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Abstract

Dealing with domains involving substantial quantitative information in Answer Set Programming (ASP)

often results in cumbersome and inefficient encodings. Hybrid “CASP” languages combining ASP and

Constraint Programming aim to overcome this limitation, but also impose inconvenient constraints – first

and foremost that quantitative information must be encoded by means of total functions. This goes against

central knowledge representation principles that contribute to the power of ASP, and makes the formaliza-

tion of certain domains difficult. ASP{f} is being developed with the ultimate goal of providing scientists

and practitioners with an alternative to CASP languages that allows for the efficient representation of qual-

itative and quantitative information in ASP without restricting one’s ability to deal with incompleteness or

uncertainty. In this paper we present the latest outcome of such research: versions of the language and of the

supporting system that allow for practical, industrial-size use and scalability. The applicability of ASP{f}
is demonstrated by a case study on an actual industrial application.

Keywords: Answer Set Programming, non-Herbrand Functions, Constraint Answer Set Programming,

Practical Applications

1 Introduction

Attempts to use Answer Set Programming (ASP) (Gelfond and Lifschitz 1991; Marek and

Truszczynski 1999) to formalize domains involving a substantial amount of quantitative informa-

tion often result in cumbersome, error-prone and inefficient encodings. Hybrid “CASP” (Lierler

2012) languages combining ASP and Constraint Programming (Gebser et al. 2009; Balduccini

2009; Lin and Wang 2008) overcome this limitation, but also impose rather inconvenient con-

straints – first and foremost that quantitative information must be encoded by means of total

functions. This goes against central knowledge representation principles that contribute to the

power of ASP, and complicates the formalization of certain domains such as dynamic domains

and domains involving uncertain or incomplete inputs, which appear often in practical applica-

tions. Some languages that overcome these limitations have been developed (Cabalar 2011), but

these studies have focused on the knowledge representation aspects of the issue. For the imple-

mentation, these approaches rely on a translation to ASP, and thus remain as inefficient as ASP

in dealing with quantitative information.

We have developed the language of ASP with non-Herbrand functions (ASP{f}) (see e.g. (Bal-

duccini 2012a)) with the ultimate goal of providing scientists and practitioners with a language

and a solver that allows for an efficient representation of quantitative information without the

restrictions imposed by CASP languages. Our work has also been motivated by the desire to in-
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vestigate to what extent an ASP solver can deal effectively with a combination of qualitative and

quantitative information without being coupled with a Constraint Programming solver.

In our earlier work, we have defined a first, simple version of the ASP{f} language and solver,

and demonstrated the improvements over ASP over toy domains. That version of language and

solver was intended as a proof-of-concept, and was too simple for serious practical use. In this

paper we present the outcome of the next installment of the research on this topic: versions of

the language and of the supporting system that are geared towards practical, industrial-size use

and scalability. We also demonstrate the practical advantages of ASP{f} by reporting the results

of a case study on an actual industrial application.

2 Language Definition

In this section we define the syntax and the semantics of the latest version of ASP{f}, which

expand upon (Balduccini 2012a). Examples of the use of ASP{f} for knowledge representation

are given in the online appendix.

Syntax. The syntax of ASP{f} is based on a signature Σ = 〈C,F ,R〉 whose elements are,

respectively, finite disjoint sets of constants, function symbols and relation symbols. Some con-

stants and function symbols are numerical (e.g. constants 1 and 5) and have the standard interpre-

tation.1 A simple (non-Herbrand) term is an expression f(c1, . . . , cn) where f ∈ F , and ci’s are

0 or more constants. Intuitively, constants from C are given a Herbrand interpretation, while sim-

ple terms (possibly 0-ary) are given a non-Herbrand interpretation. Traditional Herbrand terms,

if needed, can be included in C as atomic constants. An arithmetic term is either a simple term

where f is a numerical function, or an expression constructed from simple terms and numerical

constants using arithmetic operations, such as (f(c1)+g(c2))/2 and |f(c1)−g(c2)|. An atom is

an expression r(c1, . . . , cn), where r ∈ R, and ci’s are constants. The set of all simple terms that

can be formed from Σ is denoted by S; the set of all atoms from Σ is denoted by A. A regular

literal is an atom a or its strong negation ¬a. A simple n-atom (n-atom stands for non-Herbrand

atom), is an expression of the form f op g, where f and g are simple and/or arithmetic terms

and op ∈ {=, 6=,≤, <,>,≥} (= and 6= enjoy the symmetric property).

Next, we introduce the notion of aggregate terms with a syntax similar to the constructs found

in the language of GRINGO (Gebser et al. 2009) and in ASP-Core-2.2 An aggregate element is

an expression of the form

l1 : . . . : lm : not lm+1 : . . . : not ln,

where every li is a regular literal or a simple n-atom. An aggregate term is an expression of the

form

aggr[e1 = t1, e2 = t2, . . . , en = tn]

where aggr ∈ {min,max, sum}, ei’s are aggregate elements, and ti’s are arithmetic terms

(often called weights). Within each argument of an aggregate term, both ei and ti are optional:

an expression ti is considered to be an abbreviation of true = ti and an expression ei stands

for ei = 1. Furthermore, an expression of the form count{e1, e2, . . . , en} is an abbreviation of

sum[e1 = 1, e2 = 1, . . . , en = 1]. Simple terms, arithmetic terms and aggregate terms are called

terms.

1 In the rest of the paper, whether an element of Σ is numerical will be clear from the context.
2 https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.03b.pdf
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An n-atom is an expression of the form f op g, where f and g are simple terms, arithmetic

terms, or aggregate terms and op is a connective as in simple n-atoms. For example, f(x) =

sum[p(x) : d(x) = g(x), q(x) : d(x) = h(x)], where f(x), g(x), h(x) are simple terms and

p(x), q(x), d(x) are atoms, is an n-atom. Its intuitive meaning is that the value of f(x) is vg(x) +

vh(x), where vg(x) is the value of g(x) if p(x) and d(x) hold and 0 otherwise, and similarly for

vh(x).

A seed n-atom is an n-atom of the form f = v (or v = f ) where f is a simple term and v is a

constant. All other n-atoms are called dependent. So for example f(x) = 3 and f(x) = a, where

f(x) is a simple term and a is a constant, are seed n-atoms, while f(x) = g(x), where g(x) is a

simple term, and f(x) = sum[p(x) : d(x) = g(x), q(x) : d(x) = h(x)] from the above example

are dependent n-atoms and not seed n-atoms.

Finally, a literal is either a regular literal or an n-atom. A seed literal is a regular literal or seed

n-atom.

A rule r is a statement of the form:

h← l1, . . . , lm, not lm+1, . . . , not ln (1)

where h is a seed literal and li’s are literals. Similarly to ASP, the informal reading of r is that a

rational agent who believes l1, . . . , lm and has no reason to believe lm+1, . . . , ln must believe h.

Given rule r, head(r) denotes {h}; body(r) denotes {l1, . . . , not ln}; pos(r) denotes

{l1, . . . , lm}; neg(r) denotes {lm+1, . . . , ln}.

A constraint is a special type of regular rule with an empty head, informally meaning that

the condition described by the body must never be satisfied. A constraint is considered to be a

shorthand of ⊥ ← l1, . . . , lm, not lm+1, . . . , not ln, not ⊥ where ⊥ is a fresh atom.

A program is a pair Π = 〈Σ, P 〉, where Σ is a signature and P is a set of rules. Whenever

possible, in this paper the signature is implicitly defined from the rules of Π, and Π is identified

with its set of rules. In that case, the signature is denoted by Σ(Π) and its elements by C(Π),

F(Π) and R(Π). A rule r is positive if neg(r) = ∅. A program Π is positive if every r ∈ Π is

positive. A program Π is also n-atom free if no n-atoms occur in the rules of Π.

Variables and Grounding. As in ASP, variables can be used in ASP{f} for a more compact

notation. The grounding of a rule r is the set of all the rules (its ground instances) obtained by

replacing every variable of r with an element3 of C and by performing any arithmetic operation

over numerical constants. For example, one of the groundings of p(X + Y ) ← r(X), q(Y ) is

p(5) ← r(3), q(2). Variables within the scope of aggregate terms are grounded as in aggregate

literals. For instance, if variable X has domain {0, 1, 2}, which we assume specified by domain

predicate d(·) below, then an n-atom f = sum[p(X) : d(X) = g(X)] is grounded as: f =

sum[p(0) = g(0), p(1) = g(1), p(2) = g(2)]. It is important to note that, by construction of the

language, arithmetic terms can be used directly as weights, which allows for the rather compact

grounding shown above. Contrast this with a traditional aggregate literal F = sum[p(X) :

d(X) : g(X,V ) = V ], whose grounding must explicitly list all the possible values of V : F =

sum[p(0) : g(0, v0) = v0, p(0) : g(0, v1) = v1, . . . , p(2) : g(2, v0) = v0, . . .].

The grounding of a program Π is the set of the groundings of the rules of Π. A syntactic

element of the language is ground if it contains neither variables nor arithmetic operations over

numerical constants and non-ground otherwise. For example, p(5) is ground while p(X+Y ) and

3 The replacement is with elements of suitable sorts.
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p(3 + 2) are non-ground. For more details on grounding, including the grounding of aggregates,

we refer the reader to (Syrjänen 1998; Gebser et al. 2009).

Semantics. The semantics of a non-ground program is defined to coincide with the semantics

of its grounding. The semantics of ground ASP{f} programs is defined below.

In the rest of this section, we consider only ground terms, literals, rules and programs and

thus omit the word “ground.” A set S of seed literals is consistent if (1) for every atom a ∈ A,

{a,¬a} 6⊆ S; (2) for every term t ∈ S and v1, v2 ∈ C such that v1 6= v2, {t = v1, t = v2} 6⊆ S.

Hence, S1 = {p,¬q, f = 3} and S2 = {q, f = 3, g = 2} are consistent, while {p,¬p, f = 3}

and {q, f = 3, f = 2} are not.

The value of a simple term t w.r.t. a consistent set S of seed literals (denoted by valS(t)) is

v iff t = v ∈ S. If, for every v ∈ C, t = v 6∈ S, the value of t w.r.t. S is undefined. The value

of a constant v ∈ C w.r.t. S (valS(v)) is v itself. The value of an arithmetic term t w.r.t. S is

obtained by applying the usual rules of arithmetic to the values of the terms in t w.r.t. S, suitably

extended to deal with undefined values4. For example given S1 and S2 as above, valS2
(f) is 3

and valS2
(g) is 2, whereas valS1

(g) is undefined. Given S1 and a signature with C = {0, 1},

valS1
(1) = 1.

A seed literal l is satisfied by a consistent set S of seed literals iff l ∈ S. Any other simple

n-atom f op g is satisfied by S iff both valS(f) and valS(g) are defined, and they satisfy the

equality or inequality relation op according to the usual arithmetic interpretation. Thus, seed

literals q and f = 3 are satisfied by S2; f 6= g is also satisfied by S2 because valS2
(f) and

valS2
(g) are defined, and valS2

(f) is different from valS2
(g). Conversely, f = g is not satisfied,

because valS2
(f) is different from valS2

(g). The n-atom f 6= h is also not satisfied by S2,

because valS2
(h) is undefined.

An aggregate element l1 : . . . : lm : not lm+1 : . . . : not ln is satisfied by a consistent set S

of seed literals iff, for every 1 ≤ i ≤ m, li is satisfied by S and, for every (m + 1) ≤ i ≤ n,

li is not satisfied by S. The value of an aggregate term aggr[e1 = t1, e2 = t2, . . . , en = tn] is

obtained by applying to the multiset {valS(ti) | ei satisfied by S ∧ valS(ti) defined} the arith-

metic interpretation of operator aggr. Note that, because of the availability of partial functions

in the language, it is possible to capture in a natural way the fact that the value of min({}) and

max({}) is undefined.

We complete the definition of the notion of satisfaction of arbitrary n-atoms by stating that an

arbitrary dependent n-atom f op g is satisfied by S iff both valS(f) and valS(g) are defined, and

they satisfy the equality or inequality relation op according to the usual arithmetic interpretation.

When a literal l is satisfied (resp., not satisfied) by S, we write S |= l (resp., S 6|= l). An

extended literal is a literal l or an expression of the form not l. An extended literal not l is

satisfied by a consistent set S of seed literals (S |= not l) if S 6|= l. Similarly, S 6|= not l if

S |= l. Considering set S2 again, extended literal not f = h is satisfied by S2, because f = h is

not satisfied by S2. Finally, a set E of extended literals is satisfied by a consistent set S of seed

literals (S |= E) if S |= e for every e ∈ E.

A set S of seed literals is closed under positive rule r if S |= h, where head(r) = {h},

whenever S |= pos(r). Hence, set S2 described earlier is closed under f = 3 ← g 6= 1 and

(trivially) under f = 2 ← r, but it is not closed under p ← f = 3, because S2 |= f = 3 but

S2 6|= p. S is closed under Π if it is closed under every rule r ∈ Π.

4 For example, if the value of f is undefined, 0 · f is 0 but 0 + f is undefined.
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Definition 1

A set S of seed literals is an answer set of a positive program Π if it is consistent and closed

under Π, and is minimal (w.r.t. set-theoretic inclusion) among the sets of seed literals that satisfy

such conditions.

Thus, the program {p ← f = 2. f = 2. q ← q.} has one answer sets, {f = 2, p}. Set

{f = 2} is not closed under the first rule of the program, and therefore is not an answer set. Set

{f = 2, p, q} is also not an answer set, because it is not minimal (it is a proper superset of another

answer set). Notice that positive programs may have no answer set. For example, the program

{f = 3. f = 2 ← q. q.} has no answer set. Programs that have answer sets (resp., no answer

sets) are called consistent (resp., inconsistent). It is not difficult to prove that positive programs

have at most one answer set. Next, we define the semantics of arbitrary ASP{f} programs.

Definition 2

The reduct of a program Π w.r.t. a consistent set S of seed literals is the set ΠS consisting of a rule

head(r)← pos(r) (the reduct of r w.r.t. S) for each rule r ∈ Π for which S |= body(r)\pos(r).

Example 1

Consider a set of seed literals S3 = {g = 3, f = 2, p}, and program Π1= {(r1) p ← f =

2, not g = 1, not h = 0. (r2) q ← p, not g 6= 2. (r3) g = 3. (r4) f = 2.} and let us

compute its reduct. For r1, first we have to check if S3 |= body(r1) \ pos(r1), that is if S3 |=

not g = 1, not h = 0. Extended literal not g = 1 is satisfied by S3 only if S3 6|= g = 1. Because

g = 1 is a seed literal, it is satisfied by S3 if g = 1 ∈ S3. Since g = 1 6∈ S3, we conclude

that S3 6|= g = 1 and thus not g = 1 is satisfied by S3. In a similar way, we conclude that

S3 |= not h = 0. Hence, S3 |= body(r1) \ pos(r1). Therefore, the reduct of r1 is p ← f = 2.

For the reduct of r2, notice that not g 6= 2 is not satisfied by S3. In fact, S3 |= not g 6= 2

only if S3 6|= g 6= 2. However, it is not difficult to show that S3 |= g 6= 2: in fact, valS3
(g) is

defined and valS3
(g) 6= 2. Therefore, not g 6= 2 is not satisfied by S3, and thus the reduct of Π1

contains no rule for r2. The reducts of r3 and r4 are the rules themselves. Summing up, ΠS3

1 is

{(r′1) p← f = 2, (r′3) g = 3, (r′4) f = 2}.

Definition 3

A consistent set S of seed literals is an answer set of Π if S is the answer set of ΠS .

Example 2

By applying the definitions given earlier, it is not difficult to show that an answer set of ΠS3

1 is

{f = 2, g = 3, p} = S3. Hence, S3 is an answer set of ΠS3

1 . Consider instead S4 = S3∪{h = 1}.

Clearly ΠS4

1 = ΠS3

1 . From the uniqueness of the answer sets of positive programs, it follows

immediately that S4 is not an answer set of ΠS4

1 . Therefore, S4 is not an answer set of Π1.

3 The ASP{f} Solver CLINGO{f}

In this section we describe CLINGO{f}, a solver for ASP{f}. CLINGO{f} is derived from CLINGO

2.0.2 and as such it includes both grounder and inference engine in a monolithic structure. In the

rest of this section, by CLINGO we refer to version 2.0.2 of language and system.

In CLINGO{f}, the n-atom connectives {=, 6=,≤, <,>,≥} are prefixed by # and written for

example #=. For typographical reasons, however, throughout this section we use the alternate
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writing {=#, 6=#,≤#, <#, >#,≥#}. The signature of a program is implicitly defined from

the program rules, as usual. The only exception is the definition of the non-Herbrand function

symbols, which is accomplished by declarations of the form:

#nherb f/n.

where f is a function symbol and n ≥ 0 is its arity. If the same function symbol is to be used with

different arities, multiple declarations must be provided. Expressions of the form f(t1, . . . , tn)

where f/n does not occur in a #nherb declaration, are considered to be traditional Herbrand

terms, and treated as they are in CLINGO. Moreover, any terms occurring out of the scope of an

n-atom are treated as Herbrand terms. This allows for the use of common reification techniques.

For example, the statements:

#nherb f/1.

← is weight(f(x)), f(x) <# 0.

allow one to concisely state that, if f(x) encodes a weight, then its value must not be smaller

than 0. Choice rules are allowed in CLINGO{f} with the usual syntax, extended to allow for

the occurrence of seed n-atoms. The usual requirements from CLINGO also apply, both on the

specification of domain predicates for variables and on the syntactic restrictions of choice rules

and aggregate literals and aggregate terms.

Grounding. CLINGO{f} allows for the use of variables, and grounding follows the same ap-

proach used in CLINGO. Because of the scope-dependent interpretation of non-Herbrand terms

discussed above, variables can also be used in place of non-Herbrand terms, allowing one to

extend our reification example as follows:

#nherb f/1.

is weight(f(x)). is weight(f(y)). ¬is weight(f(z)). ← is weight(F ), F <# 0.

Now the last rule states that, if F encodes a weight, then its value must not be less than 0. Besides

traditional variables, CLINGO{f} also allows for the use of a special kind of variable, aimed at

reducing grounding size and increasing performance. Consider the program:

#nherb f/1.

d(0..100). 1{f(x) =# X : d(X)}1. f(y) =# X + 1← d(X), f(x) =# X.

The choice rule states that f(x) may have any value in the range [0, 100]. The last rule intuitively

states that f(y) is f(x) + 1. Although this specification is straightforward and concise, the size

of the grounding of the last rule grows proportionally to the domain specified for X , because, at

grounding time, no assumption can be made about the value of f(X). For practical applications

with more complex rules this is a bottleneck – sometimes up to the point of making the use

of ASP impossible. In order to overcome this problem, CLINGO{f} introduces non-Herbrand

variables (n-variables), represented by alphanumeric strings prefixed by , such as v and x12.

N-variables are inspired by the simple observation that, although in f(x) =# X the value of

f(x) is not known at grounding time, f(x) can only have one value at a time. N-variables can be

used in place of traditional variables, under certain restrictions, which we describe next.

We begin by observing that n-variables are considered ground expressions and thus are not

affected by grounding. A defining n-atom for an n-variable ν is an n-atom of the form ν =# t

(or t =# ν), where t is a term. Given a ground rule r, we call an index assignment a function

that associates a positive integer to every n-variable that occurs in r, and associates 0 to every
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constant and simple term. The index assignment of a compound term is the maximum of the

index assignments of the term’s components. We say that rule r is n-stratified if there exists

an index assignment i such that, for every n-variable ν in r, pos(r) contains a defining n-atom

ν =# t such that i(ν) > i(t).

We can now state the restrictions on the use of n-variables. N-variables can be used in place

of traditional variables, as long as: (1) n-variables do not occur as arguments of simple terms or

aggregate terms; (2) all rules are n-stratified.

Using n-variables, the above program can be re-written as:

#nherb f/1.

d(0..100). 1{f(x) =# X : d(X)}1. f(y) =# x + 1← f(x) =# x.

The last rule of this program is ground. Hence, the size of its grounding no longer varies with the

domain specified by d. This may yield substantial performance improvements when rules involve

a combination of variables with large domains. Next, we describe CLASP{f}, the inference engine

used by CLINGO{f}. This version of the engine can be shown to be sound and complete for

ASP{f} programs whose dependency graph does not contain positive paths connecting n-atoms

where the same simple term occurs (see (Balduccini 2012a) for more details).

Inference Engine. In the description that follows, we assume that all the rules in the program

have already been grounded with the usual techniques. For simplicity of presentation, we also

assume that every n-variable occurs in at most one rule. To illustrate the algorithm, we will make

use of the following program, Π1:

#nherb f/1, g/1, h/1.

(r1) f(x) =# 3. (r2) p← f(x) ># 2. (r3) h(x) =# v ← f(x) =# v.

(r4) q ← g(x) 6=# 3. (r5) s← not g(x) =# 2.

The first step in the CLASP{f} algorithm consists in replacing all the occurrences of =# in

the body of the rules with a special connective ≡#. The new connective has the same semantics

of =#, but it allows for a decoupling of the n-atoms in the head and in the body of rules that is

needed for the correct support of n-variables. Program Π1 is then transformed into program Π2,

obtained from Π1 by replacing r5 by (r′5)s← not g(x) ≡# 2.

The main loop of CLASP{f} is shown below. The algorithm is modeled after the CLASP algo-

rithm, extended with an extra propagation step. The algorithm is summarized here in such a way

that highlights the components that are most relevant to our description:

• Loop

— Repeat

– Perform unitPropagation

– Perform nonHerbrandPropagation

— Until no changes in truth value detected

— If inconsistency is detected, then backtrack

— If search is complete, then return answer set and terminate

— Otherwise, make a guess

• End Loop

The inconsistency check, the completeness check and the guess step are defined as in CLASP. We

refer the reader to (Gebser et al. 2007) for a detailed description of those, and of the unitPropa-

gation algorithm. In the scope of the present paper, it is sufficient to view unit-propagation as a
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step in which inferences are made about the truth value of the literals in the program, based on

the truth value of other literals and on the structure of the rules they occur in. In the CLASP{f}

algorithm, literals can be either true, false, or undecided. The first two indicate that the algorithm

has determined that the corresponding literal will occur (respectively, will not occur) in the an-

swer set being constructed. If a literal is undecided, it means that no such determination has been

made. The construction of an answer set is complete only when all the literals have been been

made either true or false.

A property of unit-propagation that is important in the scope to the present paper is (here

presented in simplified form): literals that do not occur in the head of any rule are made false. In

CLASP{f}, this part of unitPropagation is modified so that it does not apply to n-atoms occurring

in the body of rules. The rationale for this design decision is that the truth of such n-atoms is

determined intensionally, using the values of the terms that occur in them. So, given program

Π2, the unitPropagation step will not conclude that e.g. f(x) ># 2 is false, although no rule

with that n-atom in the head exists. The only truth value determined by unitPropagation at this

stage is for f(x) =# 3, which is made true because the body if r1 is trivially satisfied.

Next, nonHerbrandPropagation is performed. This is the algorithm that truly provides sup-

port for the language extensions of CLINGO{f}. As discussed in (Balduccini 2012a), nonHer-

brandPropagation uses an intensional definition of the nogoods that implement the CLINGO{f}

language elements. To save space, in this paper we omit listing the corresponding nogoods.

The algorithm maintains a table of the values currently assigned to the simple terms and to

the n-variables that occur in the program. A value can be a constant or the special value 〈undef 〉.

The value of an arithmetic or aggregate term is computed from the values of the simple terms

and constants that occur in it, as discussed in Section 2. The nonHerbrandPropagation algorithm

consists of three steps:

• determine if any simple term can be assigned a value (including 〈undef 〉);
• determine if any n-variable can be assigned a value (including 〈undef 〉);
• determine the truth values of n-atoms in the bodies of rules from the values of their terms.

The determination of the values assigned to simple terms follows the rules:

• the value of a simple term t is 〈undef 〉 if all the seed n-atoms for t in the head of the rules

of the program are false;

• the value of a simple term t is v if there exists a seed n-atom f =# v that is true;

• the value of a simple term t is v if there exists a seed n-atom f =# ν that is true, where ν

is an n-variable assigned value v.

In the case of program Π2, from the fact that f(x) =# 3 is true, the above rules determine that

f(x) must be assigned value 3. Because no seed n-atoms for g(x) occur in the head of any rule,

the first rule also concludes that the value of g(x) is 〈undef 〉. The determination of the values

assigned to the n-variables is made as follows:

• n-variable ν occurring in rule r is assigned value v if, for every defining n-atom of the

form ν =# t in pos(r), the n-atom’s right-hand-side has value v;

• n-variable ν occurring in rule r is assigned value 〈undef 〉 if two defining n-atoms ν =# t1,

ν =# t2 exist in pos(r), such that the value of t1 is different from the value of t2.

Going back to program Π2, from rule r3 and the fact that f(x) has value 3, it follows that n-

variable x also has value 3. Finally, the determination of the truth values of the n-atoms from

the values of the terms occurring in them is performed as follows:
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• an n-atom f op g in the body of a rule is true if f and g are assigned values different from

〈undef 〉 and satisfy the usual interpretation of op (where ≡# is interpreted as =#);

• an n-atom f op g in the body of a rule is false if:

— f and g are assigned values different from 〈undef 〉 and do not satisfy the usual inter-

pretation of op, or

— f and g are both assigned values, and the value of at least one of them is 〈undef 〉.

For program Π2, it is not difficult to see that, because g(x) has value 〈undef 〉, g(x) 6=# 2 and

g(x) ≡# 2 are false. On the other hand, f(x) ># 2 and f(x) ≡# v are true (the latter, because

v has value 3). The truth value of h(x) =# v is not affected by the above rules because that

n-atom occurs in the head. This completes the nonHerbrandPropagation step.

At this point, if the truth value of any literal has changed, unitPropagation is invoked again. In

the case of Π2, unitPropagation will detect that the body of r4 is not satisfied, and thus make q

false. On the other hand, the bodies of r2, r3 and r′5 are satisfied, and thus p, h(x) =# v and s

are made true. Finally, nonHerbrandPropagation is executed again. This time, from the fact that

h(x) =# v is true and that the value of v is 3, it is concluded that the value of h(x) is also 3. The

construction of the answer set is now complete, and the algorithm terminates. For more complex

programs, the algorithm would proceed to interleaving truth value guesses and backtracking as

usual. Results from (Balduccini 2012b) also apply to the current version of language and solver:

Proposition 1

The task of deciding whether a consistent set of seed literals is an answer set of an ASP{f}

program is coNP-complete. The task of finding an answer set of an ASP{f} program is ΣP
2 -

complete.

Proposition 2 (Splitting Set Theorem (Lifschitz and Turner 1994))

A set A of seed literals is an answer set of ASP{f} program Π if and only if A = X ∪ Y for

some solution 〈X,Y 〉 to Π with respect to U .

Given a program Π, we say that Π contains an n-loop for seed n-atom l if, in the dependency

graph for Π, there is a positive path from a to an n-atom a′ such that a and a′ share some non-

Herbrand term. A program containing an n-loop is for example f =# 2← f 6=# 3. In practice,

for most domains from the literature there appear to be straightforward n-loop free encodings.

Proposition 3

For every n-loop free ASP{f} program Π, CLINGO{f} is sound and complete.

4 A Case Study

In earlier work (Balduccini 2012a) we have conducted an experimental comparison of ASP{f}

and ASP over toy domains. Although encouraging, those results were too limited to provide an

assessment of scalability and practical use. Thus, in this section we demonstrate the performance

improvements of ASP{f} over ASP on an actual industrial application. The application is being

developed as part of a larger commercial product. In this scenario, an intelligent agent receives

orders for the production and shipping of goods of various kinds and is expected to return corre-

sponding cost estimates. Each order specifies the quantity and kind of good to be produced, the

deadline by which the cost estimate must be sent to the customer, and the destination to which

the produced goods must be shipped. The agent is also given a database of production units and
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of their attributes. For each production unit, the database specifies the location of the produc-

tion unit, needed to calculate shipping costs, and pricing tables for production and shipping. The

production pricing table lists the goods that the given production unit is capable of producing.

The table also specifies the per-item production cost. Because typically production units give

discounts for bulk-quantity orders, the per-item production cost given by the table is a function

of the order quantity. The shipping pricing table is organized in a similar way, except that the

shipping cost returned is independent of the goods being shipped, and is instead a function of

the total shipment weight and of the shipping destination. Notice that all the goods in a shipment

must have the same destination.

The agent’s goal is that of assigning each order to a production unit in a way that minimizes

the total production and shipping cost of the orders on-hand. In order to do this, the agent is

allowed to combine multiple orders and assign them to the same production unit. In doing so, the

agent may achieve cost savings in one of two ways. If the orders are for the same type of goods,

the agent may be able to access a better bulk-rate production cost, since what matters is the total

quantity being ordered to a production unit. If the orders are for different types of goods, but

have the same shipping destination, the agent may be able to access a better bulk-rate shipping

cost, since what matters is the total weight shipped.

For every order, the agent is allowed to decide to calculate an estimate immediately, or to

wait until more orders are received, as long as waiting does not violate the order’s estimation

deadline. To make this decision, the agent considers the set of orders currently on-hand, as well

as information about the average orders received daily and their typical destinations. This infor-

mation is used to form a projection of the amount of units on order over time, and to identify

times in which the quantity and type of orders are “at peak” w.r.t. production, shipping, or both.

Intuitively, production and shipping peaks are equally good, while a concurrent peak of both is

the most desirable. Ideally, when making decisions about order assignments, the agent should

identify the peak times of every order, and hold each order until the latest occurrence of its most

favorable peak, unless otherwise instructed by a human operator. The orders that are at their most

favorable peak (including orders whose estimates are due immediately), or manually identified

by the operator, are the ones considered in the assignments to production units.

In this case study, we consider a simplified scenario in which the agent must (1) form projec-

tions for all the orders on-hand; (2) identify peaks in the projections; (3) determine which orders

should be assigned and which orders should be held; (4) calculate the production and shipping

costs for a fixed set of assignments of orders to production units (simulating the manual override

by a human operator). In preliminary experiments, this instances had proven quite computation-

ally demanding for ASP encodings, and motivated the initial work on ASP{f}. (The complex

structure of this domain makes the development of a CASP encoding impractical.)

In our experiments, we have assessed the performance improvements yielded by the dedicated

treatment of non-Herbrand functions in ASP{f} by comparing our ASP{f} encoding with one

written in the dialect of GRINGO and run in CLINGO and CMODELS. Samples of the correspond-

ing encodings are given in the online appendix.

The experiments were run on a computer with an Intel Core i7 processor at 3GHz with other-

wise negligible CPU load. Memory usage was limited to 3 GB. The timeout was 600 seconds.

The version of CLINGO used was 0.3.3. The version of CMODELS used was 3.83. The exper-

iments consisted in the use of each solver and corresponding encoding to solve 60 problem

instances. The instances were obtained by progressively elaborating a basic instance consisting

of 4 orders, 4 good types and 3 production units. The instances were organized in 3 categories
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with 20 instances each: in category C1, the quantity of goods in each order was progressively

increased by 1, while the other parameters were kept constant; in category C2, the number of

orders was progressively increased by 1; in category C3, the initial number of orders was 20 and

was progressively increased by 4. These problem instances were designed to test the scalability

of the encodings in conditions close to those expected in the actual use of the system.

The performance of the encodings was measured with respect to both time and memory usage.

In all figures below, executions that resulted in out-of-memory are marked by “X”. Overall, the

ASP{f} encoding performed much better than the ASP encoding, and the performance differ-

ence increased with the difficulty of the instances, which indicates better scalability for ASP{f}.

The results for category C1 are shown in Figure 1. Here and below, the numbers on the x-axis

denote the problem instances. Depending on the figure, the y-axis shows either execution time

or memory usage of each instance. As shown in Figure 1, the ASP{f} encoding was up to 1, 000

times faster than the performance for the ASP encoding with the best solver on the instances in

which the ASP encoding returned a valid answer. In about half of the instances, the ASP encod-

ing ran out of memory, but judging by the slopes of the performance curves, the difference is

likely to increase even more if more memory is made available. A similar behavior was observed

for category C2 (see Figure 2), where the ASP{f} encoding was more than 300 times faster than

the ASP encoding on the instances for which the ASP encoding returned a valid answer. For

the most difficult instances, the ASP encoding ran out of memory. In category C3 (see Figure

3), the ASP encoding ran out of memory for every instance, which is not surprisingly since the

instances in this category are designed to be harder than the hardest instance from category C2.

The time taken by the ASP encoding to run out of memory in CLINGO decreased as the instances

became harder, which simply shows that CLINGO succeeded in filling up the allotted memory

faster. Overall, the performance of the ASP{f} encoding was remarkably consistent w.r.t. both

the time taken and the memory used. Throughout all the categories, time increased slowly as the

instances became harder, with the solver taking only about 10 seconds on the hardest instance of

the set. Memory usage also grew slowly, with a maximum usage of about 100 MB for the hardest

instance. The results reported in this paper confirm the earlier findings from (Balduccini 2012a),

and indicate that the use of ASP{f} yields both more efficient grounding (in execution time and

in memory usage) and faster solving even in large, practical applications.
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5 Conclusions

In this paper we have described versions of ASP{f} and of its solver that allow for practical,

industrial-size use. This is a substantial improvement over earlier versions, which were proof-of-

concepts designed for toy problems. ASP{f} is intended as an alternative to CASP languages,

and is aimed for scientists and practitioners formalizing domains involving substantial quanti-

tative information, but would like to have the ability, lacking in CASP languages, to represent

incomplete and partial information in a direct and convenient way.

The performance of the solver, assessed on the actual industrial application that had ini-

tially motivated the development of ASP{f}, was extremely satisfactory from all points of view.

This result not only confirms that ASP{f} is a viable language for the representation of hybrid

qualitative-quantitative knowledge, but also appears to indicate that CLASP-style algorithms may

in general be capable of dealing effectively with this kind of information without being coupled

with a Constraint Programming solver. Of course, more work on algorithms and experimentation

must be performed before such a broad claim can be made. The latest version of the solver can

be downloaded from http://www.mbalduccini.tk/clingof/.
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Appendix A Sample of ASP{f} and ASP Encodings from the Case Study

In order to give a sample of the encodings used in the case study, in this section we show key

rules for dealing with production estimation. The rules used for dealing with shipping estimation

are similar.

As typical, the main input to the system is described by facts. For example, the following

ASP{f} facts describe an order, r1, for 10 items of product p1 with quoting deadline 13 (e.g. 13

days in the future) and destination l10 (of course the declaration needs to occur only once in the

program).

#nherb quantity/1.

#nherb product/1.

#nherb deadline/1.

#nherb destination/1.

rfq(r1).

product(r1) =# p1.

quantity(r1) =# 10.

deadline(r1) =# 13.

destination(r1) =# l10.

For consistency with the terminology in use in the application domain, orders are identified by

relation rfq, which stands for request for quote. The ASP encoding of the same information is:

rfq(r1).

product(r1, p11).

quantity(r1, 10).

deadline(r1, 13).

destination(r1, l10).

Information about the average quantity of a product p on order per day can be specified by means

of a fact daily order(p) =# q. If not specified, this value is assumed to be 0 in the ASP{f}
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encoding by the rule

daily order(P ) =# 0← product(P ), not daily order(P ) 6=# 0.

and in the ASP encoding by the rules:

daily order(P, 0)← product(P ), not ¬daily order(P, 0).

¬daily order(P, 0)← daily order(P,Q), Q 6= 0.

The determination of the production peaks is centered around the ASP{f} rule (some auxiliary

atoms have been omitted here and below to simplify the presentation):

at peak production(RFQ ID,D)←

rfq(RFQ ID),

product(RFQ ID) =# P,

deadline(RFQ ID) =# QD,

D ≤ QD,

expected on order(P,D) =# max[expected on order(P,DAYp) : DAYp ≤ QD].

The rule informally states that order RFQ ID is at peak for production on day D if D is no later

than the quoting deadline, RFQ ID is for product P , and the expected quantity of product P

on order on day D is equal to the maximum quantity of P expected to be on order on each day

from now until the quoting deadline. The corresponding rule in the ASP encoding is:

at peak production(RFQ ID,D)←

rfq(RFQ ID),

product(RFQ ID,P ),

deadline(RFQ ID,QD),

D ≤ QD,

expected on order(P,D,Q),

Q = max[expected on order(P,DAYp, Qp) = Qp : DAYp ≤ QD].

Function expected on order is defined in the ASP{f} encoding by rules such as:

expected on order(P,D) =#

today quantity − due quantity + M ∗ daily order ←

product(RFQ ID) =# P,

current time(T ),

M = D − T,

daily order(P ) =# daily order,

M <# avg deadline(P ),

today quantity =# sum[rfq(RFQ IDp) : product(RFQ IDp) =# P

= quantity(RFQ IDp)],

due quantity =# sum[due quantity(P,D′) : D′ < D].

This rule intuitively states that the quantity expected to be on order for product P on day D

is obtained by subtracting, from the quantity on order now, the quantity due between now and

day D, and then adding to this value the average daily orders forP multiplied by the number

of days in the period considered. (This formula is motivated by domain-specific considerations.)
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The corresponding rule in the ASP encoding is:

expected on order(P,D, TODAY Q−DUE Q + M ∗DAILY ORDER)←

product(RFQ ID,P ),

current time(T ),

M = D − T,

daily order(P,DAILY ORDER),

avg deadline(P,AV G DLINE),

M < AV G DLINE,

TODAY PAGES = sum[quantity(RFQ IDp, Q) = Q : rfq(RFQ IDp)

: product(RFQ IDp, P )],

DUE PAGES = sum[due quantity(P,D′, Q) = Q : D′ < D].

Appendix B Knowledge Representation in ASP{f}: an Overview

In this section we give an overview of how ASP{f} can be used for some classical knowledge

representation tasks. An extended discussion can be found in (Balduccini 2012). More advanced

knowledge representation topics are addressed in (Balduccini and Gelfond 2012).

Consider the statements: (1) the value of f(x) is a unless otherwise specified; (2) the value

of f(x) is b if p(x) (this example is from (Lifschitz 2011); for simplicity of presentation we

use a constant as the argument of function f instead of a variable as in (Lifschitz 2011)). These

statements can be encoded in ASP{f} as follows:

(r1) f(x) = a← not f(x) 6= a.

(r2) f(x) = b← p(x).

Rule r1 encodes the default, and r2 encodes the exception. The informal reading of r1 is “if there

is no reason to believe that f(x) is different from a, then f(x) must be equal to a”.

Extending a common ASP methodology, the choice of value can be encoded in ASP{f} by

means of default negation. Consider the statements (again, adapted from (Lifschitz 2011)): (1)

the value f(X) is a if p(X); (2) otherwise, the value of f(X) is arbitrary. Let the domain of

variable X be given by a relation dom(X), and let the possible values of f(X) be encoded by a

relation val(V ). A possible ASP{f} encoding of these statements is:

(r1) f(X) = a← p(X), dom(X).

(r2) f(X) = V ← dom(X), val(V ), not p(X), not f(X) 6= V.

Rule r1 encodes the first statement. Rule r2 formalizes the arbitrary selection of values for f(X)

in the default case. It is important to notice that, although r2 follows a strategy of formalization

of knowledge that is similar to that of ASP, the ASP{f} encoding is more compact than the

corresponding ASP one. In fact, the ASP encoding requires the introduction of an extra rule

formalizing the fact that f(x) has a unique value:

(r′1) f ′(X) = a← p(X), dom(X).

(r′2) f ′(X,V )← dom(X), val(V ), not p(X), not ¬f ′(X,V ).

(r′3) ¬f ′(X,V ′)← val(V ), val(V ′), V 6= V ′, f ′(X,V ).

The behavior of a dynamic domain consisting of a button bi, which increments a counter c,



4

and a button br, which resets it, can be encoded in ASP{f} by:

(r1) val(c, S + 1) = 0← pressed(br, S).

(r2) val(c, S + 1) = N + 1← pressed(bi, S), val(c, S) = N.

(r3) val(c, S + 1) = N ← val(c, S) = N, not val(c, S + 1) 6= val(c, S).

Rules r1 and r2 are a straightforward encoding of the effect of pressing either button (variable

S denotes a time step). Rule r3 is the ASP{f} encoding of the law of inertia for the value of

the counter, and states that the value of c does not change unless it is forced to. For simplicity

of presentation, it is instantiated for a particular fluent, but could be as easily written so that it

applies to arbitrary fluents from the domain.
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