
Some Recent Advances in Answer Set
Programming (from the Perspective of NLP)

Marcello Balduccini

College of Computing and Informatics
Drexel University

marcello.balduccini@gmail.com

1 Introduction

Answer Set Programming (ASP) [12, 13, 15, 8] is a logical language for knowledge
representation and reasoning that combines a non-monotonic nature, strong the-
oretical foundations, an intuitive semantics, and substantial expressive power.
The language has been successfully used for modeling a number of very diverse
domains (e.g. [7, 14]) and for capturing key reasoning tasks such as planning, di-
agnostics, learning and scheduling (e.g. [10, 5, 1]). All of this makes ASP a prime
candidate for use in the sophisticated knowledge representation and reasoning
tasks involved in Natural Language Processing (NLP).

In this note I will give an overview of some of my recent work on ASP that
I believe may be useful in the context of NLP.

2 Motivation

Reasoning about natural language involves various knowledge-intensive tasks.
Particularly challenging from this perspective are the extraction of semantic con-
tent from phrases (e.g. anaphora resolution) and the disambiguation of phrases
using world knowledge and commonsense knowledge. These two tasks are not
only challenging, but also heavily interconnected.

Consider the following collection of passages and proposed corresponding
reasoning:

– “John was walking his dog. He said hi.”
To conclude that “he” refers John, we can use knowledge about grammar,
stating that “he” normally refers to a human male. Additionally, the fact
that saying hi is a capability proper of humans, confirms the correctness of
the association.

– “John was walking his dog. He ran away after a rabbit”
This type of sentence is quite common especially in spoken English. Com-
monsense tells us that “he” here refers to John’s dog. A justification for this
is the everyday knowledge that running away after a rabbit is a behavior
common of dogs and other animals with hunting habits. Humans typically



do not run away after rabbits (although carefully capturing this last state-
ment appears to be a rather interesting and intricate modeling task in itself).
Although according to grammar rules “he” should be associated with John,
it is also typical for people, and especially pet owners, to refer to their pets
by “he” or “she.”

– “John and Frank entered the room. Frank left right away. He came out two
minutes later.”
In this case the difficulty in finding which object “he” refers to derives from
the fact that two human males are mentioned in approximately the same
locations of the passage. To properly link this occurrence of “he” to John,
one needs to follow the evolution of the domain described by the passage.
The phrase “came out two minutes later” appears to refer to the room that
John and Frank had initially entered. The second sentence states that Frank
has already left the room. So, John is the only other person of interest in
the passage who is left in the room, and thus it is reasonable to assume that
“he” refers to him.

– “Andrea and Frank entered the room, but he left empty-handed.”
To reason about this sentence, it is useful to recall that, in English, Andrea
is both a male and a female name. Reasoning by cases, one can observe
that, if Andrea is a man, then the occurrence of “he” in the sentence is
ambiguous. On the other hand, if Andrea is a female, then it can be concluded
without ambiguity that “he” refers to Frank. Under the assumption that the
speaker or writer crafted the sentence in such a way as to convey the relevant
information in an unambiguous way, then it is reasonable to assume that “he”
refers to Frank. Moreover, one can conclude that Andrea is a woman. This
information can be stored and used later in reasoning about other parts of
the passage.

– “Andrea cannot be the one who took the computer from that room. Andrea
and Frank did enter the room, but he left empty-handed.”
Let us suppose that this passage is in the context of an investigation aimed
at determining who stole a computer from a room. The first sentence focuses
the discussion on Andrea and on Andrea’s innocence. Let us reason again by
cases on the possible associations of “he” – Andrea and Frank. Under both
possible associations, no grammar rules are violated, as long as Andrea is
a man. If “he” refers to Frank, however, the first and the second sentences
appear to have no logical connection, while their construction suggests that
indeed some link exists. On the other hand, if “he” refers to Andrea, then
the link is clear: the first sentence claims Andrea’s innocence, and the second
sentence offers evidence in support of the claim. Similarly to the previous ex-
ample, the second case appears to be preferred based on the commonsensical
assumption that the speaker or writer crafted the passage in such a way as
to convey the relevant information in an unambiguous and economical way.

Whereas carefully crafted, written-language passages may require relatively
limited reasoning, everyday, colloquial language such as the one exemplified here
requires substantial reasoning for a proper understanding. For the success of



practical systems with natural language interfaces, I argue that everyday, collo-
quial language must be supported.

Overall, it appears that successfully reasoning about the semantic content of
sentences such as the ones shown above requires a sophisticated combination
of world knowledge, commonsense, and (commonsensical) information about
speaker’s/writer’s behavior and intentions. It is my belief that ASP and its
extensions can be useful in tackling such a task.

In the rest of this note I describe some extensions of ASP I authored or co-
authored, and which may be useful in capturing certain aspects of the reasoning
about natural language. For a thorough discussion on ASP and on its use for
knowledge representation, the reader is referred to the existing literature (e.g.
[8]).

3 CR-Prolog

CR-Prolog [6] is an extension of ASP that adds to the language constructs,
called consistency-restoring rules (cr-rules), designed to capture certain advanced
aspects of non-monotonic reasoning.

A central, well-known feature of languages for non-monotonic reasoning such
as ASP is that the the programmer can write “defeasible statements,” which
are normally true, but may not apply to certain cases, called exceptions. A
well-known example is that of the statement “birds normally fly.” While true
for most birds, this statement has exceptions, such as penguins and birds with
broken wings, and hence the use of the word “normally.”

In most languages for non-monotonic reasoning the exceptions must be ex-
plicitly listed. In the example above, if a new type of bird is discovered that does
not fly, suitable statements must be added to the system, saying that that type
of bird is an exception. If the exceptions are not added, the systems will apply
the default statement and conclude that the birds of the new type fly. From a
practical perspective, having to know in advance all the exceptions may be a
limiting factor in the development of autonomous systems, since there may not
be sufficient understanding of the problem domain for such a complete list. It
is worth observing that, in everyday reasoning, humans are typically capable of
postulating exceptions to defaults, especially when they observe phenomena that
contradict such defaults.

Cr-rules are an attempt to capture this capability, allowing a reasoner to
postulate exceptions to default statements, but only when strictly necessary.
Making such assumptions is considered strictly necessary when the reasoning
process is otherwise inconsistent. This is the case, for example, of a system given
observations that contradict its knowledge base. For instance, the cr-rule:

exception(H,A)
+
← human(H), animal(A), small(A).

can be used in combination with a default “normally, humans do not chase small
animals” to state that, under exceptional, unknown, circumstances, the default



can be violated. When inconsistencies arise in the knowledge base, the system
can then use the cr-rule to postulate exceptions to the default.

My co-authors and I demonstrated that cr-rules allow for elegantly capturing
types of non-monotonic reasoning that are otherwise difficult or impossible to
capture. We also showed that they can be used to formalize concisely diagnostic
reasoning and certain types of planning.

4 EZCSP

EZCSP [2] is an extension of ASP aimed at increasing performance and scala-
bility in certain – rather large – application domains.

To see how the ability to reason about numbers is important in reasoning
about natural language, consider the following passage: “The train left at 10.
A couple of hours later, we were having lunch in Paris.” To determine if “10”
refers to 10am or 10pm, one may reason as follows. Normally, “a couple of hours”
means two hours. Moreover, let us assume that it is common knowledge that in
Paris people have lunch between noon and 2pm. Hence, if we reason by cases, the
interpretation that “10” refers to “10am” sets the time of the speaker’s lunch in
Paris to noon. The interpretation that “10” refers to “10pm” sets the time of the
lunch to midnight. The second interpretation contradicts the custom of having
lunch between noon and 2pm, and thus the former interpretation is preferred.

This reasoning process relies on the ability to process effectively numerical
information. Although ASP allows in principle for natural and concise formal-
izations of many kinds of knowledge, in practical applications efficiency often
degrades quickly when dealing with numerical information and variables with
large domains. To overcome this limitation, I designed EZCSP to allow for the
use of constructs from constraint programming within ASP programs. For ex-
ample, the rule:

required(hour(T ) ≥ 12)← lunchtime(T ).

states that, if timestamp T refers to lunch time, then the hour of T must be
greater than or equal to 12.

The new language makes it possible to represent and reason about numerical
information efficiently, while at the same time keeping the representations ele-
gant, concise and elaboration tolerant, as usual in ASP. Differently from other
languages that combine ASP and constraint programming (e.g. [11]), EZCSP
includes support for global constraints (a powerful type of construct from con-
straint programming), and both language and solver are designed to be indepen-
dent from the underlying ASP and constraint solvers chosen for the computation.

5 ASP{f}

One shortcoming of EZCSP is that it does not allow one to perform full-fledged
non-monotonic reasoning on numerical quantities. For example, one cannot easily



state that “in Paris, people normally have lunch between noon and 2pm” and
reason with evidence that “John had lunch at 3pm.”

This is due to the monotonic nature of the underlying constraint program-
ming constructs. A further shortcoming of EZCSP is that performance in the
presence of variables with large non-numerical domains still tends to be limited,
because constraint programming constructs mainly apply to numerical quanti-
ties. In fact, these limitations are shared by all the research attempts aimed at
hybridizing ASP and constraint programming. To overcome these issues, I have
developed a new language, called ASP{f} [3, 4], which adds to ASP the ability
to represent, and reason about, arbitrary (non-Herbrand) functions, including
but not limited to numerical functions. With ASP{f}, the default about lunch
time in Paris can be captured in a simple way by statements such as:

hour(T ) < 14← lunchtime(T ), not hour(T ) ≥ 14.

which intuitively states that “lunch ends at 2pm unless otherwise specified.” The
observation about John’s lunch time can be encoded by {lunchtime(t1), hour(t1) =
15}. In ASP{f}, this observation is sufficient to defeat the default.

In ASP{f} it is also possible to capture rather complex numerical calculations,
such as:

financially sound(C)←
revenue(C) > sum[employee(E,C) = salary(E)] + investments(C).

This rule states that company C is financially sound if its revenue is greater
than the sum of the salaries paid to the employees and of the investments made
by the company. Another example, demonstrating ASP{f}’s ability to deal with
non-numerical information, is the rule:

← siblings(P1, P2), first name(P1) = first name(P2), not exception(P1, P2).

which captures the commonsensical statement that two siblings shouldn’t have
the same first name. Rather than relying on constraint programming, the new
language includes “native” support for functions, and, differently from other
attempts in this direction (e.g. [9]), is crafted in such a way that state-of-the-art
inference engines for ASP can be extended to support ASP{f} with relatively
simple modifications.

6 Conclusions

In this note I have described some challenges of the task of reasoning about nat-
ural language that are relevant to ASP and to commonsense and non-monotonic
reasoning in general. I have also discussed recent extensions of ASP that I have
developed, and which I believe may be useful in tackling these tasks. Of course,
many other extensions of ASP exist, which can be useful for this endeavour. For
the reader’s convenience, a small selection of relevant works was cited in this
note.



References

1. Balduccini, M.: Learning Action Descriptions with A-Prolog: Action Language C.
In: Amir, E., Lifschitz, V., Miller, R. (eds.) Procs of Logical Formalizations of
Commonsense Reasoning, 2007 AAAI Spring Symposium (Mar 2007)

2. Balduccini, M.: Representing Constraint Satisfaction Problems in Answer Set Pro-
gramming. In: ICLP09 Workshop on Answer Set Programming and Other Com-
puting Paradigms (ASPOCP09) (Jul 2009)

3. Balduccini, M.: Correct Reasoning: Essays on Logic-Based AI in Honour of
Vladimir Lifschitz, chap. 3. A “Conservative” Approach to Extending Answer Set
Programming with Non-Herbrand Functions, pp. 23–39. Lecture Notes in Artificial
Intelligence (LNCS), Springer Verlag, Berlin (Jun 2012)

4. Balduccini, M.: ASP with non-Herbrand Partial Functions: a Language and System
for Practical Use. Journal of Theory and Practice of Logic Programming (TPLP)
(2013)

5. Balduccini, M., Gelfond, M.: Diagnostic reasoning with A-Prolog. Journal of The-
ory and Practice of Logic Programming (TPLP) 3(4–5), 425–461 (Jul 2003)

6. Balduccini, M., Gelfond, M.: Logic Programs with Consistency-Restoring Rules.
In: Doherty, P., McCarthy, J., Williams, M.A. (eds.) International Symposium on
Logical Formalization of Commonsense Reasoning. pp. 9–18. AAAI 2003 Spring
Symposium Series (Mar 2003)

7. Balduccini, M., Gelfond, M., Nogueira, M.: Answer Set Based Design of Knowledge
Systems. Annals of Mathematics and Artificial Intelligence 47(1–2), 183–219 (2006)

8. Baral, C.: Knowledge Representation, Reasoning, and Declarative Problem Solv-
ing. Cambridge University Press (Jan 2003)

9. Cabalar, P.: Functional Answer Set Programming. Journal of Theory and Practice
of Logic Programming (TPLP) 11, 203–234 (2011)

10. Erdem, E.: Application of Logic Programming to Planning: Computational Exper-
iments. In: Proceedings of the 5th International Conference on Logic Programming
and Non-monotonic Reasoning (LPNMR-99). No. 1730 in Lecture Notes in Artifi-
cial Intelligence (LNCS), Springer Verlag, Berlin (1999)

11. Gebser, M., Ostrowski, M., Schaub, T.: Constraint Answer Set Solving. In: 25th
International Conference on Logic Programming (ICLP09). vol. 5649 (2009)

12. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proceedings of ICLP-88. pp. 1070–1080 (1988)

13. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing 9, 365–385 (1991)

14. Grasso, G., Leone, N., Manna, M., Ricca, F.: ASP at Work: Spin-off and Appli-
cations of the DLV System. In: Balduccini, M., Son, T.C. (eds.) Symposium on
Constructive Mathematics in Computer Science (Oct 2010)

15. Marek, V.W., Truszczynski, M.: The Logic Programming Paradigm: a 25-Year Per-
spective, chap. Stable Models and an Alternative Logic Programming Paradigm,
pp. 375–398. Springer Verlag, Berlin (1999)


