to the choice of actions (inaccessibility).

Since the inaccessible and deterministic environment
may appear nondeterministic to the agent, in order to
keep the predictive capability of the model, we
describe the state, to which the premise refers, by
means of the representation of a sequence of states,
beginning at time t+1 and extending back into time for
a suitable number of instants, which is rule-dependent
and is determined by the learner at run-time.

The rule’s syntax, expressed in BNF notation,
augmented with n (meaning a positive or null number
n of occurrences, less than or equal to a fixed limit n0)
is:

{ }

< > = < > ← < >
< > = < > < >< >

< > =
< > = < >

< > = < > < >
< > = < > = < >

rule selector premise

premise state state premise

state

state sel

sel selector selector

selector attribute value

n

::

:: |

::

:: ( )

:: ,

::

The temporal localization of each state in the sequence
is implicitly expressed by its position in it, with the
left-most state immediately following the application
of the rule, and the states on its right progressively
extending back into time.

The reason for including, in the state sequence of the
premise, the state following the application of the rule,
is that it lets us represent what we call geographical
knowledge, that is the kind of knowledge needed, for
example, to express the fact that in every state in
which X=x* and Y=y*, the COLOR attribute takes the
color* value.

The learner employs also a more high-level knowledge
representation formalism based upon the so-called
metarules, whose syntax, expressed in BNF notation,
is:

< > = < > < >
< > = < >

< > < >

metarule rule metapremise

metapremise rule

rule metapremise

:: ;

:: [ ]|

[ ],

The semantics of the metarule is:

if the premise is true and if each rule of the
metapremise has been activated at least once in
the past and no opposite1 rule to it has been
activated after the last activation of its, then the
consequence if true.

Metarules are used whenever the consequence of a rule
and a part of its premise have no precise temporal
link: the consequence is valid apart from the time past
since the verification of that part of the premise.

As an example of the use of metarules, consider the
following Wumpus World problem, inspired to the
homonymous environment introduced in [Russell and
Norvig, 1995].

Given a 3x3 subset of the two dimensional
environment, with the reference system’s origin
in the central square of the grid, if in (-1,0),
(1,0), (0,-1) and (0,1) a breeze is perceived,
then in (0,0) a pit is present.

A metarule for the Wumpus World problem is:

                                                       
1 For a formal definition of the terminology used see §3.1

and §3.3.



M. Balduccini G.A. Lanzarone 26/09/97

3

PIT true X Y

BREEZE true X Y

BREEZE true X Y

BREEZE true X Y

BREEZE true X Y

= ← = =
= ← = =
= ← = − =
= ← = =
= ← = = −

( , );

[ ( , )],

[ ( , )],

[ ( , )],

[ ( , )]

0 0

1 0

1 0

0 1

0 1

The learner provides a dynamical bias shift
mechanism for transforming rules into metarules and
for reverting back to the rule form when necessary
(hence the term dynamic). The heuristics ruling this
device are still under development.

3. The learning module of
the agent
The learner’s task is to observe the environment’s
state transitions and to consequently update the
knowledge base.

In the area of batch propositional learners the most
commonly used searching algorithm is the least-
commitment search, and especially the beam search,
since this method has the feature of delaying the
choices until enough information is available, avoiding
the need for backtracking.

In the incremental approach at each time slice the
learner must return a knowledge base consistent with
the events observed till that moment. Therefore the
learner is obliged to make those choices that in the
batch approach could have been delayed until the
acquisition of the whole dataset, and this involves
resorting again to backtracking.

Because of this, it is no longer possible to choose to
operate exclusively with generalizations or
specializations, as it happens in batch learning. The
search space has to be traversed both bottom-up
(generalizing) and top-down (specializing).

In addition the learner’s knowledge base must be
immediately usable to the planner, in an application
area as large as possible. Therefore it’s the learner’s
task to adequately post-process the knowledge base.

Finally the learner must record the information needed
to extend back into time the state sequence of the rule's
premise and to build the metarule’s metapremise.

Note that each rule is part of a rule structure, which is
a more complex data item, holding the rule itself and
other information fields, introduced later on. From
now on, we will use the term rule for addressing both
the rule itself and the rule structure, unless it is
confusing.

The first part of the induction process is devoted to
building new rules. Given two states statet and statet+1,

images of the environment at time t and t+1
respectively, for each attribute value pair of statet+1  a
rule is built, having the pair as consequence, a void
premise (meaning always true) and the (state’t+1 statet)
sequence as extended premise (introduced in §3.1),
where state’t+1 is statet+1  without the pair used as rule
consequence1.

3.1. Specialization
Let’s start with some definitions we will use later.

• Two selectors are opposite if they describe the
same attribute, but have different values.

• The domain of the premise is the set of state
sequences verifying the premise.

• The domain of the rule is the domain of its
premise.

• Given two rules A and B, from B follows A (A is a
consequence of B) if A and B have equal
consequences and the premise domain of A is a
subset of  the premise domain of B.

Specialization performs a top-down traversing of the
search space in order to restrict the domain of the rules
covering negative examples2. The domain’s restriction
happens with the standard method of adding
conditions to the rule’s premise. The heuristics
determining which conditions to add were refined by
means of an empirical experimentation period.

We make specialization operate on pairs of
inconsistent rules, having non-empty intersection
domains, in order to make the intersection set empty.

Specialization works by means of four operators. They
use two additional information fields in the rule’s
structure: the extended premise and the (positive)
example set. The extended premise is the most specific
premise covering all of the rule’s positive examples.
The example set is just this collection, or a subset of it,
according to whether the full memory or partial
memory model was adopted.

The first operator specializes the second rule on the
basis of the first, by adding to it the selectors of the
second rule’s extended premise having an opposite in
the first rule’s premise.

The second operator specializes the first rule on the
basis of the second, by adding to it the selectors of the

                                                       
1 Otherwise we would allow the construction of cyclic rules

like:

ATTR val ATTR val= − =:
2 In this context we define examples the pairs (consequence,

premise), where the premise is completely specialized,
that is it has a domain of unary cardinality. The examples
having a consequence referred to the same attribute of the
rule but different value are considered negative examples
(respect to a rule).
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first rule’s extended premise having an opposite in the
second rule’s premise.

The third operator specializes both rules by adding to
each its extended premise’s selectors having an
opposite in the other rule’s extended premise.

The fourth operator is used to remedy the wrong
choices made in the generalization phase. The second
rule is removed, and from each element of its example
set a new rule is generated, having as premise the one
of the original rule, but as extended premise the one
necessary and sufficient to cover the example it’s
generated from. Then the new rules are generalized,
taking into account the presence of the first rule,
which prevents reconstructing the original second rule.

The four operators are applied in increasing order of
power. Examples of the specialization operators may
be found in Table 5.

From the point of view of the specialization’s cost in
time, we underline that the process isn’t applied to all
the rule pairs which may be extracted from the
knowledge base, since this is consistent by
construction, but only to the pairs having as first
element each new rule to be inserted in the knowledge
base and as second element each rule already present
in it.

3.2. Generalization
Generalization performs a bottom-up traversing of the
search space, in order to enlarge the rule’s domain and
include new examples in it.

Generalization is applied to pairs of rules having the
same consequence, and generates a third rule that the
first two follow from. Like specialization,
generalization also exploits a standard method, the one
of dropping conditions from the premise.

Generalization acts by means of three operators.

The first operator controls if the second rule follows
from the first, in which case it removes the second rule
and updates the first by adding to its example set the
examples of the second, and suitably enlarging its
extended premise.

The second operator controls if the first rule follows
from the second, in which case it removes the first rule
and modifies the second by adding to its example set
the examples of the first, and suitably enlarging the
extended premise.

The third operator removes both rules and builds a
third one which is the most specific rule that both
follow from. Basically its premise contains the
intersection between the premises of both rules and the
extended premise is created in the same way. The
example set is simply the union of the starting rules’
sets. Before the substitution takes place, the new rule
is verified to be consistent with the knowledge base.

The third operator has the task of preventing the
learner from remaining blocked in blind alleys because
of some attribute value pairs wrongly introduced into a
premise. Moreover this operator disengages us from a
particular choice for the new rules’ premise: we are
currently using an initial empty premise, but
equivalent performance was obtained with more
specific initial premises, too.

The three operators are applied in increasing order of
power. Examples of the generalization operators may
be found in Table 6.

Like specialization, generalization is also applied only
to the rule pairs obtained using as first element each
new rule and as second each rule in the knowledge
base.

3.3. Rule and metarule processing
As we said it may happen that, from the point of view
of the agent, the environment behaves non-
deterministically. From this it follows that in some
situations specialization isn’t enough to make the
knowledge base consistent.

The typical situation in which it’s not possible to
restore consistency is when two rules have opposite
consequences, identical premises, and it is impossible
to specialize their premises any more.

The approach we follow to solve this problem consists
of extending back into time the premises of the
inconsistent rules, hoping thus to obtain some
information to supply to the environment’s
inaccessibility.

What we do is mark the inconsistent rules in order to
temporarily exclude them from the knowledge base,
which therefore returns consistent. From now on the
inconsistent rules are kept under observation and,
when the condition regarding the less recent state of
the premise becomes true, the representation of the
environment at the previous instant is recorded in a
suitable rule’s field. When the rule is completely
verified, in that the consequence also holds, then we
have found an example for the rule with a more
extended premise than the rule itself. This information
is then added to the rule which may be put back into
the knowledge base.

We have also found that if the rules are continuously
kept under observation, independently from whether
they’re marked, it is possible to know at each time
slice, without other computations, which rules are
going to be activated at the next instant, which turns
out to be very useful during planning.

The specialization and generalization algorithms
shown above may be applied also to metarules,
provided that the following definitions are given and
all references to rules in the algorithms are substituted
with references to metarules.
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• Two elements A and B of a metapremise (so also
two rules) are opposite if they have opposite
consequences and the intersection of the premises’
domains is not void.

• An element A of a metapremise is verified in a
state sequence if the rule A is activated in the
sequence and no opposite rule to A is activated in
the sequence after A.

• The domain of the metapremise is the set of all
state sequences verifying each element of the
metapremise.

• The domain of the metarule is the set of all state
sequences verifying both the premise and the
metapremise of the metarule.

4. A more general learner
The abstract algorithm we introduce, named Alpha,
allows the description of a large class of top-down,
bottom-up and hybrid learners, either batch or
incremental, working on rulesets which may be either
ordered or unordered, with noise handling
capabilities and marked by an attribute value
knowledge representation language, extended with
predicative elements if necessary. As we said above
(§1), we are interested in such an algorithm because it
allows us to characterise a whole class of learners
suitable for working as the learning module of the
agents we are studying.

The learner is based upon two predicates
implementing respectively top-down and bottom-up
searching in the hypothesis space. As you may see in
the listing the structure of the two predicates is the
same: in fact both execute a beam search. What
changes is the definition of the predicates
characterising the various learners. For this reason in
the following paragraphs we will describe the
searching algorithm in general, distinguishing
between the two versions only when necessary.

It may be reasonably supposed that any beam search
based batch learner may be derived from Alpha, (we’ll
show the AQR and CN2 derivation later on), as  well
as many incremental learners and in particular the one
we have developed, named Gamma, on which the
above described agent is based.

4.1. Algorithm description
The core of Alpha is based on a beam search in the
hypothesis space which at each recursion specializes
or generalizes the current star on the basis of the
learner defined criteria (select_negex, specialize_star,
select_noncov, generalize_star), prunes it by both
removing those elements subsumed by others
(subsumption_pruning) and discarding the less
significant elements if the star’s size exceeds a
predefined threshold (size_pruning), and selects the
best element by choosing between the best in the star

and the best computed in the previous recursion
(select_best_complex).

The top level predicate of Alpha’s top-down searching
algorithm [top_down(KB, To_be_classified, Rules,
New_KB)] receives two example sets (KB and
To_be_classified) and returns a ruleset (Rules)
covering the second input example and a copy of KB
made consistent with Rules (New_KB). When the
predicate is called, no difference is made between
positive and negative examples, which are mixed in
the two input sets and distinguished only by a label
representing the class they belong to, but only between
examples to be used for generating new rules
(To_be_classified) and examples to be used only to
compute the statistical significance of the rules and to
test consistency (KB).

By suitably handling KB and To_be_classified it is
possible to determine the way the learner works. The
different cases are reported in Table 1.

The noise handling capability is introduced by the
implementation of the predicates select_seed,
select_negex and specialize_star, as shown in [Clark
and Niblett, 1989].

The bottom-up search predicate [bottom_up(KB,
To_be_generalized, Rules, New_KB)] receives two
rulesets (KB and To_be_generalized) and returns a
ruleset (Rules) which generalizes the second input set
and a copy of KB updated according to the contents of
Rules (New_KB).

In order to support incremental learning the structure
of the complexes (the star’s elements, which in Alpha
are not distinguished from the rules) was extended
with respect to the one presented in [Clark and Niblett,
1989] in order to contain, besides the rule under
construction, also a copy of the original KB set,
suitably modified by specialize_star (or by
generalize_star). Thanks to this device Alpha can
specialize (or generalize) both the complexes under
construction and parts of the knowledge base already
present, thus reaching incrementality.

We must point out that in the incremental use of the
KB set it is implicitly assumed to possibly contain
examples and rules at the same time. It is the derived
learner’s task to allow this to really happen.

Another subtlety we want to point out is that the
implementation of Alpha is founded on the assumption
that examples can’t be further specialized; this allows
the direct resolution of the need to operate on the
union of KB and To_be_classified, while specializing
only the elements of KB. Until now we have found no
learner violating this assumption, nor do we see a
reason why this should happen in the future, therefore
we won’t dwell upon this subject any longer.

Finally note that the learner works in bottom-up
fashion only on unordered rulesets and, therefore,
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incremental hybrid learning may be done only on
knowledge bases of this kind.

4.2. Deriving the learners
The overall behaviour of the algorithm depends upon
the predicates which must be defined by each learner
and which are described in Table 2.

We are now going to show how it is possible to
characterise Alpha’s predicates in order to derive from
it AQR, CN2 and Gamma. Of course, since AQR and
CN2 are based only upon top-down searching, the
predicates related to bottom-up searching won’t be
reported in their derivations.

For the terminology used, such as star, complexes, etc.
and for a more detailed description of AQR and CN2
refer to [Clark and Niblett, 1989].

Table 3 shows how Alpha’s predicates must be defined
in order to derive AQR. Note that the KB set coincides
with Neg and To_be_classified coincides with Pos.

Table 4 summarises the derivation of CN2. Note that
the derivation is correct only on the condition that the
covers predicate has the following property (which
seems reasonable):

∀
∀ ¬





sel sel

sel sel

covers( , )

covers( , )

true

false

The use of the KB and To_be_classified sets depends
upon the kind of ruleset adopted (ordered or
unordered).

It is particularly interesting to note that CN2 and AQR
are substantially identical, except for the definition of
select_seed and select_negex.

Table 7 shows the derivation of the incremental
learner Gamma. The specialization and generalization
operators implementing specialize_star and
generalize_star are those described in §3. As you may
note Gamma operates with a fixed value of MaxStar,
equal to one.

An advantage of Alpha is that it lets us compare the
learners with each other, even when apparently they
have nothing in common, and obtain useful
indications on the possible changes to improve the
learner’s behaviour. From the observation of the
derivations of the three learners shown above we had
the idea, for example, of an incremental learner,
similar to Gamma, but having a MaxStar value greater
than one, and with termination and selection criteria

for the examples inspired by those of CN2. Even if the
learning capability of such a learner has still to be
evaluated, it would undoubtedly offer the chance to
have noise handling and a large star in the area of
incremental learning.

5. Implementation status
and final observations

The planning component of the agent is still under
development. A great advantage by which our planner
benefits is the availability of the information the
learner records in order to extend back into time the
state sequence of the rule’s premise. This make it
possible for our planner to foresee the state following
the current one by taking into account only a small
number of rules, and without recording the whole
sequence of states which has been observed.

Agent tests are executed by means of a client/server
multi-user development environment, designed on
purpose, inspired to EDEN/POPBEAST ([Paine,
1993]).

The system is still in beta version; an experimental
server which users can connect to by means of a
graphical client written in Java is currently available.
Authorized users can connect to the server using any
network browser and create their own experiments or
observe other users’ experiments (a more restricted
anonymous access is also available). An experiment is
made up of a two dimensional world, whose topology
and object behaviour may be defined at will, and an
agent, which may itself be defined as desired.

A small library of worlds and agents is currently
available; in order to create one’s own it is not enough
to connect to the server, but a login on the computer
where the server resides is needed.

Worlds are implemented in C++ and a class library is
available implementing the basic objects’ functions.
Agents may be written either in C++ or in Prolog (the
server has an embedded prolog interpreter). In both
cases an interface is available which simplifies the
interaction with the server.

The development environment may be reached at the
Internet address:

http://artu.usr.dsi.unimi.it/∼marcy/Eden

where some documentation and an access page to the
server are available. We believe the source code for
client and server will also be distributed soon.
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7. Appendix
KB To_be_classified Working manner

empty Pos+Neg Ordered rulesets, batch learning, covering for both Pos and Neg

Pos+Neg Pos+Neg Unordered rulesets, batch learning, covering for both Pos and Neg

Neg Pos Unordered rulesets, batch learning, covering for Pos

KB Pos+Neg Ordered rulesets, incremental learning, covering for both Pos and Neg

KB+Pos+Neg Pos+Neg Unordered rulesets, incremental learning, covering for both Pos and Neg

KB+Neg Pos Unordered rulesets, incremental learning, covering for Pos

Table 1 - Working manners of  Alpha

Predicate Description

select_seed Returns an example for which a covering complex must be generated.

select_noncov Returns a positive example not covered by the specified complex.
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Predicate Description

add_complex_to_cover Adds a complex to the covering set.

termination Implements the termination criteria.

select_negex Returns a negative example the current complex must not cover.

specialize_star Applies the specialization operators to the star.

generalize_star Applies the generalization operators to the star.

subsumption_pruning Removes from the star the complexes subsumed by other complexes in the star.

size_pruning Removes the less significant complexes from the star until the star’s size is below the
imposed threshold.

select_best_complex Chooses the best complex between the best in the star and the best computed by the previous
recursion.

Table 2 - Description of the customisable predicates

Predicate Definition

select_seed Selects a positive example not covered by the current cover. Selection follows AQR’s
heuristics.

add_complex_to_cover Adds the complex to the cover.

termination not covers(Star, negative_KB_examples_respect_to_Seed)

select_negex Selects a negative example covered by the star.

specialize_star Given Star, the new StarOUT is built in this way:

Extension sel sel Seed sel NegE

StarOUT x y x Star y Extension

= ∧ ¬
= ∧ ∈ ∈






{ |covers( , ) covers( , )}

{ | , }

subsumption_pruning Removes all complexes subsumed by other complexes in the star.

size_pruning Removes the less significant complexes until the star’s size is less than or equal to the user
defined threshold.

select_best_complex Returns the best complex among the ones in the current star, ignoring the best complex of
the previous recursion. It may be easily shown that this is equivalent to the selection used in
the implementation of AQR.

Table 3 - AQR’s derivation

Predicate Definition

select_seed Returns true, an example always verified (in [Clark and Niblett, 1989] it is indicated as an
empty complex).

add_complex_to_cover Adds the complex to the cover.

termination not empty(Star)

select_negex Returns false, an example never verified (in [Clark and Niblett, 1989] it is indicated as a null
complex).

specialize_star Given Star, the new StarOUT is built in this way:
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Predicate Definition

Extension sel sel Seed sel NegE

StarOUT x y x Star y Extension

= ∧ ¬
= ∧ ∈ ∈






{ |covers( , ) covers( , )}

{ | , }

subsumption_pruning Removes all complexes subsumed by other complexes in the star and all unsatisfiable
complexes.

size_pruning Removes the less significant complexes until the star’s size is less than or equal to the user
defined threshold.

select_best_complex Returns the best complex between the best in the star and the best computed by the previous
recursion.

Table 4 - CN2’s derivation

Predicate Definition

select_seed Selects a positive example not covered by the current cover. Selection follows Gamma’s
heuristics.

add_complex_to_cover Adds the complex to the cover.

termination not covers(Star, negative_KB_examples_respect_to_Seed)

select_negex Returns a negative example the current complex must not cover.

select_noncov Returns a positive example the current complex doesn’t cover.

specialize_star Applies Gamma’s specialization operators to the star.

generalize_star Applies Gamma’s generalization operators to the star.

subsumption_pruning Removes all the complexes subsumed by other complexes in the star and all unsatisfiable
complexes.

size_pruning Removes the less significant complexes until the star’s size is less than or equal to one.

select_best_complex Returns the only complex contained in the star.

Table 5 - Examples of the specialization operators

S first specialization operator

A
COLOR RED X Y

extendedpremise X Y

B
COLOR BLUE X

extended premise X Y

B
COLOR BLUE X Y

extended premise X Y

1

0 1

0 1

0

0 0

0 0

0 0

( )

:
( , )

: ( , )

:
( )

: ( , )

:
( , )

: ( , )

= ← = =
= =





= ← =
= =





⇒

′
= ← = =

= =




S ond specialization operator

A
COLOR RED X

extendedpremise X Y

B
COLOR BLUE X Y

extended premise X Y

A
COLOR RED X Y

extended premise X Y

2

0

0 1

0 0

0 0

0 1

0 1

(sec )

:
( )

: ( , )

:
( , )

: ( , )

:
( , )

: ( , )

= ← =
= =





= ← = =
= =





⇒

′
= ← = =

= =



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S third specialization operator

A
COLOR RED X

extendedpremise X Y

B
COLOR BLUE X

extended premise X Y

A
COLOR RED X Y

extended premise X Y

B
COLOR BLUE X Y

extended premise X Y

3

0

0 1

0

0 0

0 1

0 1

0 0

0 0

( )

:
( )

: ( , )

:
( )

: ( , )

:
( , )

: ( , )

:
( , )

: ( , )

= ← =
= =





= ← =
= =





⇒

′
= ← = =

= =




′
= ← = =

= =




S fourth specialization operator

A
COLOR RED X Y

extendedpremise X Y

B

COLOR BLUE X

extended premise X

examples
X Y

X Y

B erased

B
COLOR BLUE X Y

extendedpremise X Y

B
COLOR BLUE X Y

extendedpremise X Y

4

0 1

0 1

0

0
0 0

0 2

0 0

0 0

0 2

0 2

1

2

( )

:
( , )

: ( , )

:

( )

: ( )

:
( , )

( , )

:

:
( , )

: ( , )

:
( , )

: ( , )

= ← = =
= =





= ← =
=

= =
= =













⇒

′
= ← = =

= =




′
= ← = =

= =




Table 6 - Examples of the generalization operators

G first generalization operator

A
COLOR BLUE X

extendedpremise X Y

B
COLOR BLUE X Y

extended premise X Y

A

COLOR BLUE X

extended premise X

examples
X Y

X Y

B erased

1

0

0 1

0 0

0 0

0

0
0 1

0 0

( )

:
( )

: ( , )

:
( , )

: ( , )

:

( )

: ( )

:
( , )

( , )

= ← =
= =





= ← = =
= =





⇒

′
= ← =

=
= =
= =













G ond generalization operator

A
COLOR BLUE X Y

extendedpremise X Y

B
COLOR BLUE X

extended premise X Y

B

COLOR BLUE X

extended premise X

examples
X Y

X Y

A erased

2

0 1

0 1

0

0 0

0

0
0 1

0 0

(sec )

:
( , )

: ( , )

:
( )

: ( , )

:

( )

: ( )

:
( , )

( , )

= ← = =
= =





= ← =
= =





⇒

′
= ← =

=
= =
= =












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G third generalization operator

A
COLOR BLUE X Y

extendedpremise X Y

B
COLOR BLUE X Y

extended premise X Y

C

COLOR BLUE X

extended premise X

examples
X Y

X Y

A B erased

3

0 1

0 1

0 0

0 0

0

0
0 1

0 0

( )

:
( , )

: ( , )

:
( , )

: ( , )

:

( )

: ( )

:
( , )

( , )

,

= ← = =
= =





= ← = =
= =





⇒

′
= ← =

=
= =
= =













Table 7 - Gamma’s derivation

gamma_top_level(KB_in,New_examples,KB_out) :-
append(KB_in,New_examples,Temp_KB), %% build unordered rulesets
top_down(Temp_KB,New_examples,S_rules,S_KB),
bottom_up(S_KB,S_rules,G_rules,G_KB),
append(G_KB,G_Rules,KB_out).

Figure 1 - Gamma's top level predicate

top_down(KB,To_be_classified,Rules,New_KB) :-
top_down_1(KB,To_be_classified,[],Rules,New_KB).

top_down_2(New_KB,To_be_classified,_,Rules,Rules,New_KB) :-
empty(To_be_classified), !.

top_down_2(New_KB,_,Best,Rules,New_KB) :-
Best==[_,false], !.

top_down_2(KB,To_be_classified,_,RulesIN,RulesOUT,New_KB) :-
top_down_1(KB,To_be_classified,RulesIN,RulesOUT,New_KB).

top_down_1(KB,To_be_classified,RulesIN,RulesOUT,New_KB) :-
select_seed(RulesIN,To_be_classified,Seed),
append(KB,To_be_classified,Temp_examples),
generate_complex(Seed,[[Temp_examples,true]],[Temp_examples,false],Best),
add_complex_to_cover(RulesIN,Best,RulesIN1),
covered_by(Best,To_be_classified,Covered),
set_difference(To_be_classified,Covered,New_to_be_classified),
new_examples(Best,KB,To_be_classified,New_KB1),
top_down_2(New_KB1,New_to_be_classified,Best,RulesIN1,RulesOUT,New_KB).

%% generate_complex(Seed,StarIN,Best_Cpx,Complex)
%% top-down module

generate_complex(Seed,Star,Complex,Complex) :-
termination(Star,Seed), !.

generate_complex(Seed, StarIN,Best_Cpx,Complex) :-
select_negex(Seed,StarIN,NegE),
specialize_star(Seed,NegE,StarIN,StarOUT1),
subsumption_pruning(StarOUT1,StarOUT2),
size_pruning(StarOUT2,StarOUT),
select_best_complex(StarOUT,Best_Cpx,New_Cpx),
generate_complex(Seed,StarOUT,New_Cpx,Complex).

bottom_up(KB,To_be_generalized,RulesOUT,New_KB) :-
bottom_up_1(KB,To_be_generalized,[],RulesOUT,New_KB).

bottom_up_2(New_KB,To_be_generalized,_,Rules,Rules,New_KB) :-
empty(To_be_generalized), !.

bottom_up_2(KB,To_be_generalized,_,RulesIN,RulesOUT,New_KB) :-
bottom_up_1(KB,To_be_generalized,RulesIN,RulesOUT,New_KB).

bottom_up_1(KB,To_be_generalized,RulesIN,RulesOUT,New_KB) :-
select_seed(RulesIN,To_be_generalized,Seed),
%% selects a rule in RulesIN to be generalized
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append(KB,To_be_generalized,Temp_examples),
Temp_Best=[Temp_examples,Seed],
generate_complex(Seed,[Temp_Best],Temp_Best,Best),
add_complex_to_cover(RulesIN,Seed,Best,RulesIN1),
%% substitute Seed in RulesIN with Best; result in RulesIN1
covered_by(Best,To_be_generalized,Covered),
set_difference(To_be_generalized,Covered,New_To_be_generalized),
new_examples(Best,KB,To_be_generalized,New_KB1),
bottom_up_2(New_KB1,New_To_be_generalized,Best,RulesIN1,RulesOUT,New_KB).

%% generate_complex(Seed,StarIN,Best_Cpx,Complex)
%% bottom-up module

generate_complex(Seed,Star,Complex,Complex) :-
termination(Star,Seed), !.

generate_complex(Seed,StarIN,Best_Cpx,Complex) :-
select_noncov(Seed,StarIN,NonE),
%% selects a (positive) non covered example
generalize_star(Seed,NonE,StarIN,StarOUT1),
subsumption_pruning(StarOUT1,StarOUT2),
size_pruning(StarOUT2,StarOUT),
select_best_complex(StarOUT,Best_Cpx,New_Cpx),
generate_complex(Seed,StarOUT,New_Cpx,Complex).

System predicates

covered_by(A,B,C) unifies C with the subset of B covered by the ruleset A
set_difference(A,B,C) unifies C with the difference between A and B (A\B)
empty(L) succeeds if L is the empty list
append(A,B,C) unifies C with the union of the two lists A and B
new_examples([A,_],B,C,D) unifies C with the elements of A which are not in B∩C

Figure 2 - Alpha's top-down and bottom-up predicates


