People, Ideas, and the Path Ahead

Marcello Balduccini

Saint Joseph’s University
Elemental Cognition
marcello.balduccini@gmail.com

Abstract. While recent advances in machine learning have yielded im-
pressive results, researchers, practitioners, and even companies are begin-
ning to recognize that true artificial intelligence requires much more so-
phisticated reasoning capabilities. Knowledge representation and declar-
ative programming are arguably in a premier position to aid in the
achievement of such capabilities. In this paper, I reflect on people and
ideas that have had a great influence on my view of knowledge repre-
sentation and of declarative programming. Through these lenses, I will
discuss what I consider to be some of the most important milestones in
the evolution of the field over the past years. I will conclude my reflection
with my take on what this may tell us about the path that lies ahead
and about areas where research efforts may yield considerable benefits.

Keywords: Knowledge Representation, Answer Set Programming, Non-
Monotonic Reasoning, Declarative Programming, Practical Applications.

1 Introduction

I was honored to be asked to give an invited talk to PADL 2022. This article
summarizes the key points of my talk.

I decided to structure my talk as reflection on people and ideas that have
had a great influence on my view of knowledge representation and of declarative
programming. Interestingly, these ideas have corresponded to important mile-
stones in the evolution of the field over the past years. While many researchers
have contributed to these milestones, in this article I will refer specifically to
the people who have communicated those idea to me first-hand, as a way to
honor their impact on my views: Michael Gelfond’s idea that the Knowledge
Representation (KR) methodology and Answer Set Programming (ASP) [15,
23] itself were viable for practical applications; Henry Kautz’s suggestion that
declarative languages of different nature could be hybridized into languages suit-
able for use in industrial applications; and David Ferrucci’s idea that agents can
be thought partners, capable of intelligently engaging humans when faced with
problems beyond their individual capabilities. I conclude my reflection with my
take on the path that lies ahead and about areas where research efforts may
yield considerable benefits.



2 M. Balduccini

2 KR Methodology and Practical Applications

At the time it was conceived, Michael Gelfond’s idea was a bold one: that ASP,
coupled with a rigorous KR methodology, would be viable for practical applica-
tions, both in terms of convenience of use and in terms of scalability.

I was exposed to this idea when I joined Michael’s lab at Texas Tech Uni-
versity as a fresh Ph.D. student, and got involved in Michael’s and Monica
Nogueira’s research on the USA Advisor reasoning system [4]. At the time we
started working on the USA Advisor, demonstrations of ASP were mostly lim-
ited to the level of academic exercises and initial performance evaluations (e.g.,
[11]). There were some concerns that ASP programs would not scale enough to
be usable in practical applications, particularly when the programs were writ-
ten following a rigorous KR methodology and, even more so in the case of an
action-language based approach [16].

The rigorous KR methodology I am referring to is what Michael was very
careful in instilling all of his students. When one is formalizing a dynamic do-
main, one should first of all answer the questions: What are the objects of the
domain? What are the relations? What are the actions? Following this catego-
rization, one would then proceed to representing the effects of actions in terms
of dynamic causal laws, state constraints and executability conditions, either
directly encoded in an action language or translated to ASP. Very importantly,
fluents and actions should have a precise informal meaning stated in English. The
problem should, then, be formulated first using precise English statements that
(a) follow the expression patterns of laws of action languages, and (b) leverage
the English phrases associated with fluents and actions. The English statements
should then be translated into ASP in a direct way, so that every ASP statement,
when it was read back into English, would match the original English statement.

This approach is designed to yield elegant and fully declarative specifications,
which was in fact the case in the USA Advisor. Two of my favorites:!

% Tank node N1 is pressurized by tank X if it is connected
% by an open valve to a node which is pressurized by tank X.

h(pressurized_by(N1,X),T) :- time(T),
tank_of (N1,R),
link(N2,N1,V),
h(in_state(V,open),T),
tank_of (X,R),
h(pressurized_by(N2,X),T).

% If the input value of a NOT gate is S1 at time t and its delay
% is d then its output value is opposite value S2 at time t+d.
h(value(W2,82),T1) :-

! For historical faithfulness, I copy them here in their entirety, including the original
comments from the formalization of the USA Advisor.



People, Ideas, and the Path Ahead 3

of _type(G,not_gate),
delay(G,D),

time(T),

time(T1),

T1 = T+D,
input(W1,G),

output (W2,G),
opposite(S81,582),
h(value(W1,81),T),
not is_stuck(W2,G).

At the time when we created the USA Advisor, the first rule was a striking
example of ASP’s ability to elegantly capture complex kinds of knowledge. Not
only the rule was part of a recursive definition, which would have been a challenge
in many other languages at the time, it embedded such a recursive definition
within a state constraint, thus capturing the evolution of the state of the domain
over time in a way that mirrored faithfully the intuition. The second rule was,
too, related to recursive definitions, but my fascination with it lies in the fact
that it was in fact not a rule that we had written for the USA Advisor.

Some time before we focused on the USA Advisor, we had worked on using
ASP and the KR methodology for representing digital circuits and reasoning
about them [3]. This rule is part of what we called the “General Theory of
Digital Circuits in A-Prolog.”

Thus, what is striking to me is that, even at that time, Michael had such a
clear conception of modularity in ASP, that it allowed us to reuse in the USA
Advisor a rather sophisticated module that we had previously created indepen-
dently of it, and we were able to do so without any substantial modifications.

But what was the scalability of the formalization? Did it scale to the needs
of this first industrial application of ASP? Indeed, it was, and to some extent it
surprised even us by how well it performed. We had been given a time threshold
of 20 minutes for every problem instance and we found that the system was, on
average, orders of magnitude faster than that and never got even close to that
threshold even in the most challenging cases.

The fact that we were concerned about scalability is clearly visible in certain
statements. For instance, we preferred to ground manually the rules encoding
the law of inertia and in doing so we restricted the groundings only to the fluents
that we knew "mattered”, e.g.

% Tanks maintain correct pressure unless some leak
% occurs along their path for some time.

h(pressurized_by(X,X),T1) :- next(T,T1),
tank_of (X,R),
h(pressurized_by(X,X),T),
not nh(pressurized_by(X,X),T1).



4 M. Balduccini

This would be unnecessary nowadays. In fact, given what we learned later about
the performance of the system, in hindsight we could have probably trusted the
grounding of the rules of inertia to the lparse grounder. However, this shows
the level of concern and lack of a generally clear picture of what might affect
performance and what might not.

Something that is important to remark is that this success was not only due
to Michael’s great KR capabilities and intuition. Instrumental to the success of
this project was also the excellent work by Illka Niemela, Tommi Syrjanen, and
others that had given us grounder lparse and solver smodels [25].

3 Hybrid Declarative Languages for Practical
Applications

Henry Kautz was my supervisor when I joined the Eastman Kodak Research
Labs. I had been asked to investigate ways to automate decision-making pro-
cesses of commercial print shops: given a set of print jobs (e.g., books or maga-
zines), which presses, cutters, binders, and other devices should be used, which
device configurations would minimize waste and costs, and what was the best
schedule for the work? The agent should also be able to respond to sudden
unexpected events, such as devices becoming unavailable or “rush jobs” com-
ing it while others are already in production. The response should consist of
incremental changes that minimize disruptions and additional costs.

It was known in the industry that, when humans experts were carrying out
those decision-making processes, an important factor of their success was the
heuristic knowledge that they had accumulated over the years — so much so that
(I was told) experienced people were paid substantial salaries and were regarded
as key elements of the manufacturing process. Because of this, an additional
constraint I was given was that the system should make it possible to easily
incorporate heuristic knowledge as it might be provided by human experts.

On the one side, I expected the expert knowledge to be in the form of com-
monsensical statements, possibly defaults and their exceptions, and so it was
clear to me that a non-monotonic language like ASP would be most appropri-
ate. On the other hand, intuition and preliminary experiments showed me that
ASP-based formalizations of this underlying “planning-while-scheduling” prob-
lem would not scale well for practical use. It seemed clear that a representation
based on Constraint Satisfaction Problems (CSP) [19] would be most appropriate
for that.

Of course, the underlying problem was that whichever approach I adopted,
would need to be viable for a practical, industry-sized application. I was explain-
ing all of this to Henry in a meeting, when he pointed me to the approach taken
in Satisfaction Modulo Theories (SMT) [26] as a possible solution.

SMT had demonstrated that it was possible to overcome the expressive short-
comings and performance shortcomings of individual declarative languages by
hybridizing them. The bet was that ASP and Constraint Programming could
be hybridized in a way that allowed us to solve this “planning-while-scheduling”



People, Ideas, and the Path Ahead 5

problem augmented with expert knowledge, and to do so in a way that was
scalable. 2

The idea of hybridizing ASP and CP was not entirely new. A couple of
years earlier, Baselice, Bonatti and Gelfond had published a paper proposing a
possible approach [9], and I was aware that Veena Mellarkod, Michael Gelfond
and Yuanlin Zhang had been working for some time on a related implementation
[24]. However, what was surprising — almost shocking — to me was the proposal
of using such a hybrid for a practical application, when the work I was aware of
had been limited to academic exercises.

Sure enough, preliminary tests on Mellarkod’s system showed that it would
not scale to the type of application we were building. Additionally, Veena’s
system leveraged specific solving algorithms. That was a problem for me, since
there was substantial uncertainty in my mind on exactly which solvers to use.
Lparse and smodels? The new gringo grounder [12] and clasp solver [13]? And
which constraint solver? Ilog, to which I had been introduced in a previous Kodak
project? The constraint solver embedded in some Constraint Logic Programming
(CLP) system? And should the constraint solver need to support finite domains
only or larger domain variables?

This prompted me to develop EZCSP [1, 6, 5], which I literally intended as an
easy (hence “EZ”) way of encoding CSP by means of a host language featuring
strong KR foundations and support for non-monotonic constructs. The view of
ASP as a host language for a constraint satisfaction language allowed me to
adopt a loosely coupled view of the two languages and of the underlying solvers,
making it possible to experiment with multiple combinations of ASP solvers and
constraint solvers, as well as different types of variable domains.

Henry’s intuition proved to be a good one. Developing EZCSP as a lightweight
layer that leveraged existing solvers without modifications allowed me to con-
duct experiments with various solver combinations and quickly identify one that
scaled to the level needed for our application. Remarkably, the first use of EZCSP
coincided with its first industrial-sized, deployed application [1], which to the
best of my knowledge was also the first deployed application of what we later
came to call Constraint ASP [5]. The final product, which was running EZCSP
at its core, even came with a user interface designed by UX expert Stacie Hibino.

I think all of this is an amazing demonstration of the power of constraint-
based languages, a term that I use to denote both ASP and CP languages, as
well as of Henry’s intuition about the potential of a hybrid solution of ASP and
CP.

2 As an aside, our work on the USA Advisor had also been influenced by one of
Henry’s ideas, specifically Kautz and Selman’s work on solving planning problems
by reducing them to satisfiability problems [20].



6 M. Balduccini
4 Intelligent Agents as Thought Partners

David Ferrucci, the creator of IBM Watson, currently heads Elemental Cogni-
tion® (EC), an AI technology company aiming at developing and using a full
spectrum of Al techniques to deliver revolutionary products that solve challeng-
ing, real-world problems.

When 1 first started collaborating with EC, two aspects fascinated me: on
one side, David and EC fully understood the importance of KR, non-monotonic
reasoning and declarative programming in achieving sophisticated agent capabil-
ities. On the other side, David was adamant in his vision that agents should be
“thought partners.” As such, they should collaborate with humans rather than
just acting autonomously. One particularly striking instance of this is that it may
well happen that agent may sometimes be unable to solve a certain problem, ei-
ther due to lack of knowledge or to performance limitations. In those cases, the
agent should be capable of recognizing the issue and of engaging the humans in
intelligent ways, in order to overcome the obstacle together.

This latter idea was quite striking to me, as it was in partial divergence with
idea of agents as fully autonomous, to which I had subscribed since my early
steps in Al. Then again, while at a first glance it may seem that giving up full
autonomy might be an indication of a reduced level of intelligence, David’s idea
of agents as thought partners requires in fact even greater intelligence.

David’s vision has struck a chord with a several parties, and has already led to
successful projects. One of my favorite is a project that contributed to making the
Superbowl possible in 2021 in spite of having been held in the midst of the covid-
19 pandemic.* EC’s PolicyPath app and underlying systems were involved in
enforcing the access policy for corporate-level employees — approximately 40,000
people.

There were a number of important lessons that we learned from this project
in relation to the use of KR, some of which are discussed in more details in [2].
In a nutshell, we faced even more challenges than I had faced before, or than I
had expected.

On the one side, intelligent interaction with a user requires a level of intro-
spection by the agent that is extremely challenging. Together with that comes
the agent’s need to explain its reasoning and its conclusions in terms that the
user can understand — likely in an interactive dialogue — which is another very
challenging task.

However, there are also challenges at the level of more typical KR and rea-
soning tasks, which were surprising to me. While reasoning about actions and
change has made enormous progress since John McCarthy’s seminal papers [17],
some types of statements that are straightforward for humans are still difficult
to formalize precisely and efficiently. I will summarize here some of these obser-
vations.

3 https://ec.ai
4 https://www.billboard.com/pro/super-bowl-halftime-show-covid-safety-
coronavirus/



People, Ideas, and the Path Ahead 7

Consider for instance the statement “after international travel, one is not
allowed access to the office for 14 days.” Formalizing such statements requires
some notion of “wall-clock” time and mechanisms allowing fluents to change
value without intervening observations.

Action languages such as #H [10], while possibly suitable, have a complex
semantics and can reduce performance considerably due to the complexity of
the underlying implementation. Additionally, in all access policies we studied,
time and change were simpler than in typical uses of H and did not justify its
use. Additive fluents [21] offer a potential solution, but once again appeared to be
more sophisticated than needed, and it is unclear how to conveniently cause value
changes in fluents, even if one were to formalize them via triggers. For instance,
the statement “one is not allowed access to the office for 14 days” requires the
ability to count down the given amount of time and to cause a fluent, say,
has_access to be false for that duration and to become true at the end unless
other causes intervene. While additive fluents could be used to represent the
amount of time left, changing that value over time in a convenient way seems less
straightforward. An additional challenge was that one would also want somehow
to ensure that has_access is allowed to revert to true at the end of that period.

We were able to solve this challenge by introducing the notion of “timed” flu-
ents — essentially, numerical fluents whose value naturally decays (or, in principle,
increases) over time. However, this raised a performance problem: representing
explicitly every state and state transition related to the evolution of a timed
fluent becomes problematic when one is considering a long period of time, e.g.
in the order of months or years. That is because, in principle, every change in
the value of a timed fluent causes a state transition. It should be noted that this
is strongly related to the problem faced in formalizing hybrid domains discussed
in [10] and preceding articles.

With inspiration from that line of research, we realized that only part of
those state transitions are critical to the evolution of the domain. In the exam-
ple above, states remain “sufficiently” similar to each other until the timed fluent
reaches 0, unless of course other causes intervene. We were thus able to refine
the representation in such a way that only the “relevant” states were explicitly
considered, and rules of the formalization itself were responsible for determin-
ing which states were relevant. For instance, in our example, there is only one
“relevant” state 14 days from now.

While this approach yielded a satisfactory solution for medium-sized problem
instances, our experiments showed that in the presence of larger time horizons
or when more complex policies were considered, near real-time interaction with
the user was still beyond reach.

One particularly interesting case was that of a subject for whose state the
agent has already calculated the evolution over time, possibly for several months.
Note that this evolution does not necessarily need to be only future-facing. It
may contain past observations for a prolonged amount of time and the agent
needs to be able to consider how the subject’s state evolved in response to those



8 M. Balduccini

observations — as the user may want to ask questions about them — and how
those observations may affect future states.

Suppose now that a new observation is received, such as a covid test result.
The information might be about the current moment in time, but could also
be previously unavailable information about a past moment. Recomputing the
entire evolution from scratch was found to take several minutes, making near
real-time interaction impossible.

The obvious solution was to adopt the approach of an incremental computa-
tion, especially leveraging clingo’s incremental solving capabilities [18]. Indeed,
clingo’s incremental solving has been demonstrated to yield substantial perfor-
mance improvements. For instance, in planning problems, one can look for a
plan up to a certain maximum length and, if no such plan is found, one can have
the solver incrementally consider additional time steps, and do so by reusing and
extending the search space built for the prior computation rather than recreating
it from scratch every time.

Unfortunately, this approach did not quite seem to work for our use case,
where the observations may trigger a recomputation of past states or may cause
the discovery of new “relevant” states between states that had already been
computed. Situations of these types violate the conditions of the Module The-
orem [27] and are thus not directly solvable with clingo’s incremental solving
capabilities.

We were eventually able to solve the problem by developing algorithms that
essentially “roll back” the search space to the latest point in the search process
from which incremental computations could be applied. While this allowed us
to solve the problem at hand — and, in fact, improve performance by multiple
orders of magnitude — the solution was quite specific to the particular formulation
and problem domain, and to the best of our knowledge, no general solution is
currently available.

EC’s efforts have highlighted a number of additional, and very interesting,
challenges, which are outside of the scope of this article, such as those related to
the prevalence of incomplete knowledge in practical applications, more so than
research exercises typically consider, and to the need to draw at least partial
inferences in spite of such incomplete knowledge — all while maintaining the
ability to interact with the user in near real-time.

5 Conclusion

In this paper, I have reflected on people and ideas that have had a great influ-
ence on my view of knowledge representation and of declarative programming,
and that have coincided with what I consider to be important milestones in the
evolution of our field, some of which I have been honored to be involved with
at least in part: the idea that a rigorous KR methodology and ASP itself could
be viable for practical applications, the idea that declarative languages of dif-
ferent nature could be hybridized into languages suitable for use in industrial
applications, and the idea that agents could be thought partners, capable of in-



People, Ideas, and the Path Ahead 9

telligently engaging humans when faced with problems beyond their individual
capabilities.

While enormous progress has been made over the past decades, much work
still remains in order to design agents that are truly intelligent and can act as
such thought partners. Work has already been under way for several years on
explanatory reasoning and on building more efficient ASP solvers that rely on
non-ground solving techniques. However, research will also be needed in other
directions. In particular, the research on incremental solving so far seem to have
only scratched the surface and will need to be extended beyond the confines of
the Module Theorem. Additionally, research is needed on representation, and
specifically on techniques for declaratively, but efficiently, stating the conditions
under which an agent should stop reasoning and seek assistance — and what to
ask for. At least in part, prior work on sensing actions is a starting point (e.g.,
[22,7,8], as is the research on epistemic specification (e.g., [14]).

References

1. Balduccini, M.: Industrial-Size Scheduling with ASP+CP. In: Delgrande, J.P.,
Faber, W. (eds.) 11th International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR11). Lecture Notes in Artificial Intelligence (LNCS),
vol. 6645, pp. 284-296. Springer Verlag, Berlin (2011)

2. Balduccini, M., Barborak, M., Ferrucci, D.: Action Languages and COVID-19:
Lessons Learned. In: 2nd Workshop on Causal Reasoning and Explanation in Logic
Programming (CAUSAL2020) (2020)

3. Balduccini, M., Gelfond, M., Nogueira, M.: A-Prolog as a tool for declarative pro-
gramming. In: Proceedings of the 12th International Conference on Software En-
gineering and Knowledge Engineering (SEKE’2000). pp. 63-72 (2000)

4. Balduccini, M., Gelfond, M., Nogueira, M.: Answer Set Based Design of Knowledge
Systems. Annals of Mathematics and Artificial Intelligence 47(1-2), 183-219 (2006)

5. Balduccini, M., Lierler, Y.: Constraint Answer Set Solver EZCSP and Why Inte-
gration Schemas Matter. Journal of Theory and Practice of Logic Programming
(TPLP) 17(4), 462-515 (2017)

6. Balduccini, M., Lierler, Y., Schuller, P.: Prolog and ASP Inference Under One
Roof. In: Cabalar, P., Son, T.C. (eds.) 12th International Conference on Logic
Programming and Nonmonotonic Reasoning (Sep 2013)

7. Baral, C., Mcllraith, S.A., Son, T.C.: Formulating diagnostic problem solving using
an action language with narratives and sensing. In: Proceedings of the 2000 KR
Conference. pp. 311-322 (2000)

8. Baral, C., Son, T.C.: Formalizing sensing actions — a transition function based
approach. Artificial Intelligence Journal 125(1-2), 19-91 (Jan 2001)

9. Baselice, S., Bonatti, P.A., Gelfond, M.: Towards an Integration of Answer Set and
Constraint Solving. In: Proceedings of ICLP 2005 (2005)

10. Chintabathina, S., Watson, R.: Logic Programming, Knowledge Representation,
and Nonmonotonic Reasoning: Essays Dedicated to Michael Gelfond on the Oc-
casion of His 65th Birthday, chap. A New Incarnation of Action Language H, pp.
560-575. Lecture Notes in Artificial Intelligence (LNCS), Springer Verlag, Berlin
(2011)



10

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

M. Balduccini

Erdem, E.: Application of Logic Programming to Planning: Computational Exper-
iments (1999), http://www.cs.utexas.edu/users/esra/papers.html

Gebser, M., Kaminski, R., Ostrowski, M., Schaub, T., Thiele, S.: On the input
language of ASP grounder gringo. In: Erdem, E., Lin, F., Schaub, T. (eds.) 10th
International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMRO09). Lecture Notes in Artificial Intelligence (LNCS), vol. 5753, pp. 502—
508. Springer Verlag, Berlin (Sep 2009)

Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-Driven Answer Set
Solving. In: Veloso, M.M. (ed.) Proceedings of the Twentieth International Joint
Conference on Artificial Intelligence (IJCAT’07). pp. 386-392 (2007)

Gelfond, M.: New Semantics for Epistemic Specifications. In: Delgrande, J.P.,
Faber, W. (eds.) 11th International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR11). Lecture Notes in Artificial Intelligence (LNCS),
vol. 6645, pp. 260-265. Springer Verlag, Berlin (2011)

Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing 9, 365-385 (1991)

Gelfond, M., Lifschitz, V.: Representing Action and Change by Logic Programs.
Journal of Logic Programming 17(2-4), 301-321 (1993)

Hayes, P.J., McCarthy, J.: Some Philosophical Problems from the Standpoint of
Artificial Intelligence. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence 4, pp.
463-502. Edinburgh University Press (1969)

Kaminski, R., Schaub, T., Wanko, P.: A Tutorial on Hybrid Answer Set Solving
with Clingo. In: Proceedings of the Thirteenth International Summer School of the
Reasoning Web (RW-2017). pp. 167-203 (2017)

Katriel, 1., van Hoeve, W.J.: Handbook of Constraint Programming, chap. 6.
Global Constraints, pp. 169-208. Foundations of Artificial Intelligence, Elsevier
(2006)

Kautz, H., Selman, B.: Planning and Satisfiability. In: Proceedings of the 10th
European Conference on Artificial Intelligence (ECAI92). pp. 359-363 (1992)
Lee, J., Lifschitz, V.: Additive Fluents. In: Provetti, A., Son, T.C. (eds.) Answer
Set Programming: Towards Efficient and Scalable Knowledge Representation and
Reasoning. AAAT 2001 Spring Symposium Series (Mar 2001)

Levesque, H.J.: What is planning in the presence of sensing? In: Proceedings of
the 13th National Conference on Artificial Intelligence. pp. 1139-1146 (1996)
Marek, V.W., Truszczynski, M.: The Logic Programming Paradigm: a 25-Year Per-
spective, chap. Stable Models and an Alternative Logic Programming Paradigm,
pp. 375-398. Springer Verlag, Berlin (1999)

Mellarkod, V.S., Gelfond, M., Zhang, Y.: Integrating Answer Set Programming and
Constraint Logic Programming. Annals of Mathematics and Artificial Intelligence
(2008)

Niemel4, I., Simons, P.: Logic-Based Artificial Intelligence, chap. Extending the
Smodels System with Cardinality and Weight Constraints, pp. 491-521. Kluwer
Academic Publishers (2000)

Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Module Theories:
From an Abstract Davis-Putnam-Longemann-Loveland Procedure to DPLL(T).
Journal of Artificial Intelligence Research 53(6), 937-977 (2006)

Oikarinen, E., Janhunen, T.: Modular Equivalence for Normal Logic Programs.
In: Proceedings of the Seventeenth European Conference on Artificial Intelligence
(ECAT06). pp. 412-416 (2006)



