
Answer Set Solving and Non-Herbrand Functions

Marcello Balduccini
Kodak Research Laboratories

Eastman Kodak Company
Rochester, NY 14650-2102 USA

marcello.balduccini@gmail.com

Abstract

In this paper we propose an extension of Answer Set Pro-
gramming (ASP) by non-Herbrand functions, i.e. functions
over non-Herbrand domains, and describe a solver for the
new language. Introducing support for such functions allows
for an economic and natural representation of certain kinds of
knowledge that are comparatively cumbersome to represent
in ASP. Our approach stems from our interest in practical ap-
plications, and from the corresponding need to compute the
answer sets of programs with non-Herbrand functions effi-
ciently. Our extension of ASP is such that the semantics of the
new language is obtained by a comparatively small change to
the ASP semantics from (Gelfond and Lifschitz 1991). The
nature of this change makes it possible to modify a state-of-
the-art ASP solver in an incremental fashion, and use it for the
computation of the answer sets of (a large class of) programs
of the new language. The computation is rather efficient, as
demonstrated by our experimental evaluation.

Introduction

In this paper we describe an extension of Answer Set Pro-
gramming (ASP) (Gelfond and Lifschitz 1991; Marek and
Truszczynski 1999; Baral 2003) called ASP{f}, and a solver
for the new language.

In logic programming, functions are typically interpreted
over the Herbrand Universe, with each functional term f(x)
mapped to its own canonical syntactical representation. That
is, in most logic programming languages, the value of an
expression f(x) is f(x) itself, and thus strictly speaking
f(x) = 2 is false. This type of functions, the corresponding
languages and efficient implementation of solvers is the sub-
ject of a substantial amount of research (we refer the reader
to e.g. (Calimeri et al. 2010; Baselice and Bonatti 2010;
Syrjänen 2001)).

When representing certain kinds of knowledge, however,
it is sometimes convenient to use functions with non-
Herbrand domains (non-Herbrand functions for short), i.e.
functions that are interpreted over domains other than the
Herbrand Universe. For example, when describing a domain
in which people enter and exit a room over time, it may be
convenient to represent the number of people in the room at

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

step s by means of a function occupancy(s) and to state the
effect of a person entering the room by means of a statement
such as

occupancy(S + 1) = occupancy(S) + 1

where S is a variable ranging over the possible time steps in
the evolution of the domain.

Of course, in most logic programming languages, non-
Herbrand functions can still be represented, but the corre-
sponding encodings are not as natural and declarative as
the one above. For instance, a common approach con-
sists in representing the functions of interest using re-
lations, and then characterizing the functional nature of
these relations by writing auxiliary axioms. In ASP, one
would encode the above statement by (1) introducing a re-
lation occupancy′(s, o), whose intuitive meaning is that
occupancy′(s, o) holds iff the value of occupancy(s) is o;
and (2) re-writing the original statement as a rule

occupancy′(S + 1, O + 1)← occupancy′(S,O). (1)

The characterization of the relation as representing a func-
tion would be completed by an axiom such as

¬occupancy′(S,O′)← occupancy′(S,O), O 6= O′. (2)

which intuitively states that occupancy(s) has a unique
value. The disadvantage of this representation is that
the functional nature of occupancy′(s, o) is only stated in
(2). When reading (1), one is given no indication that
occupancy′(s, o) represents a function – and, before finding
statements such as (2), one can make no assumption about
the functional nature of the relations in a program when a
combination of (proper) relations and non-Herbrand func-
tions are present.

Various extensions of ASP with non-Herbrand functions ex-
ist in the literature. In (Cabalar 2011), Quantified Equilib-
rium Logic is extended with support for equality. A sub-
set of the general language, called FLP, is then identified
which can be translated into normal logic programs. Such
translation makes it possible to compute the answer sets of
FLP programs using ASP solvers. (Lifschitz 2011) proposes
instead the use of second-order theories for the definition
of the semantics of the language. Again, a transformation
is described, which removes non-Herbrand functions and

makes it possible to use ASP solvers for the computation
of the answer sets of programs in the extended language.
In (Lin and Wang 2008; Wang et al. 2009) the seman-
tics is based on the notion of reduct as in the original ASP
semantics (Gelfond and Lifschitz 1991). For the purpose
of computing answer sets, a translation is defined, which
maps programs of the language from (Lin and Wang 2008;
Wang et al. 2009) to constraint satisfaction problems, so that
CSP solvers can be used for the computation of the answer
sets of programs in the extended language. Finally, the lan-
guage of CLINGCON (Gebser, Ostrowski, and Schaub 2009)
extends ASP with elements from constraint satisfaction. The
CLINGCON solver finds the answer sets of a program by in-
terleaving the computations of an ASP solver and of a CSP
solver.

Our investigation stems for our interest in practical applica-
tions, and in particular from the need for a knowledge rep-
resentation language with non-Herbrand functions that can
be used for such applications and that allows for an efficient
computation of answer sets. From this point of view, the
existing approaches have certain limitations.

The transformations to constraint satisfaction problems used
in (Lin and Wang 2008; Wang et al. 2009) certainly allow
for an efficient computation of answer sets using constraint
solving techniques, as demonstrated by the experimental re-
sults in (Wang et al. 2009). On the other hand, the recent
successes of solvers based on the Conflict-Driven Clause
Learning technique (CDCL for short, see e.g. (Goldberg
and Novikov 2002)) such as CLASP (Gebser et al. 2007)
have shown that for certain domains CSP solvers perform
poorly compared to CDCL-based solvers. For practical ap-
plications it is therefore important to ensure the availability
of a CDCL-based solver as well. Furthermore, as observed
in (Cabalar 2011), the requirement made in (Lin and Wang
2008; Wang et al. 2009) that non-Herbrand functions be
total yields some counterintuitive results in certain knowl-
edge representation tasks, which, from our point of view,
limits the practical applications of the language. This ar-
gument also holds for CLINGCON. An additional limitation
of CLINGCON is the fact that the interleaved computation it
performs carries some overhead.

In both (Cabalar 2011) (where functions are partial) and
(Lifschitz 2011) (where functions are total) the computation
of the answer sets of a program is obtained by translating
the program into a normal logic program, and then using
state-of-the-art ASP solving techniques and solvers. Unfor-
tunately, in both cases the translation to normal logic pro-
grams causes a substantial growth of the size of the trans-
lated (ground) program compared to the original (ground)
program. Two, similar and often concurrent, reasons exist
for this growth.

First of all, when a non-Herbrand function is removed and
replaced by a relation-based representation, axioms that en-
sure the uniqueness of value of the function have to be in-
troduced. In (Cabalar 2011), for example, when a function
f(·) is removed, the following constraint is introduced:

← holds f(X,V), holds f(X,W), V 6= W. (3)

As usual, before an ASP solver can be used, this constraint
must in turn be replaced by its ground instances, obtained
by substituting every variable in it by a constant. This pro-
cess causes the appearance of |Df |

2 · |Cf | ground instances,
where Df and Cf are respectively the domain and the co-
domain of function f . In the presence of functions with a
sizable domain and/or co-domain, the number of ground in-
stances of (3) can grow quickly and impact the performance
of the solver rather substantially.

Secondly, certain syntactic elements of these extended lan-
guages, once mapped to normal logic programs, can also
yield translations with large ground instances. Taking again
(Cabalar 2011) as an example (the transformation in (Lifs-
chitz 2011) appears to follow the same pattern), consider the
FLP rule:

p(x)← f(x) # g(x). (4)

which intuitively says that p(x) must hold if f and g have
different values for x and are both defined. During the trans-
formation to normal logic programs, this rule is translated
into:

p(x)← Y 6= Z, holds f(x, Y), holds g(x,Z).

Similarly to the previous case, the number of ground in-
stances of this rule grows proportionally with |Df |

2, and
in the presence of non-Herbrand functions with sizable do-
mains, solver performance can be affected quite substan-
tially. Although one might argue that it is possible to modify
an ASP solver to guarantee that (3) is enforced without the
need to explicitly specify it in the program, such a solution
is unlikely to be applicable in the case of an arbitrary rule
such as (4).

In response to these issues, in this paper we define an exten-
sion of ASP with non-Herbrand functions, called ASP{f},
that is obtained with a comparatively small modification to
the semantics from (Gelfond and Lifschitz 1991). The na-
ture of this change makes it possible to modify a state-of-
the-art ASP solver in an incremental fashion, and to use it di-
rectly for the computation of the answer sets of (a large class
of) ASP{f} programs. This prevents the phenomenon of
the quadratic growth of the ground instance described above
and results in a rather efficient computation, as demonstrated
later in the paper.

The rest of the paper is organized as follows. The next two
sections describe the syntax and the semantics of the pro-
posed language. In the following section we discuss the
topic of knowledge representation with non-Herbrand func-
tions. Next, we describe our ASP{f} solver and report ex-
perimental results. Finally, we draw conclusions and discuss
future work.

The Syntax of ASP{f}
In this section we define the syntax of ASP{f}. To keep the
presentation simple, the version of ASP{f} described in this
paper does not allow for Herbrand functions, and thus from
now on we drop the “non-Herbrand” attribute. (Allowing
for Herbrand functions is straightforward.)

The syntax of ASP{f} is based on a signature Σ = 〈C,F ,R〉
whose elements are, respectively, finite sets of constants,
function symbols and relation symbols. A term is an expres-
sion f(c1, . . . , cn) where f ∈ F , and ci’s are 0 or more
constants. An atom is an expression r(c1, . . . , cn), where
r ∈ R, and ci’s are constants. The set of all terms (resp.,
atoms) that can be formed from Σ is denoted by T (resp.,
A). A t-atom is an expression of the form f = g, where f
is a term and g is either a term or a constant. We call seed
t-atom a t-atom of the form f = v, where v is a constant.
Any t-atom that is not a seed t-atom is a dependent t-atom.
Thus, given a signature with C = {a, b, 0, 1, 2, 3, 4} and
F = {occupancy, seats}, expressions occupancy(a) = 2
and seats(b) = 4 are seed t-atoms, while occupancy(b) =
seats(b) is a dependent t-atom.

A regular literal is an atom a or its strong negation ¬a.
A t-literal is a t-atom f = g or its strong negation
¬(f = g), which we abbreviate f 6= g. A dependent
t-literal is any t-literal that is not a seed t-atom. A literal
is a regular literal or a t-literal. A seed literal is a
regular literal or a seed t-atom. Given a signature with
R = {room evacuated}, F = {occupancy, seats}
and C = {a, b, 0, . . . , 4}, room evacuated(a),
¬room evacuated(b) and occupancy(a) = 2 are
seed literals (as well as literals); room evacuated(a)
and ¬room evacuated(b) are also regular literals;
occupancy(b) 6= 1 and occupancy(b) = seats(b) are
dependent t-literals, but they are not regular or seed literals.

A rule r is a statement of the form:

h← l1, . . . , lm, not lm+1, . . . , not ln (5)

where h is a seed literal and li’s are literals. Simi-
larly to ASP, the informal reading of r is that a rational
agent who believes l1, . . . , lm and has no reason to be-
lieve lm+1, . . . , ln must believe h. Given a signature with
R = {room evacuated, door stuck, room occupied,
room maybe occupied}, F = {occupancy} and C =
{0}, the following is an example of ASP{f} rules encoding
knowledge about the occupancy of a room:

r1 : occupancy = 0← room evacuated, not door stuck.
r2 : room occupied← occupancy 6= 0.
r3 : room maybe occupied← not occupancy = 0.

Intuitively, rule r1 states that the occupancy of the room is
0 if the room has been evacuated and there is no reason to
believe that the door is stuck. Rule r2 says that the room is
occupied if its occupancy is different from 0. On the other
hand, r3 aims at drawing a weaker conclusion, stating that
the room may be occupied if there is no explicit knowledge
(i.e. reason to believe) that its occupancy is 0.

Given rule r from (5), head(r) denotes {h}; body(r) de-
notes {l1, . . . , not ln}; pos(r) denotes {l1, . . . , lm}; neg(r)
denotes {lm+1, . . . , ln}.

A constraint is a special type of rule with an empty head, in-
formally meaning that the condition described by the body
of the constraint must never be satisfied. A constraint is con-
sidered a shorthand of:

⊥ ← l1, . . . , lm, not lm+1, . . . , not ln, not ⊥

where ⊥ is a fresh atom.

A program is a pair Π = 〈Σ, P 〉, where Σ is a signature
and P is a set of rules. Whenever possible, in this paper the
signature is implicitly defined from the rules of Π, and Π
is identified with its set of rules. In that case, the signature
is denoted by Σ(Π) and its elements by C(Π), F(Π) and
R(Π). A rule r is positive if neg(r) = ∅. A program Π
is positive if every r ∈ Π is positive. A program Π is also
t-literal free if no t-literals occur in the rules of Π.

Like in ASP, in ASP{f} too variables can be used in place
of constants and terms. The grounding of a rule r is the
set of all the syntactically valid rules (its ground instances)
obtained by replacing every variable of r with an element
of C ∪ T . The grounding of a program Π is the set of the
groundings of the rules of Π. A syntactic element of the
language is ground if it is variable-free and non-ground oth-
erwise. Thus, the fact that a room is unoccupied at any step
S in the evolution of a domain whenever the room is not
accessible can be expressed by the non-ground rule:

occupancy(S) = 0← not accessible(S).

Given C = {0, 1, 2}, the grounding of the rule is:

occupancy(0) = 0← not accessible(0).
occupancy(1) = 0← not accessible(1).
occupancy(2) = 0← not accessible(2).

Semantics of ASP{f}
The semantics of a non-ground program is defined to coin-
cide with the semantics of its grounding. The semantics of
ground ASP{f} programs is defined below. It is worth not-
ing that the semantics of ASP{f} is obtained from that of
ASP in (Gelfond and Lifschitz 1991) by simply extending
entailment to t-literals.

In the rest of this section, we consider only ground terms, lit-
erals, rules and programs and thus omit the word “ground.”
A set S of seed literals is consistent if (1) for every atom
a ∈ A, {a,¬a} 6⊆ S; (2) for every term t ∈ T and v1,
v2 ∈ C such that v1 6= v2, {t = v1, t = v2} 6⊆ S. Hence,
S1 = {p,¬q, f = 3} and S2 = {q, f = 3, g = 2} are
consistent, while {p,¬p, f = 3} and {q, f = 3, f = 2} are
not. Incidentally, {p,¬q, f = g, g = 2} is not a set of seed
literals, because f = g is not a seed literal.

The value of a term t w.r.t. a consistent set S of seed literals
(denoted by valS(t)) is v iff t = v ∈ S. If, for every v ∈ C,
t = v 6∈ S, the value of t w.r.t. S is undefined. The value of
a constant v ∈ C w.r.t. S (valS(v)) is v itself. For example
given S1 and S2 as above, valS2

(f) is 3 and valS2
(g) is 2,

whereas valS1
(g) is undefined. Given S1 and a signature

with C = {0, 1}, valS1
(1) = 1.

A seed literal l is satisfied by a consistent set S of seed lit-
erals iff l ∈ S. A dependent t-literal f = g (resp., f 6= g) is
satisfied by S iff both valS(f) and valS(g) are defined, and
valS(f) is equal to valS(g) (resp., valS(f) is different from
valS(g)). Thus, seed literals q and f = 3 are satisfied by S2;
f 6= g is also satisfied by S2 because valS2

(f) and valS2
(g)

are defined, and valS2
(f) is different from valS2

(g). Con-
versely, f = g is not satisfied, because valS2

(f) is different
from valS2

(g). The t-literal f 6= h is also not satisfied by S2,
because valS2

(h) is undefined. When a literal l is satisfied
(resp., not satisfied) by S, we write S |= l (resp., S 6|= l).

An extended literal is a literal l or an expression of the form
not l. An extended literal not l is satisfied by a consistent
set S of seed literals (S |= not l) if S 6|= l. Similarly, S 6|=
not l if S |= l. Considering set S2 again, extended literal
not f = h is satisfied by S2, because f = h is not satisfied
by S2.

Finally, a set E of extended literals is satisfied by a consis-
tent set S of seed literals (S |= E) if S |= e for every e ∈ E.

We begin by defining the semantics of ASP{f} programs for
positive programs.

A set S of seed literals is closed under positive rule r if S |=
h, where head(r) = {h}, whenever S |= pos(r). Hence,
set S2 described earlier is closed under f = 3 ← g 6= 1
and (trivially) under f = 2 ← r, but it is not closed under
p ← f = 3, because S2 |= f = 3 but S2 6|= p. S is closed
under Π if it is closed under every rule r ∈ Π.

Finally, a set S of seed literals is an answer set of a positive
program Π if it is consistent and closed under Π, and is min-
imal (w.r.t. set-theoretic inclusion) among the sets of seed
literals that satisfy such conditions. Thus, the program:

p← f = 2.
f = 2.
q ← q.

has one answer set, {f = 2, p}. The set {f = 2} is not
closed under the first rule of the program, and therefore is
not an answer set. The set {f = 2, p, q} is also not an an-
swer set, because it is not minimal (it is a proper superset of
another answer set). Notice that positive programs may have
no answer set. For example, the program

f = 3.
f = 2.

has no answer set. Programs that have answer sets (resp., no
answer sets) are called consistent (resp., inconsistent).

Positive programs enjoy the following property:

Proposition 1 Every consistent positive ASP{f} program Π
has a unique answer set.

Next, we define the semantics of arbitrary ASP{f} pro-
grams.

The reduct of a program Π w.r.t. a consistent set S of seed
literals is the set ΠS consisting of a rule head(r)← pos(r)
(the reduct of r w.r.t. S) for each rule r ∈ Π for which
S |= body(r) \ pos(r).

Example 1 Consider a set of seed literals S3 = {g =
3, f = 2, p}, and program Π1:

r1 : p← f = 2, not g = 1, not h = 0.
r2 : q ← p, not g 6= 2.
r3 : g = 3.
r4 : f = 2.

and let us compute its reduct. For r1, first we have to check if
S3 |= body(r1)\pos(r1), that is if S3 |= not g = 1, not h =
0. Extended literal not g = 1 is satisfied by S3 only if S3 6|=
g = 1. Because g = 1 is a seed literal, it is satisfied by
S3 if g = 1 ∈ S3. Since g = 1 6∈ S3, we conclude that
S3 6|= g = 1 and thus not g = 1 is satisfied by S3. With
the same reasoning, we conclude that S3 |= not h = 0.
Hence, S3 |= body(r1) \ pos(r1). Therefore, the reduct of
r1 is p← f = 2. For the reduct of r2, notice that not g 6= 2
(which intuitively means “g may equal 2”) is not satisfied by
S3. In fact, S3 |= not g 6= 2 only if S3 6|= g 6= 2. However,
it is not difficult to show that S3 |= g 6= 2: in fact, valS3

(g)
is defined and valS3

(g) 6= 2. Therefore, not g 6= 2 is not
satisfied by S3, and thus the reduct of Π1 contains no rule
for r2. The reducts of r3 and r4 are the rules themselves.

Summing up, ΠS3

1 is:

r′1 : p← f = 2.
r′3 : g = 3.
r′4 : f = 2.

Finally, a consistent set S of seed literals is an answer set of
program Π if S is the answer set of ΠS .

Example 2 By applying the definitions given earlier, it is

not difficult to show that an answer set of ΠS3

1 is {f = 2, g =

3, p} = S3. Hence, S3 is an answer set of ΠS3

1 . Consider

instead S4 = S3 ∪ {h = 1}. Clearly ΠS4

1 = ΠS3

1 . From
the uniqueness of the answer sets of positive programs, it

follows immediately that S4 is not an answer set of ΠS4

1 .
Therefore, S4 is not an answer set of Π1.

Most properties of ASP programs are also enjoyed by
ASP{f}, such as:

Proposition 2 For every ASP{f} program Π and set of con-
straints C formed from Σ(Π), S is an answer set of Π ∪ C
iff S is an answer set of Π that does not satisfy the body of
any constraint from C.

Knowledge Representation with ASP{f}
In this section we demonstrate the use of ASP{f} for the
formalization of important types of knowledge. We start our
discussion by addressing the encoding of defaults, and we
also use this opportunity to give an illustration of the related
languages.

Consider the statements: (1) the value of f(x) is a unless
otherwise specified; (2) the value of f(x) is b if p(x) (this
example is from (Lifschitz 2011); for simplicity of presenta-
tion we use a constant as the argument of function f instead
of a variable as in (Lifschitz 2011), but our argument does
not change even in the more general case). These statements
can be encoded in ASP{f} as follows:

P1 =

{

r1 : f(x) = a← not f(x) 6= a.
r2 : f(x) = b← p(x).

Rule r1 encodes the default, and r2 encodes the exception.
The informal reading of r1, according to the description

given earlier in this paper, is “if there is no reason to be-
lieve that f(x) is different from a, then f(x) must be equal
to a”. In the language of weight constraint programs with
evaluable functions (Wang et al. 2009) a substantially differ-
ent representation strategy is adopted, in which the default
is encoded as:

f(x) = a← [f(x) 6= a : 1]0.

In the language of IF-programs (Lifschitz 2011), the default
for f(x) has an encoding rather similar to that of r1:

f(x) = a← ¬(f(x) 6= a)

Note that, in the language of IF-programs, ¬ has a meaning
similar to that of not here. The language of IF-programs also
allows for the equivalent, alternative encoding of the default:

f(x) = a ∨ f(x) 6= a.

which appears to give to symbol ∨ a meaning similar to
that of ordered disjunction (Brewka, Niemelä, and Syrjänen
2004).

In the language of CLINGCON (Gebser, Ostrowski, and
Schaub 2009) the representation of defaults involving func-
tions appears to yield unintended results if one follows the
traditional ASP knowledge representation strategies. Con-
sider a modification of the default discussed earlier in which
the value of f(x) is 1 by default (CLINGCON only supports
functions with numerical values), and let us assume that
f(x) ranges over the set {0, 1}. One might be tempted to
encode it in the language of CLINGCON as:

$domain(0..1).
f(x) $== 1← not f(x) $!= 1.

where the first statement specifies the domain of the func-
tions and the second statement formalizes the default, with
prefix $ denoting equality and inequality of functions. As
one would expect, this program has an answer set, {f(x) =
1}, in which f(x) has its default value of 1. However, the
program also has a second, unintended answer set, {f(x) =
0}, in which f(x) is assigned the non-default value of 0.

Finally, the encoding of the above default in the language of
(Cabalar 2011) is:

f(x) = a← ¬f(x) # a.

where ¬ represents default negation and # is the apartness
operator, which ensures not only that f(x) is different from
a, but that it is also defined.

Extending a common ASP methodology, the choice of value
for a non-Herbrand function can be encoded in ASP{f} by
means of default negation. Consider the statements (adapted
from (Lifschitz 2011)): (1) the value f(X) is a if p(X); (2)
otherwise, the value of f(X) is arbitrary. Let the domain
of variable X be given by a relation dom(X), and let the
possible values of f(X) be encoded by a relation val(V). A
possible ASP{f} encoding of these statements is:

r1 : f(X) = a←
p(X), dom(X).

r2 : f(X) = V ←
dom(X), val(V),
not p(X), not f(X) 6= V.

Rule r1 encodes the first statement. Rule r2 formalizes the
arbitrary selection of values for f(X) in the default case.
It is important to notice that, although r2 follows a strat-
egy of formalization of knowledge that is similar to that of
ASP, the ASP{f} encoding is more compact than the corre-
sponding ASP one. In fact, the ASP encoding requires the
introduction of an extra rule formalizing the fact that f(x)
has a unique value:

r′1 : f ′(X) = a← p(X), dom(X).

r′2 : f ′(X,V)←
dom(X), val(V), not p(X), not ¬f ′(X,V).

r′3 : ¬f ′(X,V ′)←
val(V), val(V ′), V 6= V ′, f ′(X,V).

A similar use of defaults is typically associated, in ASP, with
the representation of dynamic domains. In this case, defaults
are a key tool for the encoding of the law of inertia. Let us
show how dynamic domains involving functions can be rep-
resented in ASP{f}. Consider a domain including a button
bi, which increments a counter c, and a button br, which re-
sets it. At each time step, the agent operating the buttons
may press either button, or none. A possible ASP{f} encod-
ing of this domain is:

r1 : val(c, S + 1) = 0← pressed(br, S).

r2 : val(c, S + 1) = N + 1←
pressed(bi, S), val(c, S) = N.

r3 : val(c, S + 1) = N ←
val(c, S) = N, not val(c, S + 1) 6= val(c, S).

Rules r1 and r2 are a straightforward encoding of the effect
of pressing either button (variable S denotes a time step).
Rule r3 is the ASP{f} encoding of the law of inertia for the
value of the counter, and states that the value of c does not
change unless it is forced to. For simplicity of presentation,
it is instantiated for a particular function, but could be as
easily written so that it applies to arbitrary functions from
the domain.

Computing the Answer Sets of ASP{f}
Programs

In this section we describe an algorithm, CLASP{f}, which
computes the answer sets of ASP{f} programs. Although
CLASP{f} is based on the CLASP algorithm (Gebser et al.
2007), the approach can be easily extended to other ASP
solvers. In our description we follow the notation of (Gebser
et al. 2007), to which the interested reader can refer for more
details on the CLASP algorithm.

As customary, the algorithm operates on ground programs.
To keep the presentation simple, we further assume that ev-
ery program Π considered in this section contains, for every
atom a from Π, a constraint← a,¬a (usually this constraint
is added automatically by the solver).

Given a literal l, a signed literal is an expression of the form
Tl or Fl. Given a signed literal σ, σ, called the complement
of σ, denotes Fl if σ is Tl, and Tl otherwise. An assignment
A over some domain D is a sequence 〈σ1, . . . , σn〉 of signed
literals for literals from D. The domain of A is denoted by
dom(A). The expression A ◦ B denotes the concatenation
of assignments A and B. For an assignment A, we denote
by AT the set of literals l such that Tl occurs in A; AF is
instead the set of literals l such that Fl occurs in A.

A nogood is a set {σ1, . . . , σn} of signed literals. An as-
signment A is a solution for a set ∆ of nogoods if (1)
AT ∪ AF = dom(A); (2) AT ∩ AF = ∅; and (3) for every
δ ∈ ∆, δ 6⊆ A. Given a nogood δ, a signed literal σ ∈ δ and
an assignment A, σ is called unit-resulting for δ w.r.t. A if
δ \ A = {σ} and σ 6∈ A. Unit propagation is the process
of iteratively extending A with unit-resulting signed literals
until no signed literal is unit-resulting for any nogood in ∆.

At the core of the computation of the answer sets of a pro-
gram in CLASP{f} is the process of mapping the program to
a suitable set of nogoods. Such mapping is described next,
beginning with the nogoods already used in CLASP.

Given a program Π, let lit(Π) be the set of literals that oc-
cur in Π, seed(Π) the set of seed literals that occur in Π,
and body(Π) be the collection of the bodies of the rules of
Π. Furthermore, let the expression body(l) denote the set of
bodies of the rules of Π whose head is l.

Given a rule’s body β = {l1, . . . , lm, not lm+1, . . . , not ln},
the expression δ(β) denotes the nogood

{Fβ,Tl1, . . . ,Tlm,Flm+1, . . . ,Fln}.

The expression ∆(β) denotes instead the set of nogoods

{{Tβ,Fl1}, . . . , {Tβ,Flm},
{Tβ,Tlm+1}, . . . , {Tβ,Tln}}.

Next, given a literal l such that body(l) = {β1, . . . , βk}, the
expression ∆(l) denotes the set of nogoods

{{Fl,Tβ1}, . . . , {Fl,Tβk}}.

Finally, the expression δ(l) denotes the nogood

{Tl,Fβ1, . . . ,Fβk}.

Given a program Π, let ∆Π denote:

{δ(β) |β ∈ body(Π)}∪
{δ ∈ ∆(β) |β ∈ body(Π)}∪
{δ(l) | l ∈ seed(Π)}∪
{δ ∈ ∆(l) | l ∈ lit(Π)}.

Intuitively, in ∆Π, δ(l) is applied only to seed t-atoms be-
cause dependent t-literals do not occur in the head of rules.

It can be shown (Gebser et al. 2007) that ∆Π can be used to
find the answer sets of tight, t-literal free, programs. To find
the answer sets of non-tight programs, one needs to intro-
duce loop nogoods. For a program Π and some U ⊆ lit(Π),
expression EBΠ(U) denotes the collection of the external
bodies of U , i.e.

{body(r) | r ∈ Π, head(r) ∈ U, body(r) ∩ U = ∅}.

Given a literal l ∈ U and EBΠ(U) = {β1, . . . , βk}, the
loop nogood of l is

λ(l, U) = {Fβ1, . . . ,Fβk,Tl}.

The set of loop nogoods for program Π is

ΛΠ =
⋃

U⊆lit(Π),U 6=∅

{λ(l, U) | l ∈ U}.

Using a similar result from (Gebser et al. 2007) it is not
difficult to prove the following property:

Theorem 1 For every ASP{f} program Π that contains no
dependent t-literals, X ⊆ lit(Π) is an answer set of Π iff
X = AT ∩ lit(Π) for a solution A for ∆Π ∪ ΛΠ.

Next, we introduce nogoods for the computation of the an-
swer sets of programs containing dependent t-literals. Given
a dependent t-literal l of the form f = g (resp., f 6= g), a
pair of seed t-atoms f = v and g = w formed from Σ(Π)
is a satisfying pair for l if v = w (resp., v 6= w) and a falsi-
fying pair for l otherwise. Let {〈f = v1, g = w1〉, . . . 〈f =
vk, g = wk〉} be the set of satisfying pairs for l. The expres-
sion ρ+(l) denotes the set of nogoods

{{Fl,Tf = v1,Tg = w1}, . . . , {Fl,Tf = vk,Tg = vk}}.

Let {〈f = v1, g = w1〉, . . . 〈f = vk, g = wk〉} be the set of
falsifying pairs for l. The expression ρ−(l) denotes the set
of nogoods

{{Tl,Tf = v1,Tg = w1}, . . . , {Tl,Tf = vk,Tg = vk}}.

Intuitively the nogoods in ρ+(l) and ρ−(l) enforce the truth
or falsity of a dependent t-literal when suitable seed t-atoms
are true.

Finally, given a dependent t-literal l, let terms(l) denote the
set of terms that occur in l, and, for every term f that occurs
in l, let rel(f) denote the set of seed t-atoms of the form
f = v for some v ∈ C(Π). Intuitively rel(f) is the set of
seed t-atoms that are relevant to the value of term f . The
expression κ(l) denotes the set of nogoods

⋃

f∈terms(l)

({Tl} ∪ {Fs | s ∈ rel(f)}).

Intuitively κ(l) states that l cannot be true if one of its terms
is undefined.

Let dep(Π) be the set of dependent t-literals in a program Π.
ΘΠ denotes:

{ρ+(l) | l ∈ dep(Π)}∪
{ρ−(l) | l ∈ dep(Π)}∪
{κ(l) | l ∈ dep(Π)}.

The following condition defines a (rather large) class of
ASP{f} programs whose answer sets can be found using
ΘΠ. Given a program Π, we say that Π contains a t-
loop for seed t-atom l if, in the dependency graph for Π,
there is a positive path from l to a t-literal l′ such that
terms(l) ∩ terms(l′) 6= ∅. A program containing a t-loop
is for example

f = 2← f 6= 3.

In practice, for most domains from the literature there appear
to be t-loop free encodings. The following result character-
izes the answer sets of t-loop free ASP{f} programs.

Theorem 2 For every t-loop free ASP{f} program Π, X ⊆
seed(Π) is an answer set of Π iff X = AT ∩ seed(Π) for a
solution A for ∆Π ∪ ΛΠ ∪ΘΠ.

From a high-level perspective, in the CLASP algorithm the
answer sets of ASP programs are computed by iteratively
(1) performing unit propagation on the nogoods for the pro-
gram and (2) non-deterministically assigning a truth value
to a signed literal. Unfortunately, performing unit propa-
gation on the nogoods in ΘΠ is inefficient, because in the
worst case sets ρ+(l) and ρ−(l) exhibit quadratic growth.
However, the conditions expressed by those nogoods can be
easily checked algorithmically. Let VALUE(f,A) be a func-
tion that returns v if signed literal Tf = v occurs in as-
signment A. Given A and a dependent t-literal f = g, unit
propagation on ρ+(f = g) can be performed by checking if
VALUE(f,A) = VALUE(g,A) and, if so, by adding Tf = g
to A. A similar approach applies to the unit propagation for
the other elements of ΘΠ.

Using this technique, unit propagation on the nogoods of
ΘΠ can be performed in constant time w.r.t. the number of
seed t-atoms in the program. (The reader may be wonder-
ing about the cases such as the one in which the truth of
Tf = v together with VALUE(f,A) can be used to infer
VALUE(g,A). It can be shown that support for this type of
scenario can be dropped without affecting the soundness and
completeness of the solver.)

Function FLOCALPROPAGATION(Π,∇, A), shown below,
iteratively augments the result of unit propagation from
CLASP’s function LOCALPROPAGATION(Π,∇, A) with the
unit-resulting dependent t-literals derived from ΘΠ by func-
tion LOCALPROPAGATIONΘ(Π,∇, B). The iterations con-
tinue until a fixpoint is reached. (Function LOCALPROP-
AGATION(Π,∇, A) in CLASP computes a fixpoint of unit
propagation by adding to assignment A the unit-resulting lit-
erals derived from nogoods in ∆Π and in∇.)

Function: FLOCALPROPAGATION

Input: program Π, set ∇ of nogoods, assignment A
Output: an extended assignment and a set of nogoods
U ← ∅
loop

B ← LOCALPROPAGATION(Π,∇, A)
A← LOCALPROPAGATIONΘ(Π,∇, B)
if A = B then return A

The algorithm for nogood propagation from (Gebser et al.
2007) is modified by replacing the call to LOCALPROPA-
GATION by a call to FLOCALPROPAGATION.

Function: NOGOODPROPAGATION

Input: program Π, set ∇ of nogoods, assignment A
Output: an extended assignment and a set of nogoods
U ← ∅
loop

A← FLOCALPROPAGATION(Π,∇, A)
if δ ⊆ A for some δ ∈ ∆Π ∪∇ or TIGHT(Π) then

return(A,∇)
else

U ← U \AF

if U = ∅ then U ← UNFOUNDEDSET(Π, A)

if U = ∅ then return(A,∇)
else let p ∈ U in
∇ ← ∇∪ {λ(p, U)}
if Tp ∈ A then return(A,∇)
else A← A ◦ (Fp)

The main algorithm of CLASP{f}, shown below, is a
straightforward modification of algorithm CDNL-ASP from
(Gebser et al. 2007). For a description of the auxiliary func-
tions, we refer the reader to (Gebser et al. 2007).

Function: CLASP{f}
Input: program Π
Output: an answer set of Π
A← ∅
∇ ← ∅
dl← 0
loop

(A,∇)← NOGOODPROPAGATION(Π,∇, A)
if ǫ ⊆ A for some ǫ ∈ ∆Π ∪∇ then

if dl = 0 then return no answer set
(δ, σUIP , k)← CONFLICTANALYSIS(ǫ,Π,∇, A)
∇ ← ∇∪ {δ}
A← A \ {σ ∈ A | k < dl(σ)}
dl← k
A← A ◦ (σUIP)

else if AT ∪AF = lit(Π) ∪ body(Π) then

return AT ∩ seed(Π)
else

σd ← SELECT(Π,∇, A)
dl← dl + 1
A← A ◦ (σd)

Experimental Results

To evaluate the performance of the CLASP{f} algorithm, we
have compared it with the method for computing the answer
sets of programs with non-Herbrand functions used in (Ca-
balar 2011) and (Lifschitz 2011). In that method, given a
program Π with non-Herbrand functions, (1) all occurrences
of t-literals are replaced by regular ASP literals (e.g. f = g
is replaced by eq(f, g)), and (2) suitable equality and in-
equality axioms are added to Π. The answer sets of the re-
sulting program are then computed using an ASP solver. It
can be shown that the answer sets of the translation encode
the answer sets of Π.

For our comparison we have chosen a planning task in which
an agent starts at (0, 0) on a n × n grid and has the goal of
reaching a given position in k steps. The agent can move
either up or to the right, by one cell at a time. Concurrent
actions are not allowed. To make the task more challeng-
ing, the goal position is chosen so that the minimum number
of actions needed to achieve the goal is equal to number of
steps k. This domain has been selected because, in our expe-
rience on practical applications of ASP, solver performance
decreases rapidly when parameter n is increased. This de-
crease in performance is due to the growth in the size of
the grounding of the inertia axiom, and we are aware of no
general-purpose technique to alleviate this issue in ASP pro-
grams.

The ASP{f} formalization, ΠASP{f} is show below. Con-

stants k and n are specified at run-time. Symbol / used in
the second-to-last rule denotes integer division in the dialect
of CLASP (e.g. 3/2 = 1).

step(0..k). loc(0..n− 1).
posx(0) = 0. posy(0) = 0.

posx(S + 1) = X + 1←
step(S), step(S + 1), loc(X), loc(X + 1),
posx(S) = X, o(plusx, S).

← o(plusx, S), posx(S) = n− 1.

posy(S + 1) = Y + 1←
step(S), step(S + 1), loc(Y), loc(Y + 1),
posy(S) = Y, o(plusy, S).

← o(plusy, S), posy(S) = n− 1.

posx(S + 1) = X ←
step(S), step(S + 1), loc(X),
posx(S) = X, not posx(S + 1) 6= posx(S).

posy(S + 1) = Y ←
step(S), step(S + 1), loc(Y),
posy(S) = Y, not posy(S + 1) 6= posy(S).

1{o(plusx, S), o(plusy, S)}1← step(S), S < k.

goal← posx(k) = k/2, posy(k) = k − k/2.
← not goal.

The formalizations in the languages of (Cabalar 2011) and
(Lifschitz 2011) are similar, and their translation to ASP
(modulo renaming and reification of relations), denoted by
ΠASP, is:

step(0..k). loc(0..n− 1).
posx(0, 0). posy(0, 0).

posx(S + 1,X + 1)←
step(S), step(S + 1), loc(X), loc(X + 1),
posx(S,X), o(plusx, S).

← o(plusx, S), posx(S, n− 1).

posy(S + 1, Y + 1)←
step(S), step(S + 1), loc(Y), loc(Y + 1),
posy(S, Y), o(plusy, S).

← o(plusy, S), posy(S, n− 1).

¬posx(S,X2)←
step(S), loc(X1), loc(X2),
X1 6= X2, posx(S,X1).

¬posy(S, Y 2)←
step(S), loc(Y 1), loc(Y 2),
Y 1 6= Y 2, posy(S, Y 1).

posx(S + 1,X)←
step(S), step(S + 1), loc(X),
posx(S,X), not ¬posx(S + 1,X).

posy(S + 1, Y)←
step(S), step(S + 1), loc(Y),
posy(S, Y), not ¬posy(S + 1, S).

1{o(plusx, S), o(plusy, S)}1← step(S), S < k.

goal← posx(k, k/2), posy(k, k − k/2).
← not goal.

Figure 1 shows a comparison of the time, in seconds, to find
one answer set using ΠASP{f} and using ΠASP. The re-

sults have been obtained for various values of parameters
k and n. As the table shows, the time for ΠASP{f} is

consistently more than an order of magnitude better than
of ΠASP, even though the code for the support of non-

Herbrand functions in the implementation of CLASP{f} is
still largely unoptimized. The CLASP{f} solver used here is
an extension of CLINGO 2.0.2, and can be downloaded from
http://marcy.cjb.net/clingof/. To ensure the
fairness of the comparison, the answer sets of the ASP en-
coding have been computed using CLINGO 2.0.2. The exper-
iments were performed on a computer with an Intel Q6600
processor at 2.4GHz, 1.5GB RAM and Linux Fedora Core
11.

Conclusions and Future Work

In this paper we have defined the syntax and semantics of
an extension of ASP by non-Herbrand functions. Although
the semantics of our language is a minimal modification of
the semantics of ASP from (Gelfond and Lifschitz 1991),
it allows for an efficient implementation in ASP solvers, as
demonstrated by our experimental comparison with the solv-
ing techniques for other languages supporting non-Herbrand
functions. Although the language of (Lin and Wang 2008;
Wang et al. 2009) is also supported by an efficient solver,
that solver uses CSP solving techniques rather than ASP
solving techniques. Our motivation in developing a lan-
guage that could be supported by an efficient ASP-based
solver stems from the fact, demonstrated in the literature,
that the relative performance of CSP and ASP solving algo-
rithms varies depending on the domain of application, and
so the availability of an efficient ASP-based solver is impor-
tant.

Currently, the solving algorithm described in this paper is
only applicable to a (large) class of ASP{f} programs. We
expect that it will be possible to develop nogoods similar
to the loop nogoods of CLASP and extend our algorithm to
arbitrary ASP{f} programs.

Acknowledgments. The author would like to thank Michael
Gelfond, Daniela Inclezan and the anonymous reviewers for
their useful comments and suggestions.

k = 3
n ΠASP{f} ΠASP

100 0.000 0.045
200 0.016 0.282
500 0.115 1.919

1000 0.513 8.273
1500 1.203 21.300
2000 2.429 43.092

k = 5
n ΠASP{f} ΠASP

100 0.011 0.063
200 0.044 0.467
500 0.212 3.149

1000 1.012 13.787
1500 2.515 37.024
2000 4.283 70.591

k = 7
n ΠASP{f} ΠASP

100 0.018 0.108
200 0.076 0.555
500 0.458 4.530

1000 1.766 21.432
1500 4.626 56.341
2000 7.712 103.737

Figure 1: Performance comparison between ΠASP{f} +

CLASP{f} and ΠASP + CLINGO.

References

Baral, C. 2003. Knowledge Representation, Reasoning, and
Declarative Problem Solving. Cambridge University Press.

Baselice, S., and Bonatti, P. A. 2010. A Decidable Subclass
of Finitary Programs. Journal of Theory and Practice of
Logic Programming (TPLP) 10(4–6):481–496.

Brewka, G.; Niemelä, I.; and Syrjänen, T. 2004. Logic
Programs wirh Ordered Disjunction. 20(2):335–357.

Cabalar, P. 2011. Functional Answer Set Programming.
Journal of Theory and Practice of Logic Programming
(TPLP) 11:203–234.

Calimeri, F.; Cozza, S.; Ianni, G.; and Leone, N. 2010. En-
hancing ASP by Functions: Decidable Classes and Imple-
mentation Techniques. In Proceedings of the Twenty-Fourth
Conference on Artificial Intelligence, 1666–1670.

Gebser, M.; Kaufmann, B.; Neumann, A.; and Schaub, T.
2007. Conflict-Driven Answer Set Solving. In Veloso,
M. M., ed., Proceedings of the Twentieth International Joint
Conference on Artificial Intelligence (IJCAI’07), 386–392.

Gebser, M.; Ostrowski, M.; and Schaub, T. 2009. Constraint
Answer Set Solving. In 25th International Conference on
Logic Programming (ICLP09), volume 5649.

Gelfond, M., and Lifschitz, V. 1991. Classical Negation in
Logic Programs and Disjunctive Databases. New Genera-
tion Computing 9:365–385.

Goldberg, E., and Novikov, Y. 2002. BerkMin: A Fast and
Robust Sat-Solver. In Proceedings of Design, Automation
and Test in Europe Conference (DATE-2002), 142–149.

Lifschitz, V. 2011. Logic Programs with Intensional Func-
tions (Preliminary Report). In ICLP11 Workshop on An-
swer Set Programming and Other Computing Paradigms
(ASPOCP11).

Lin, F., and Wang, Y. 2008. Answer Set Programming with
Functions. In Proceedings of the International Conference
on Principles of Knowledge Representation and Reasoning
(KR2008), 454–465.

Marek, V. W., and Truszczynski, M. 1999. The Logic Pro-
gramming Paradigm: a 25-Year Perspective. Springer Ver-
lag, Berlin. chapter Stable Models and an Alternative Logic
Programming Paradigm, 375–398.

Syrjänen, T. 2001. Omega-Restricted Logic Programs. In
Eiter, T.; Faber, W.; and Truszczynski, M., eds., 6th Inter-
national Conference on Logic Programming and Nonmono-
tonic Reasoning (LPNMR01), volume 2173 of Lecture Notes
in Artificial Intelligence (LNCS), 267–279. Springer Verlag,
Berlin.

Wang, Y.; You, J.-H.; Yuan, L.-Y.; and Zhang, M. 2009.
Weight Constraint Programs with Functions. In Erdem, E.;
Lin, F.; and Schaub, T., eds., 10th International Conference
on Logic Programming and Nonmonotonic Reasoning (LP-
NMR09), volume 5753 of Lecture Notes in Artificial Intelli-
gence (LNCS), 329–341. Springer Verlag, Berlin.

