
An Answer Set Solver for non-Herbrand
Programs: Progress Report

Marcello Balduccini1

1 Kodak Research Laboratories
Eastman Kodak Company
Rochester, NY 14650-2102 USA
marcello.balduccini@gmail.com

Abstract
In this paper we propose an extension of Answer Set Programming (ASP) by non-Herbrand functions, i.e.
functions over non-Herbrand domains, and describe a solver for the new language. Our approach stems
for our interest in practical applications, and from the corresponding need to compute the answer sets of
programs with non-Herbrand functions efficiently. Our extension of ASP is such that the semantics of the
new language is obtained by a comparatively small change to the ASP semantics from [8]. This makes it
possible to modify a state-of-the-art ASP solver in an incremental fashion, and use it for the computation
of the answer sets of (a large class of) programs of the new language. The computation is rather efficient,
as demonstrated by our experimental evaluation.

1998 ACM Subject Classification I.2.4 Knowledge Representation Formalisms and Methods

Keywords and phrases Answer Set Programming, non-Herbrand Functions, Answer Set Solving,
Knowledge Representation and Reasoning

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

In this paper we describe an extension of Answer Set Programming (ASP) [8, 12, 2] called ASP{f},
and a solver for the new language.

In logic programming, functions are typically interpreted over the Herbrand Universe, with each
functional term f(x) mapped to its own canonical syntactical representation. That is, in most logic
programming languages, the value of an expression f(x) is f(x) itself, and thus strictly speaking
f(x) = 2 is false. This type of functions, the corresponding languages and efficient implementation
of solvers is the subject of a substantial amount of research (we refer the reader to e.g. [5, 3, 13]).

When representing certain kinds of knowledge, however, it is sometimes convenient to use functions
with non-Herbrand domains (non-Herbrand functions for short), i.e. functions that are interpreted
over domains other than the Herbrand Universe. For example, when describing a domain in which
people enter and exit a room over time, it may be convenient to represent the number of people in the
room at step s by means of a function occupancy(s) and to state the effect of a person entering the
room by means of a statement such as

occupancy(S + 1) = O + 1← occupancy(S) = O

where S is a variable ranging over the possible time steps in the evolution of the domain.

Of course, in most logic programming languages, non-Herbrand functions can still be represented,
but the corresponding encodings are not as natural and declarative as the one above. For instance,

© Marcello Balduccini;
licensed under Creative Commons License ND

Conference title on which this volume is based on.
Editors: Billy Editor, Bill Editors; pp. 1–11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 An Answer Set Solver for non-Herbrand Programs: Progress Report

a common approach consists in representing the functions of interest using relations, and then
characterizing the functional nature of these relations by writing auxiliary axioms. In ASP, one would
encode the above statement by (1) introducing a relation occupancy′(s, o), whose intuitive meaning
is that occupancy′(s, o) holds iff the value of occupancy(s) is o; and (2) re-writing the original
statement as a rule

occupancy′(S + 1, O + 1)← occupancy′(S,O). (1)

The characterization of the relation as representing a function would be completed by an axiom such
as

¬occupancy′(S,O′)← occupancy′(S,O), O 6= O′. (2)

which intuitively states that occupancy(s) has a unique value. The disadvantage of this representation
is that the functional nature of occupancy′(s, o) is only stated in (2). When reading (1), one is given
no indication that occupancy′(s, o) represents a function – and, before finding statements such as
(2), one can make no assumption about the functional nature of the relations in a program when a
combination of (proper) relations and non-Herbrand functions are present.

Various extensions of ASP with non-Herbrand functions exist in the literature. In [4], Quantified
Equilibrium Logic is extended with support for equality. A subset of the general language, called
FLP, is then identified which can be translated into normal logic programs. Such translation makes it
possible to compute the answer sets of FLP programs using ASP solvers. [10] proposes instead the use
of second-order theories for the definition of the semantics of the language. Again, a transformation
is described, which removes non-Herbrand functions and makes it possible to use ASP solvers for the
computation of the answer sets of programs in the extended language. In [11, 14] the semantics is
based on the notion of reduct as in the original ASP semantics [8]. For the purpose of computing
answer sets, a translation is defined, which maps programs of the language from [11, 14] to constraint
satisfaction problems, so that CSP solvers can be used for the computation of the answer sets of
programs in the extended language. Finally, the language of CLINGCON [7] extends ASP with
elements from constraint satisfaction. The CLINGCON solver finds the answer sets of a program by
interleaving the computations of an ASP solver and of a CSP solver.

Our investigation stems for our interest in practical applications, and in particular from the need
for a knowledge representation language with non-Herbrand functions that can be used for such
applications and that allows for an efficient computation of answer sets. From this point of view, the
existing approaches have certain limitations.

The transformations to constraint satisfaction problems used in [11, 14] certainly allow for an efficient
computation of answer sets using constraint solving techniques, as demonstrated by the experimental
results in [14]. On the other hand, the recent successes of CDCL-based solvers (see e.g. [9]) such as
CLASP [6] have shown that for certain domains CSP solvers perform poorly compared to CDCL-based
solvers. For practical applications it is therefore important to ensure the availability of a CDCL-based
solver as well. Furthermore, as observed in [4], the requirement made in [11, 14] that non-Herbrand
functions be total yields some counterintuitive results in certain knowledge representation tasks,
which, from our point of view, limits the practical applications of the language. This arguments
also holds for CLINGCON. An additional limitation of CLINGCON is the fact that the interleaved
computation it performs carries some overhead.

In both [4] (where functions are partial) and [10] (where functions are total) the computation of the
answer sets of a program is obtained by translating the program into a normal logic program, and then
using state-of-the-art ASP solving techniques and solvers. Unfortunately, in both cases the translation

Marcello Balduccini 3

to normal logic programs causes a substantial growth of the size of the translated (ground) program
compared to the original (ground) program. Two, similar and often concurrent reasons exist for this
growth. First of all, when a non-Herbrand function is removed and replaced by a relation-based
representation, axioms that ensure the uniqueness of value of the function have to be introduced. In
[4], for example, when a function f(·) is removed, the following constraint is introduced:

← holds_f(X,V), holds_f(X,W), V 6= W. (3)

As usual, before an ASP solver can be used, this constraint must in turn be replaced by its ground
instances, obtained by substituting every variable in it by a constant. This process causes the
appearance of |Df |2 · |Cf | ground instances, where Df and Cf are respectively the domain and the
co-domain of function f . In the presence of functions with a sizable domain and/or co-domain, the
number of ground instances of (3) can grow quickly and impact the performance of the solver rather
substantially. Secondly, certain syntactic elements of these extended languages, once mapped to
normal logic programs, can also yield translations with large ground instances. Taking again [4] as an
example (the transformation in [10] appears to follow the same pattern), consider the FLP rule:

p(x)← f(x) # g(x). (4)

which intuitively says that p(x) must hold if f and g are defined for x and have different values.
During the transformation to normal logic programs, this rule is translated into:

p(x)← Y 6= Z, holds_f(x, Y), holds_g(x, Z).

Similarly to the previous case, the number of ground instances of this rule grows proportionally with
|Df |2, and in the presence of non-Herbrand functions with sizable domains, solver performance
can be affected quite substantially. Although one might argue that it is possible to modify an ASP
solver to guarantee that (3) is enforced without the need to explicitly specify it in the program, such a
solution is unlikely to be applicable in the case of an arbitrary rule such as (4).

In response to these issues, in this paper we define an extension of ASP with non-Herbrand functions,
called ASP{f}, that is obtained with a comparatively small modification to the semantics from [8].
The nature of this change makes it possible to modify a state-of-the-art ASP solver in an incremental
fashion, and to use it directly for the computation of the answer sets of (a large class of) ASP{f}
programs. This prevents the phenomenon of the quadratic growth of the ground instance described
above and results in a rather efficient computation, as demonstrated later in the paper.

The rest of the paper is organized as follows. The next two sections describe the syntax and the
semantics of the proposed language. In the following section we discuss the topic of knowledge
representation with non-Herbrand functions. Next, we describe our ASP{f} solver and report
experimental results. Finally, we draw conclusions and discuss future work.

2 The Syntax of ASP{f}

In this section we define the syntax of ASP{f}. To keep the presentation simple, in this paper the
version of ASP{f} described here does not allow for Herbrand functions, and thus from now on we
drop the “non-Herbrand” attribute. (Allowing for Herbrand functions is straightforward.)

The syntax of ASP{f} is based on a signature Σ = 〈C,F ,R〉 whose elements are, respectively, finite
sets of constants, function symbols and relation symbols. A term is an expression f(c1, . . . , cn) where
f ∈ F , and ci’s are 0 or more constants. An atom is an expression r(c1, . . . , cn), where r ∈ R, and
ci’s are constants. The set of all terms (resp., atoms) that can be formed from Σ is denoted by T

4 An Answer Set Solver for non-Herbrand Programs: Progress Report

(resp., A). A t-atom is an expression of the form f = g, where f is a term and g is either a term or a
constant. We call seed t-atom a t-atom of the form f = v, where v is a constant. Any t-atom that
is not a seed t-atom is a dependent t-atom. Thus, given a signature with C = {a, b, 0, 1, 2, 3, 4} and
F = {occupancy, seats}, expressions occupancy(a) = 2 and seats(b) = 4 are seed t-atoms, while
occupancy(b) = seats(b) is a dependent t-atom.

A regular literal is an atom a or its strong negation ¬a. A t-literal is a t-atom f = g or its strong
negation ¬(f = g), which we abbreviate f 6= g. A dependent t-literal is any t-literal that is not
a seed t-atom. A literal is a regular literal or a t-literal. A seed literal is a regular literal or a
seed t-atom. Given a signature with R = {room_evacuated}, F = {occupancy, seats} and
C = {a, b, 0, . . . , 4}, room_evacuated(a), ¬room_evacuated(b) and occupancy(a) = 2 are seed
literals (as well as literals); room_evacuated(a) and ¬room_evacuated(b) are also regular literals;
occupancy(b) 6= 1 and occupancy(b) = seats(b) are dependent t-literals, but they are not regular or
seed literals.

A rule r is a statement of the form:

h← l1, . . . , lm, not lm+1, . . . , not ln (5)

where h is a seed literal and li’s are literals. Similarly to ASP, the informal reading of r is that a rational
agent who believes l1, . . . , lm and has no reason to believe lm+1, . . . , ln must believe h. Given a
signature with R = {room_evacuated, door_stuck, room_occupied, room_maybe_occupied},
F = {occupancy} and C = {0}, the following is an example of ASP{f} rules encoding knowledge
about the occupancy of a room:

r1 : occupancy = 0← room_evacuated, not door_stuck.
r2 : room_occupied← occupancy 6= 0.
r3 : room_maybe_occupied← not occupancy = 0.

Intuitively, rule r1 states that the occupancy of the room is 0 if the room has been evacuated and there
is no reason to believe that the door is stuck. Rule r2 says that the room is occupied if its occupancy
is different from 0. On the other hand, r3 aims at drawing a weaker conclusion, stating that the room
may be occupied if there is no explicit knowledge (i.e. reason to believe) that its occupancy is 0.

Given rule r from (5), head(r) denotes {h}; body(r) denotes {l1, . . . , not ln}; pos(r) denotes
{l1, . . . , lm}; neg(r) denotes {lm+1, . . . , ln}.

A constraint is a special type of rule with an empty head, informally meaning that the condition
described by the body of the constraint must never be satisfied. A constraint is considered a shorthand
of ⊥ ← l1, . . . , lm, not lm+1, . . . , not ln, not ⊥, where ⊥ is a fresh atom.

A program is a pair Π = 〈Σ, P 〉, where Σ is a signature and P is a set of rules. Whenever possible,
in this paper the signature is implicitly defined from the rules of Π, and Π is identified with its set of
rules. In that case, the signature is denoted by Σ(Π) and its elements by C(Π), F(Π) andR(Π). A
rule r is positive if neg(r) = ∅. A program Π is positive if every r ∈ Π is positive. A program Π is
also t-literal free if no t-literals occur in the rules of Π.

Like in ASP, in ASP{f} too variables can be used in place of constants and terms. The grounding
of a rule r is the set of all the syntactically valid rules (its ground instances) obtained by replacing
every variable of r with an element of C. The grounding of a program Π is the set of the groundings
of the rules of Π. A syntactic element of the language is ground if it is variable-free and non-ground
otherwise.

Marcello Balduccini 5

3 Semantics of ASP{f}

The semantics of a non-ground program is defined to coincide with the semantics of its grounding.
The semantics of ground ASP{f} programs is defined below. It is worth noting that the semantics of
ASP{f} is obtained from that of ASP in [8] by simply extending entailment to t-literals.

In the rest of this section, we consider only ground terms, literals, rules and programs and thus omit
the word “ground.” A set S of seed literals is consistent if (1) for every atom a ∈ A, {a,¬a} 6⊆ S;
(2) for every term t ∈ T and v1, v2 ∈ C such that v1 6= v2, {t = v1, t = v2} 6⊆ S. Hence,
S1 = {p,¬q, f = 3} and S2 = {q, f = 3, g = 2} are consistent, while {p,¬p, f = 3} and
{q, f = 3, f = 2} are not. Incidentally, {p,¬q, f = g, g = 2} is not a set of seed literals, because
f = g is not a seed literal.

The value of a term t w.r.t. a consistent set S of seed literals (denoted by valS(t)) is v iff t = v ∈ S.
If, for every v ∈ C, t = v 6∈ S, the value of t w.r.t. S is undefined. The value of a constant v ∈ C
w.r.t. S (valS(v)) is v itself. For example given S1 and S2 as above, valS2(f) is 3 and valS2(g) is 2,
whereas valS1(g) is undefined. Given S1 and a signature with C = {0, 1}, valS1(1) = 1.

A seed literal l is satisfied by a consistent set S of seed literals iff l ∈ S. A dependent t-literal f = g

(resp., f 6= g) is satisfied by S iff both valS(f) and valS(g) are defined, and valS(f) is equal to
valS(g) (resp., valS(f) is different from valS(g)). Thus, seed literals q and f = 3 are satisfied by S2;
f 6= g is also satisfied by S2 because valS2(f) and valS2(g) are defined, and valS2(f) is different
from valS2(g). Conversely, f = g is not satisfied, because valS2(f) is different from valS2(g). The
t-literal f 6= h is also not satisfied by S2, because valS2(h) is undefined. When a literal l is satisfied
(resp., not satisfied) by S, we write S |= l (resp., S 6|= l).

An extended literal is a literal l or an expression of the form not l. An extended literal not l is satisfied
by a consistent set S of seed literals (S |= not l) if S 6|= l. Similarly, S 6|= not l if S |= l. Considering
set S2 again, extended literal not f = h is satisfied by S2, because f = h is not satisfied by S2.

Finally, a set E of extended literals is satisfied by a consistent set S of seed literals (S |= E) if S |= e

for every e ∈ E.

We begin by defining the semantics of ASP{f} programs for positive programs.

A set S of seed literals is closed under positive rule r if S |= h, where head(r) = {h}, whenever
S |= pos(r). Hence, set S2 described earlier is closed under f = 3 ← g 6= 1 and (trivially) under
f = 2 ← r, but it is not closed under p ← f = 3, because S2 |= f = 3 but S2 6|= p. S is closed
under Π if it is closed under every rule r ∈ Π.

Finally, a set S of seed literals is an answer set of a positive program Π if it is consistent and closed
under Π, and is minimal (w.r.t. set-theoretic inclusion) among the sets of seed literals that satisfy
such conditions. Thus, the program {p ← f = 2. f = 2. q ← q.} has one answer sets,
{f = 2, p}. The set {f = 2} is not closed under the first rule of the program, and therefore is not an
answer set. The set {f = 2, p, q} is also not an answer set, because it is not minimal (it is a proper
superset of another answer set). Notice that positive programs may have no answer set. For example,
the program {f = 3← not p. f = 2← not q.} has no answer set. Programs that have answer
sets (resp., no answer sets) are called consistent (resp., inconsistent).

Positive programs enjoy the following property:

I Proposition 1. Every consistent positive ASP{f} program Π has a unique answer set.

Next, we define the semantics of arbitrary ASP{f} programs.

6 An Answer Set Solver for non-Herbrand Programs: Progress Report

The reduct of a program Π w.r.t. a consistent set S of seed literals is the set ΠS consisting of a rule
head(r)← pos(r) (the reduct of r w.r.t. S) for each rule r ∈ Π for which S |= body(r) \ pos(r).

I Example 1. Consider a set of seed literals S3 = {g = 3, f = 2, p, q}, and program Π1:

r1 : p← f = 2, not g = 1, not h = 0. r2 : q ← p, not g 6= 2.
r3 : g = 3. r4 : f = 2.

and let us compute its reduct. For r1, first we have to check if S3 |= body(r1) \ pos(r1), that is
if S3 |= not g = 1, not h = 0. Extended literal not g = 1 is satisfied by S3 only if S3 6|= g = 1.
Because g = 1 is a seed literal, it is satisfied by S3 if g = 1 ∈ S3. Since g = 1 6∈ S3, we conclude that
S3 6|= g = 1 and thus not g = 1 is satisfied by S3. In a similar way, we conclude that S3 |= not h = 0.
Hence, S3 |= body(r1) \ pos(r1). Therefore, the reduct of r1 is p ← f = 2. For the reduct of r2,
notice that not g 6= 2 is not satisfied by S3. In fact, S3 |= not g 6= 2 only if S3 6|= g 6= 2. However, it
is not difficult to show that S3 |= g 6= 2: in fact, valS3(g) is defined and valS3(g) 6= 2. Therefore,
not g 6= 2 is not satisfied by S3, and thus the reduct of Π1 contains no rule for r2. The reducts of r3
and r4 are the rules themselves. Summing up, ΠS3

1 is {r′1 : p← f = 2, r′3 : g = 3, r′4 : f = 2}

Finally, a consistent set S of seed literals is an answer set of Π if S is the answer set of ΠS .

I Example 2. By applying the definitions given earlier, it is not difficult to show that an answer
set of ΠS3

1 is {f = 2, g = 3, p} = S3. Hence, S3 is an answer set of ΠS3
1 . Consider instead

S4 = S3 ∪ {h = 1}. Clearly ΠS4
1 = ΠS3

1 . From the uniqueness of the answer sets of positive
programs, it follows immediately that S4 is not an answer set of ΠS4

1 . Therefore, S4 is not an answer
set of Π1.

4 Knowledge Representation with ASP{f}

In this section we demonstrate the use of ASP{f} for the formalization of key types of knowledge.
We start our discussion by addressing the encoding of defaults.

Consider the statements: (1) the value of f(x) is a unless otherwise specified; (2) the value of f(x) is
b if p(x) (this example is similar to, and inspired by, one from [10]). These statements can be encoded
in ASP{f} by P1 = {r1 : f(x) = a ← not f(x) 6= a., r2 : f(x) = b ← p(x).}. Rule r1 encodes
the default, and r2 encodes the exception. The informal reading of r1, according to the description
given earlier in this paper, is “if there is no reason to believe that f(x) is different from a, then f(x)
must be equal to a”.

Extending a common ASP methodology, the choice of value for a non-Herbrand function can be
encoded in ASP{f} by means of default negation. Consider the statements (adapted from [10]): (1) the
value f(X) is a if p(X); (2) otherwise, the value of f(X) is arbitrary. Let the domain of variable X
be given by a relation dom(X), and let the possible values of f(X) be encoded by a relation val(V).
A possible ASP{f} encoding of these statements is {r1 : f(X) = a ← p(X), dom(X)., r2 :
f(X) = V ← dom(X), val(V), not p(X), not f(X) 6= V.}. Rule r1 encodes the first statement.
Rule r2 formalizes the arbitrary selection of values for f(X) in the default case.

A similar use of defaults is typically associated, in ASP, with the representation of dynamic domains.
In this case, defaults are a key tool for the encoding of the law of inertia. Let us show how dynamic
domains involving functions can be represented in ASP{f}. Consider a domain including a button bi,
which increments a counter c, and a button br, which resets it. At each time step, the agent operating

Marcello Balduccini 7

the buttons may press either button, or none. A possible ASP{f} encoding of this domain is:

r1 : val(c, S + 1) = 0← pressed(br, S).
r2 : val(c, S + 1) = N + 1← pressed(bi, S), val(c, S) = N.
r3 : val(c, S + 1) = N ← val(c, S) = N, not val(c, S + 1) 6= val(c, S).

Rules r1 and r2 are a straightforward encoding of the effect of pressing either button (variable S
denotes a time step). Rule r3 is the ASP{f} encoding of the law of inertia for the value of the counter,
and states that the value of c does not change unless it is forced to. For simplicity of presentation, it
is instantiated for a particular function, but could be as easily written so that it applies to arbitrary
functions from the domain.

Formal results about ASP{f} that are useful for knowledge representation tasks can be found in [1].

5 Computing the Answer Sets of ASP{f} Programs

In this section we describe an algorithm, CLASP{f}, which computes the answer sets of ASP{f}
programs. Although CLASP{f} is based on the CLASP algorithm [6], the approach can be easily
extended to other ASP solvers. In our description we follow the notation of [6], to which the interested
reader can refer for more details on the CLASP algorithm.

As customary, the algorithm operates on ground programs. To keep the presentation simple, we
further assume that every program Π considered in this section contains, for every atom a from Π, a
constraint← a,¬a (usually this constraint is added automatically by the solver).

Given a literal l, a signed literal is an expression of the form Tl or Fl. Given a signed literal σ, σ,
called the complement of σ, denotes Fl if σ is Tl, and Tl otherwise. An assignment A over some
domain D is a sequence 〈σ1, . . . , σn〉 of signed literals for literals from D. The domain of A is
denoted by dom(A). The expression A ◦B denotes the concatenation of assignments A and B. For
an assignment A, we denote by AT the set of literals l such that Tl occurs in A; AF is instead the set
of literals l such that Fl occurs in A.

A nogood is a set {σ1, . . . , σn} of signed literals. An assignment A is a solution for a set ∆ of
nogoods if (1) AT ∪ AF = dom(A); (2) AT ∩ AF = ∅; and (3) for every δ ∈ ∆, δ 6⊆ A. Given
a nogood δ, a signed literal σ ∈ δ and an assignment A, σ is called unit-resulting for δ w.r.t. A if
δ \A = {σ} and σ 6∈ A. Unit propagation is the process of iteratively extendingA with unit-resulting
signed literals until no signed literal is unit-resulting for any nogood in ∆.

At the core of the computation of the answer sets of a program in CLASP{f} is the process of mapping
the program to a suitable set of nogoods. Such mapping is described next, beginning with the nogoods
already used in CLASP.

Given a program Π, let lit(Π) be the set of literals that occur in Π, seed(Π) the set of seed literals
that occur in Π, and body(Π) be the collection of the bodies of the rules of Π. Furthermore, let the
expression body(l) denote the set of rules of Π whose head is l.

Given a rule’s body β = {l1, . . . , lm, not lm+1, . . . , not ln}, the expression δ(β) denotes the nogood
{Fβ,Tl1, . . . ,Tlm,Flm+1, . . . ,Fln}. The expression ∆(β) denotes instead the set of nogoods
{{{Tβ,Fl1}, . . . , {Tβ,Flm}, {Tβ,Tlm+1}, . . . , {Tβ,Tln}}}.

Next, given a literal l such that body(l) = {β1, . . . , βk}, the expression ∆(l) denotes the set of
nogoods {{Fl,Tβ1}, . . . , {Fl,Tβk}}. Finally, δ(l) = {Tl,Fβ1, . . . ,Fβk}.

Given a program Π, let ∆Π denote {{δ(β) |β ∈ body(Π)} ∪ {δ ∈ ∆(β) |β ∈ body(Π)} ∪
{δ(l) | l ∈ seed(Π)} ∪ {δ ∈ ∆(l) | l ∈ lit(Π)}}. Intuitively, in ∆Π, δ(l) is applied only to seed
t-atoms because dependent t-literals do not occur in the head of rules.

8 An Answer Set Solver for non-Herbrand Programs: Progress Report

It can be shown [6] that ∆Π can be used to find the answer sets of tight, t-literal free, programs. To
find the answer sets of non-tight programs, one needs to introduce loop nogoods. For a program
Π and some U ⊆ lit(Π), expression EBΠ(U) denotes the collection of the external bodies of U ,
i.e. {body(r) | r ∈ Π, head(r) ∈ U, body(r) ∩ U = ∅}. Given a literal l ∈ U and EBΠ(U) =
{β1, . . . , βk}, the loop nogood of l is λ(l, U) = {Fβ1, . . . ,Fβk,Tl}. The set of loop nogoods for
program Π is ΛΠ =

⋃
U⊆lit(Π),U 6=∅{λ(l, U) | l ∈ U}. The following property follows from a similar

result from [6]:

I Theorem 3. For every ASP{f} program Π that contains no dependent t-literals, X ⊆ lit(Π) is an
answer set of Π iff X = AT ∩ lit(Π) for a solution A for ∆Π ∪ ΛΠ.

Next, we introduce nogoods for the computation of the answer sets of programs containing dependent
t-literals. Given a dependent t-literal l of the form f = g (resp., f 6= g), a pair of seed t-atoms f = v

and g = w formed from Σ(Π) is a satisfying pair for l if v = w (resp., v 6= w) and a falsifying
pair for l otherwise. Let {〈f = v1, g = w1〉, . . . 〈f = vk, g = wk〉} be the set of satisfying pairs
for l. The expression ρ+(l) denotes the set of nogoods {{Fl,Tf = v1,Tg = w1}, . . . , {Fl,Tf =
vk,Tg = vk}}. Let {〈f = v1, g = w1〉, . . . 〈f = vk, g = wk〉} be the set of falsifying pairs for
l. The expression ρ−(l) denotes the set of nogoods {{Tl,Tf = v1,Tg = w1}, . . . , {Tl,Tf =
vk,Tg = vk}}. Intuitively the nogoods in ρ+(l) and ρ−(l) enforce the truth or falsity of a dependent
t-literal when suitable seed t-atoms are true.

Finally, given a dependent t-literal l, let terms(l) denote the set of terms that occur in l, and, for
every term f that occurs in l, let rel(f) denote the set of seed t-atoms of the form f = v for some
v ∈ C(Π). Intuitively rel(f) is the set of seed t-atoms that are relevant to the value of term f . The
expression κ(l) denotes the set of nogoods

⋃
f∈terms(l)({Tl} ∪ {Fs | s ∈ rel(f)}). Intuitively κ(l)

states that l cannot be true if one of its terms is undefined.

Let dep(Π) be the set of dependent t-literals in a program Π. ΘΠ denotes {ρ+(l) | l ∈ dep(Π)} ∪
{ρ−(l) | l ∈ dep(Π)} ∪ {κ−(l) | l ∈ dep(Π)}.

The following condition defines a (rather large) class of ASP{f} programs whose answer sets can
be found using ΘΠ. Given a program Π, we say that Π contains a t-loop for seed t-atom l if, in the
dependency graph for Π, there is a positive path from l to a t-literal l′ such that terms(l)∩terms(l′) 6=
∅. A program containing a t-loop is for example f = 2← f 6= 3. In practice, for most domains from
the literature there appear to be t-loop free encodings. The following result characterizes the answer
sets of t-loop free programs.

I Theorem 4. For every t-loop free ASP{f} program Π, X ⊆ seed(Π) is an answer set of Π iff
X = AT ∩ seed(Π) for a solution A for ∆Π ∪ ΛΠ ∪ΘΠ.

From a high-level perspective, in the CLASP algorithm the answer sets of ASP programs are com-
puted by iteratively (1) performing unit propagation on the nogoods for the program and (2) non-
deterministically assigning a truth value to a signed literal. Unfortunately, performing unit propagation
on the nogoods in ΘΠ is inefficient, because in the worst case sets ρ+(l) and ρ−(l) exhibit quadratic
growth. However, the conditions expressed by those nogoods can be easily checked algorithmically.
Let VALUE(f,A) be a function that returns v if signed literal Tf = v occurs in assignment A. Given
A and a dependent t-literal f = g, unit propagation on ρ+(f = g) can be performed by checking if
VALUE(f,A) = VALUE(g,A) and, if so, by adding Tf = g to A. A similar approach applies to the
unit propagation for the other elements of ΘΠ.

Using this technique, unit propagation on the nogoods of ΘΠ can be performed in constant time w.r.t.
the number of seed t-atoms in the program. (The reader may be wondering about the cases such as

Marcello Balduccini 9

the one in which the truth of Tf = v together with VALUE(f,A) can be used to infer VALUE(g,A).
It can be shown that support for this type of scenario can be dropped without affecting the soundness
and completeness of the solver.)

Function FLOCALPROPAGATION(Π,∇, A), shown below, iteratively augments the result of unit prop-
agation from CLASP’s function LOCALPROPAGATION(Π,∇, A) with the unit-resulting dependent
t-literals derived from ΘΠ. The iterations continue until a fixpoint is reached. (Function LOCAL-
PROPAGATION(Π,∇, A) in CLASP computes a fixpoint of unit propagation by adding to assignment
A the unit-resulting literals derived from nogoods in ∆Π and in∇.)

Function: FLOCALPROPAGATION

Input: program Π, set∇ of nogoods, assignment A
Output: an extended assignment and a set of nogoods
U ← ∅
loop

B ← LOCALPROPAGATION(Π,∇, A)
A← LOCALPROPAGATIONΘ(Π,∇, B)
if A = B then return A

The algorithm for nogood propagation from [6] is modified by replacing the call to LOCALPROPAGA-
TION by a call to FLOCALPROPAGATION. The main algorithm of CLASP{f} is obtained in a similar
way from algorithm CDNL-ASP from [6].

6 Experimental Results

To evaluate the performance of the CLASP{f} algorithm, we have compared it with the method for
computing the answer sets of programs with non-Herbrand functions used in [4] and [10]. In that
method, given a program Π with non-Herbrand functions, (1) all occurrences of t-literals are replaced
by regular ASP literals (e.g. f = g is replaced by eq(f, g)), and (2) suitable equality and inequality
axioms are added to Π. The answer sets of the resulting program are then computed using an ASP
solver. It can be shown that the answer sets of the translation encode the answer sets of Π.

For our comparison we have chosen a planning task in which an agent starts at (0, 0) on a n × n
grid and has the goal of reaching a given position in k steps. The agent can move either up or to the
right, by one cell at a time. Concurrent actions are not allowed. To make the task more challenging,
the goal position is chosen so that the minimum number of actions needed to achieve the goal is
equal to number of steps k. This domain has been selected because, in our experience on practical
applications of ASP, solver performance decreases rapidly when parameter n is increased. This
decrease in performance is due to the growth in the size of the grounding of the inertia axiom, and we
are aware of no general-purpose technique to alleviate this issue in ASP programs.

The ASP{f} formalization, ΠASP{f} is show below. Constants k and n are specified at run-time.

10 An Answer Set Solver for non-Herbrand Programs: Progress Report

Table 1 Performance comparison between ΠASP{f} + CLASP{f} and ΠASP + CLINGO.

k = 3 k = 5 k = 7
n ΠASP{f} ΠASP ΠASP{f} ΠASP ΠASP{f} ΠASP

100 0.000 0.045 0.011 0.063 0.018 0.108
200 0.016 0.282 0.044 0.467 0.076 0.555
500 0.115 1.919 0.212 3.149 0.458 4.530

1000 0.513 8.273 1.012 13.787 1.766 21.432
1500 1.203 21.300 2.515 37.024 4.626 56.341
2000 2.429 43.092 4.283 70.591 7.712 103.737

Symbol / used in the second-to-last rule denotes integer division in the dialect of CLASP.

step(0..k). loc(0..n− 1). posx(0) = 0. posy(0) = 0.
posx(S + 1) = X + 1←
step(S), step(S + 1), loc(X), loc(X + 1), posx(S) = X, o(plusx, S).

← o(plusx, S), posx(S) = n− 1.
posy(S + 1) = Y + 1←
step(S), step(S + 1), loc(Y), loc(Y + 1), posy(S) = Y, o(plusy, S).

← o(plusy, S), posy(S) = n− 1.
posx(S + 1) = X ←
step(S), step(S + 1), loc(X), posx(S) = X, not posx(S + 1) 6= posx(S).

posy(S + 1) = Y ←
step(S), step(S + 1), loc(Y), posy(S) = Y, not posy(S + 1) 6= posy(S).

1{o(plusx, S), o(plusy, S)}1← step(S), S < k.
goal← posx(k) = k/2, posy(k) = k − k/2.
← not goal.

Program ΠASP, omitted to save space, is an ASP encoding of the problem obtained by the usual
formalization techniques; it is also equivalent, modulo renaming and reification of relations, to the
translation of the formalizations in the languages of [4] and [10]. Table 1 shows a comparison of
the time, in seconds, to find one answer set using ΠASP{f} and using ΠASP. The results have been
obtained for various values of parameters k and n. As the table shows, the time for ΠASP{f} is
consistently more than an order of magnitude better than of ΠASP, even though the code for the
support of non-Herbrand functions in the implementation of CLASP{f} is still largely unoptimized.
The CLASP{f} solver used here is an extension of CLINGO 2.0.2. To ensure the fairness of the
comparison, the answer sets of the ASP encoding have been computed using CLINGO 2.0.2. The
experiments were performed on a computer with an Intel Q6600 processor at 2.4GHz, 1.5GB RAM
and Linux Fedora Core 11.

7 Conclusions and Future Work

In this paper we have defined the syntax and semantics of an extension of ASP by non-Herbrand
functions. Although the semantics of our language is a comparatively small modification of the
semantics of ASP from [8], it allows for an efficient implementation in ASP solvers, as demonstrated
by our experimental comparison with the solving techniques for other languages supporting non-
Herbrand functions. Although the language of [11, 14] is also supported by an efficient solver, that
solver uses CSP solving techniques rather than ASP solving techniques. Currently, the ASP{f}
solving algorithm is only applicable to a (large) subclass of ASP{f} programs. We expect that it will
be possible to extend our algorithm to arbitrary programs by introducing additional nogoods.

Marcello Balduccini 11

References

1 Marcello Balduccini. Correct Reasoning: Essays on Logic-Based AI in Honour of Vladimir Lif-
schitz, chapter 3. A “Conservative” Approach to Extending Answer Set Programming with Non-
Herbrand Functions, pages 23–39. Lecture Notes in Artificial Intelligence (LNCS). Springer Verlag,
Berlin, Jun 2012.

2 Chitta Baral. Knowledge Representation, Reasoning, and Declarative Problem Solving. Cambridge
University Press, Jan 2003.

3 Sabrina Baselice and Piero A. Bonatti. A Decidable Subclass of Finitary Programs. Journal of
Theory and Practice of Logic Programming (TPLP), 10(4–6):481–496, 2010.

4 Pedro Cabalar. Functional Answer Set Programming. Journal of Theory and Practice of Logic
Programming (TPLP), 11:203–234, 2011.

5 Francesco Calimeri, Susanna Cozza, Giovanbattista Ianni, and Nicola Leone. Enhancing ASP
by Functions: Decidable Classes and Implementation Techniques. In Proceedings of the Twenty-
Fourth Conference on Artificial Intelligence, pages 1666–1670, 2010.

6 Martin Gebser, Benjamin Kaufmann, Andre Neumann, and Torsten Schaub. Conflict-Driven An-
swer Set Solving. In Manuela M. Veloso, editor, Proceedings of the Twentieth International Joint
Conference on Artificial Intelligence (IJCAI’07), pages 386–392, 2007.

7 Martin Gebser, Max Ostrowski, and Torsten Schaub. Constraint Answer Set Solving. In 25th
International Conference on Logic Programming (ICLP09), volume 5649, 2009.

8 Michael Gelfond and Vladimir Lifschitz. Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing, 9:365–385, 1991.

9 Eugene Goldberg and Yakov Novikov. BerkMin: A Fast and Robust Sat-Solver. In Proceedings of
Design, Automation and Test in Europe Conference (DATE-2002), pages 142–149, Mar 2002.

10 Vladimir Lifschitz. Logic Programs with Intensional Functions (Preliminary Report). In ICLP11
Workshop on Answer Set Programming and Other Computing Paradigms (ASPOCP11), Jul 2011.

11 Fangzhen Lin and Yisong Wang. Answer Set Programming with Functions. In Proceedings of the
International Conference on Principles of Knowledge Representation and Reasoning (KR2008),
pages 454–465, 2008.

12 Victor W. Marek and Miroslaw Truszczynski. The Logic Programming Paradigm: a 25-Year
Perspective, chapter Stable Models and an Alternative Logic Programming Paradigm, pages 375–
398. Springer Verlag, Berlin, 1999.

13 Tommi Syrjänen. Omega-Restricted Logic Programs. In Thomas Eiter, Wolfgang Faber, and
Miroslaw Truszczynski, editors, 6th International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR01), volume 2173 of Lecture Notes in Artificial Intelligence (LNCS),
pages 267–279. Springer Verlag, Berlin, 2001.

14 Yisong Wang, Jia-Huai You, Li-Yan Yuan, and Mingyi Zhang. Weight Constraint Programs with
Functions. In Esra Erdem, Fangzhen Lin, and Torsten Schaub, editors, 10th International Confer-
ence on Logic Programming and Nonmonotonic Reasoning (LPNMR09), volume 5753 of Lecture
Notes in Artificial Intelligence (LNCS), pages 329–341. Springer Verlag, Berlin, Sep 2009.

	Introduction
	The Syntax of ASP{f}
	Semantics of ASP{f}
	Knowledge Representation with ASP{f}
	Computing the Answer Sets of ASP{f} Programs
	Experimental Results
	Conclusions and Future Work

