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Abstract Answer Set Programming (ASP) combines a powerful, the-
oretically principled knowledge representation formalism and powerful
solvers. To improve efficiency of computation on certain classes of prob-
lems, researchers have recently developed hybrid languages and solvers,
combining ASP with language constructs and solving techniques from
Constraint Programming (CP). The resulting ASP+CP solvers exhibit
remarkable performance on “toy” problems. To the best of our knowl-
edge, however, no hybrid ASP+CP language and solver have been used in
practical, industrial-size applications. In this paper, we report on the first
such successful application, consisting of the use of the hybrid ASP+CP
system ezcsp to solve sophisticated industrial-size scheduling problems.

1 Introduction

Answer Set Programming (ASP) [9,11] combines a powerful, theoretically princi-
pled knowledge representation formalism and efficient computational tools called
solvers. In the ASP programming paradigm, a problem is solved by writing an
ASP program that defines the problem and its solutions so that the program’s
models (or, more precisely, answer sets) encode the desired solutions. State-of-
the-art ASP solvers usually allow to compute the program’s models quickly. The
paradigm makes it thus possible not only to use the language to study sophisti-
cated problems in knowledge representation and reasoning, but also to quickly
write prototypes, and even evolve them into full-fledged applications.

The growth in the number of practical applications of ASP in recent years has
highlighted, and allowed researchers to study and overcome, the limitations of the
then-available solvers. Especially remarkable improvements have been brought
about by the cross-fertilization with other model-based paradigms. This in fact
resulted in the integration in ASP solvers of efficient computation techniques
from those paradigms. In clasp [7], for example, substantial performance im-
provements have been achieved by exploiting clause learning and backjumping.
Some researchers have also advocated the use of specialized solving techniques
for different parts of the program. In fact, most ASP solvers operate on propo-
sitional programs – and are sensitive to the size of such programs – which may
make computations inefficient when the domains of some predicates’ arguments
are large. This is particularly the case of programs with predicates whose argu-
ments range over subsets of N , Q, or R. On the other hand, this is a common



situation in Constraint Programming (CP), and efficient techniques are avail-
able. For this reason, [3] proposed an approach in which ASP is extended with
the ability to encode CP-style constraints, and the corresponding solver uses
specialized techniques borrowed from CP solvers in handling such rules.

The research on integrating CP techniques in ASP has resulted in the devel-
opment of various approaches, differing in the way CP constraints are represented
in the hybrid language and in the way computations are carried out.

In [12] and [8], the language has been extended along the lines of [3], and
specific ASP and CP solvers have been modified and integrated. In the former,
syntax and semantics of ASP have been extended in order to allow representing,
and reasoning about, quantities from N , Q, and R. Separate solvers have been
implemented for the different domains. In the latter, the focus has at least up
to now been restricted to N . The corresponding solver involves a remarkable
integration of CP-solving techniques with clause learning and backjumping.

In [1], on the other hand, CP-style constraints have been encoded directly
in ASP, without the need for extensions to the language. The corresponding
representation technique allows dealing with quantities from N , Q, and R, while
the ezcsp solver allows selecting the most suitable ASP and CP solvers without
the need for modifications. The current implementation of the solver supports
N (more precisely, finite domains), Q, and R.

Although the above hybrid ASP+CP systems have shown remarkable per-
formance on “toy” problems, to the best of our knowledge none of them has
yet been confronted with practical, industrial-size applications. In this paper,
we report on one such successful application, consisting in the use of ezcsp to
solve sophisticated industrial-size scheduling problems. We hope that, through-
out the paper, the reader will be able to appreciate how elegant, powerful, and
elaboration tolerant the ezcsp formalization is.

The application domain of interest in this paper is that of industrial print-
ing. In a typical scenario for this domain, orders for the printing of books or
magazines are more or less continuously received by the print shop. Each order
involves the execution of multiple jobs. First, the pages are printed on (possibly
different) press sheets. The press sheets are often large enough to accommodate
several (10 to 100) pages, and thus a suitable layout of the pages on the sheets
must be found. Next, the press sheets are cut in smaller parts called signatures.
The signatures are then folded into booklets whose page size equals the intended
page size of the order. Finally the booklets are bound together to form the book
or magazine to be produced. The decision process is made more complex by
the fact that multiple models of devices may be capable of performing a job.
Furthermore, many decisions have ramifications and inter-dependencies. For ex-
ample, selecting a large press sheet would prevent the use of a small press. The
underlying decision-making process is often called production planning (the term
“planning” here is only loosely related to the meaning of planning the execution
of actions over time typical in the ASP community, but is retained because it is
relatively well established in the field of the application). Another set of decisions
deals with scheduling. Here one needs to determine when the various jobs will



be executed using the devices available in the print shop. Multiple devices of the
same model may be available, thus even competing jobs may be run in parallel.
Conversely, some of the devices can be offline – or go suddenly offline while pro-
duction is in progress – and the scheduler must work around that. Typically, one
wants to find a schedule that minimizes the tardiness of the orders while giving
priority to the more important orders. Since orders are received on a continuous
basis, one needs to be able to update the schedule in an incremental fashion, in
a way that causes minimal disruption to the production, and can satisfy rush
orders, which need to be executed quickly and take precedence over the others.
Similarly, the scheduler needs to react to sudden changes in the print shop, such
as a device going offline during production.

In this paper we describe the use of ASP+CP for the scheduling component
of the system. It should be noted that the “toy” problems on which ASP+CP
hybrids have been tested so far also include scheduling domains (see e.g. the 2nd
ASP Competition [6]). However, as we hope will become evident later on, the
constraints imposed on our system by practical use make the problem and the
solution substantially more sophisticated, and the encoding and development
significantly more challenging.

We begin by providing background on ezcsp. Next, we provide a general
mathematical definition of the problem for our application domain. Later, we
encode a subclass of problems of interest in ezcsp and show how schedules can
be found by computing the extended answer sets of the corresponding encodings.

2 Background

In this section we provide basic background on ezcsp. The interested reader can
find more details in [1]. Atoms and literals are formed as usual in ASP. A rule
is a statement of the form h ← l1, . . . , lm,not lm+1, . . . ,not ln, where h and
li’s are literals and not is the so-called default negation. The intuitive meaning
of the rule is that a reasoner who believes {l1, . . . , lm} and has no reason to
believe {lm+1, . . . , ln}, has to believe h. A program is a set of rules. A rule
containing variables is viewed as short-hand for the set of rules, called ground
instances, obtained by replacing the variables by all possible ground terms. The
ground instance of a program is the collection of the ground instances of its rules.
Because of space considerations, we simply define an answer set of a program
Π as one of the sets of brave conclusions entailed by Π under the answer set
semantics. The precise definition can be found in [9]. Throughout this paper,
readers who are not familiar with the definition can rely on the intuitive reading
of ASP rules given above.

The definition of constraint satisfaction problem that follows is adapted from
[13]. A Constraint Satisfaction Problem (CSP) is a triple 〈X,D,C〉, where X =
{x1, . . . , xn} is a set of variables, D = {D1, . . . ,Dn} is a set of domains, such
that Di is the domain of variable xi (i.e. the set of possible values that the
variable can be assigned), and C is a set of constraints. Each constraint c ∈
C is a pair c = 〈σ, ρ〉 where σ is a list of variables and ρ is a subset of the



Cartesian product of the domains of such variables. An assignment is a pair
〈xi, a〉, where a ∈ Di, whose intuitive meaning is that variable xi is assigned
value a. A compound assignment is a set of assignments to distinct variables
from X. A complete assignment is a compound assignment to all of the variables
in X. A constraint 〈σ, ρ〉 specifies the acceptable assignments for the variables
from σ. We say that such assignments satisfy the constraint. A solution to a
CSP 〈X,D,C〉 is a complete assignment that satisfies every constraint from C.
Constraints can be represented either extensionally, by specifying the pair 〈σ, ρ〉,
or intensionally, by specifying an expression involving variables, such as x < y. In
this paper we focus on constraints represented intensionally. A global constraint
is a constraint that captures a relation between a non-fixed number of variables
[10], such as sum(x, y, z) < w and all different(x1, . . . , xk). One should notice
that the mapping of an intensional constraint specification into a pair 〈σ, ρ〉
depends on the constraint domain. For this reason, in this paper we assume that
every CSP includes the specification of the intended constraint domain.

In ezcsp, programs are written in such a way that their answer sets en-
code the desired CSPs. The solutions to the CSPs are then computed using
a CP solver. CSPs are encoded in EZCSP using the following three types of
statements: (1) a constraint domain declaration, i.e. a statement of the form
cspdomain(D), where D is a constraint domain such as fd, q, or r; informally,
the statement says that the CSP is over the specified constraint domain (finite
domains, Q, R), thereby fixing an interpretation for the intensionally specified
constraints; (2) a constraint variable declaration, i.e. a statement of the form
cspvar(x, l, u), where x is a ground term denoting a variable of the CSP (CSP
variable or constraint variable for short), and l and u are numbers from the con-
straint domain; the statement says that the domain of x is [l, u];(3) a constraint
statement, i.e. a statement of the form required(γ), where γ is an expression that
intensionally represents a constraint on (some of) the variables specified by the
cspvar statements; intuitively the statement says that the constraint intension-
ally represented by γ is required to be satisfied by any solution to the CSP. For
the purpose of specifying global constraints, we allow γ to contain expressions of
the form [δ/k]. If δ is a function symbol, the expression intuitively denotes the
sequence of all variables formed from function symbol δ and with arity k, ordered
lexicographically. If δ is a relation symbol, the expression intuitively denotes the
sequence 〈e1, e2, . . . , en〉 where ei is the last element of the ith k-tuple satisfying
relation δ, according to the lexicographic ordering of such tuples.

Example 1. We are given 3 variables, v1, v2, v3, ranging over [1, 5] and
we need to find values for them so that v2 − v3 > 1 and their
sum is greater than or equal to 4. A possible encoding of the problem
is A1 = {cspdomain(fd), cspvar(v(1), 1, 5), cspvar(v(2), 1, 5), cspvar(v(3), 1, 5),
required(v(2)− v(3) > 1), required(sum([v/1]) ≥ 4)} ⋄
Let A be a set of atoms, including atoms formed from relations cspdomain,
cspvar, and required. We say that A is a well-formed CSP definition if: (1) A
contains exactly one constraint domain declaration; (2) the same CSP variable
does not occur in two or more constraint variable declarations of A; and (3)



every CSP variable that occurs in a constraint statement from A also occurs in
a constraint variable declaration from A.

Let A be a well-formed CSP definition. The CSP defined by A is the triple
〈X,D,C〉 such that: (1) X = {x1, x2, . . . , xk} is the set of all CSP variables
from the constraint variable declarations in A; (2) D = {D1,D2, . . . ,Dk} is the
set of domains of the variables from X, where the domain Di of variable xi is
given by arguments l and u of the constraint variable declaration of xi in A, and
consists of the segment between l and u in the constraint domain specified by
the constraint domain declaration from A; (3) C is a set containing a constraint
γ′ for each constraint statement required(γ) of A, where γ′ is obtained by: (a)
replacing the expressions of the form [f/k], where f is a function symbol, by the
list of variables from X formed by f and of arity k, ordered lexicographically; (b)
replacing the expressions of the form [r/k], where r is a relation symbol, by the
sequence 〈e1, . . . , en〉, where, for each i, r(t1, t2, . . . , tk−1, ei) is the ith element
of the sequence, ordered lexicographically, of atoms from A formed by relation
r; (c) interpreting the resulting intensionally specified constraint with respect to
the constraint domain specified by the constraint domain declaration from A. A
pair 〈A,α〉 is an extended answer set of program Π iff A is an answer set of Π
and α is a solution to the CSP defined by A.

Example 2. Set A1 from Example 1 defines the CSP:

〈{v1, v2, v3},

{

{1, 2, 3, 4, 5}, {1, 2, 3, 4, 5},
{1, 2, 3, 4, 5}

}

,

{

v2 − v3 > 1,
sum(v(1), v(2), v(3)) ≥ 4

}

〉.

3 Problem Definition

One distinguishing feature of ASP and derived languages is that they allow one
to encode a problem at a level of abstraction that is close to that of the prob-
lem’s mathematical (or otherwise precisely formulated, see e.g. [2]) specification.
Consequently, it is possible for the programmer (1) to inspect specification and
encoding and convince himself of the correctness of the encoding, and (2) to ac-
curately prove the correctness of the encoding with respect to the formalization
with more ease than using other approaches. The ability to do this is quite im-
portant in industrial applications, where one assumes responsibility towards the
customers for the behavior of the application. Therefore, in this paper we precede
the description of the encoding with a precisely formulated problem definition.
Let us begin by introducing some terminology.

By device class (or simply device) we mean a type or model of artifact capable
of performing some phase of production, e.g. a press model XYZ or a folder model
MNO. By device-set of a print shop we mean the set of devices available in the
shop. By device instance (or simply instance) we mean a particular exemplar
of a device class. For example, a shop may have multiple XYZ presses, each of
which is a device instance. We denote the fact that instance i is an instance of
device class d by the expression i ∈ d.

A job j is a pair 〈len, devices〉 where len is the length of the job, and
devices ⊆ device-set is a set of devices that are capable of performing the job.



Given a job j, the two components are denoted by len(j) and devices(j). Intu-
itively, the execution of a job can be split among a subset of the instances of
the elements of devices(j). A job-set J is a pair 〈Γ, PREC〉, where Γ is a set of
jobs, and PREC is a directed acyclic graph over the elements of Γ , intuitively
describing a collection of precedences between jobs. An arc 〈j1, j2〉 in PREC
means that the execution of job j1 must precede that of job j2 (that is, the
execution of j1 must be completed before j2 can be started). The components
of J are denoted, respectively, by ΓJ and PRECJ .

The usage-span of an instance i is a pair 〈start-timei, durationi〉, intuitively
stating that instance i will be in use (for a given purpose) from start-timei and
for the specified duration. By US we denote the set of all possible usage-spans.
Given a usage-span u, start(u) denotes its first component and dur(u) denotes
its second. In the remainder of the discussion, given a partial function f , we use
the notation f(·) = ⊥ (resp., f(·) 6= ⊥) to indicate that f is undefined (resp.,
defined) for a given tuple.

Definition 1 (Work Assignment). A work assignment for a job-set J is a
pair 〈I, U〉, where: (1) I is a function that associates to every job j ∈ ΓJ a set
of device instances (we use Ij as an alternative notation for I(j)), (2) U is a
collection of (partial) functions usagej : Ij → US for every j ∈ ΓJ , and the
following requirements are satisfied:

1. (Ij is valid) For every i ∈ Ij, ∃d ∈ devices(j) s.t. i ∈ d.
2. (usagej is valid) ∀usagej ∈ U ,

∑

i∈Ij ,usagej(i) 6=⊥ dur(usagej(i)) = len(j).

3. (overlap) For any two jobs j 6= j′ from ΓJ and every i ∈ Ij ∩ Ij′ such that
usagej(i) 6= ⊥ and usagej′(i) 6= ⊥:

start(usagej(i)) + dur(usagej(i)) ≤ start(usagej′(i)), or
start(usagej′(i)) + dur(usagej′(i)) ≤ start(usagej(i)).

4. (order) For every 〈j, j′〉 ∈ PRECJ , j′ starts only after j has been completed.

⋄

A single-instance work assignment for job-set J is a work assignment 〈I, U〉
such that ∀j ∈ ΓJ , |Ij | = 1. A single-instance work assignment intuitively pre-
scribes the use of exactly one device instance for each job. In the rest of the
discussion, we will focus mainly on a special type of job-set: a simplified job-set
is a job-set J such that, for every job j from ΓJ , |devices(j)| = 1. Notice that
work assignments for a simplified job-set are not necessarily single-instance. If
multiple instances of some device are available, it is still possible to split the
work for a job between the instances, or assign it to a particular instance de-
pending on the situation. Next, we define various types of scheduling problems
of interest and their solutions.

A deadline-based decision (scheduling) problem is a pair 〈J, d〉 where J is a
set of jobs and d is a (partial) deadline function d : J → N , intuitively specifying
deadlines for the jobs, satisfying the condition:

∀j, j′ ∈ ΓJ [ 〈j, j′〉 ∈ PRECJ → d(j) = ⊥ ]. (1)



A solution to a deadline-based decision problem 〈J, d〉 is a work assignment
〈I, U〉 such that, for every j ∈ ΓJ : ∀i ∈ Ij [ d(j) 6= ⊥ → start(usagej(i)) +
dur(usagej(i)) ≤ d(j) ].

A cost-based decision problem is a tuple 〈J, c, k〉 where J is a job-set, c is
a cost function that associates a cost (represented by a natural number) to
every possible work assignment of J , and k is a natural number, intuitively
corresponding to the target cost. A solution to a cost-based decision problem
〈J, c, k〉 is a work assignment W such that

c(W ) ≤ k. (2)

An optimization problem is a pair 〈J, c〉 where J is a job-set and c is a cost
function that associates a cost to every possible work assignment of J . A solution
to an optimization problem P = 〈J, c〉 is a work assignment W such that, for
every other work assignment W ′, c(W ) ≤ c(W ′).

Since a solution to an optimization problem 〈J, c〉 can be found by solving the
sequence of cost-based decision problems 〈J, c, 0〉, 〈J, c, 1〉, . . ., in the rest of this
paper we focus on solving decision problems. Details on how the optimization
problem is solved by our system will be discussed in a longer paper.

In our system, scheduling can be based on total tardiness, i.e. on the sum
of the amount of time by which the jobs are past their deadline. Next, we show
how this type of scheduling is an instance of a cost-based decision problem.

Example 3. Total tardiness
We are given a job-set J , the target total tardiness k, and a deadline function d
(as defined earlier). We construct a cost function c so that the value of c(W ) is
the total tardiness of work assignment W . The construction is as follows. First
we define auxiliary function c′(j,W ) which computes the tardiness of job j ∈ ΓJ

based on W :

c′(j,W ) =

{

0 if d(j) = ⊥ or usagej(i) = ⊥
max(0, start(usagej(i)) + dur(usagej(i))− d(j)) otherwise.

Now we construct the cost function as: c(W ) =
∑

j∈ΓJ
c′(j,W ). The work as-

signments with total tardiness less than or equal to some value k are thus the
solutions of the cost-based decision problem 〈J, c, k〉. ⋄

At this stage of the project,we focus on simplified job-sets and single-instance
solutions. Furthermore, all instances of a given device are considered to be iden-
tical (one could deal with differences due e.g. to aging of some instances by
defining different devices).

Under these conditions, a few simplifications can be made. Because we are
focusing on single-instance solutions, given a work assignment 〈I, U〉, it is easy
to see that Ij is a singleton for every j. Moreover, since we are also focusing
on simplified job-sets, for every j, usagej is defined for a single device instance
of a single device d ∈ devices(j). It is not difficult to see that, for the usage-
span 〈start-time, duration〉 of every job j, duration = len(j). Thus, the only
information that needs to be specified for work assignments is the start time of
each job j and the device instance used for the job.



A solution to a scheduling problem can now be more compactly described
as follows. A device schedule for d is a pair 〈L, S〉, where L = 〈j1, . . . , jk〉 is a
sequence of jobs, and S = 〈s1, . . . , sk〉 is a sequence of integers. Intuitively, L is
the list of jobs that are to be run on device d, and S is a list of start times such
that each sm is the start time of job jm. A global schedule for a set of devices D
is a function σ that associates each device from D with a device schedule.

4 Encoding and Solving Scheduling Problems

In this section, we describe how scheduling problems for our application domain
are encoded and solved using ezcsp. Although our formalization is largely in-
dependent of the particular constraint domain chosen, for simplicity we fix the
constraint domain to be that of finite domains, and assume that any set of rules
considered also contains the corresponding specification cspdomain(fd).

A device d with n instances is encoded by the set of rules
ε(d) = {device(d). instances(d, n).}. A job j is encoded by ε(j) =
{job(j). job len(j, l). job device(j, d).}, where l = len(j) and d ∈ device(j)
(device(j) is a singleton under the conditions stated earlier).

The components of a job-set J = 〈Γ, PREC〉 are encoded as follows:

ε(Γ ) =
⋃

j∈ΓJ

ε(j) ; ε(PRECJ) = {precedes(j, j′). | 〈j, j′〉 ∈ PRECJ}.

The encoding of job-set J is ε(J) = ε(ΓJ ) ∪ ε(PRECJ).
Given a scheduling problem P , the overall goal is to specify its encoding

ε(P ). In this section we focus on solving cost-based decision problems 〈J, c, k〉
with c based on total tardiness, and defined as in Example 3. Our goal then is
to provide the encoding ε(〈J, c, k〉).

We represent the start time of the execution of job j on some instance of
device d by constraint variable st(d, j). The definition of the set of such constraint
variables is given by εvars, consisting of the rule:

cspvar(st(D,J), 0,MT )← job(J), job device(J,D), max time(MT ).

together with the definition of relation max time, which determines the upper
bound of the range of the constraint variables. The next constraint ensures that
the start times satisfy the precedences in PRECJ :

εprec =

{

required(st(D2, J2) ≥ st(D1, J1) + Len1)←
job(J1), job(J2), job device(J1, D1), job device(J2, D2),
precedes(J1, J2), job len(J1, Len1).

The deadlines of all jobs j ∈ ΓJ are encoded by a set εdl of facts of the form
deadline(j, n). One can ensure that requirement (1) is satisfied by specifying a
constraint ← precedes(J1, J2), deadline(J1,D). Function c′ from Example 3
is encoded by introducing an auxiliary constraint variable td(j) for every job



j, where td(j) represents the value of c′(j,W ) for the current work assignment.
The encoding of c′, ε(c′), consists of εvar ∪ εprec ∪ εdl together with:

cspvar(td(J), 0, MT )← job(J), max time(MT ).

required(td(J) == max(0, st(D, J) + Len−Deadline))←
job(J), job device(J, D), deadline(J, Deadline), job len(J, Len).

Notice that the constraint is only enforced if a deadline has been specified for
job j. An interesting way to explicitly set the value of td(j) to 0 for all other
jobs consists in using:

enforced(td(J))← job(J), required(td(J) == X), X 6= 0.

required(td(J) == 0)← job(J), not enforced(td(J)).

Function c from Example 3 is encoded by introducing an auxiliary constraint
variable tot tard. The encoding, ε(c), consists of ε(c′) together with:

cspvar(tot tard, 0, MT )← max time(MT ).

required(sum([td/1], ==, tot tard)).

where the constraint intuitively computes the sum of all constraint variables
td(·). The final step in encoding the decision problem 〈J, c, k〉 is to provide a
representation, ε(k), of constraint (2), which is accomplished by the rule:

required(tot tard ≤ K)← max total tardiness(K).

together with the definition of relation max total tardiness, specifying the max-
imum total tardiness allowed. It is interesting to note the flexibility of this rep-
resentation: if relation max total tardiness is not defined, then the above con-
straint is not enforced – in line with the informal reading of the rule – and thus
one can use the encoding to find a schedule irregardless of its total tardiness.

The encoding of a cost-based decision problem 〈J, c, k〉, where c computes
total tardiness, is then: ε(〈J, c, k〉) = ε(J) ∪ ε(c) ∪ ε(k).

Now that we have a complete encoding of the problem, we discuss how schedul-
ing problems are solved. Given ε(〈J, c, k〉), to solve the scheduling problem we
need to assign values to the constraint variables while enforcing the following
requirements:

[Overlap] if two jobs j and j′, being executed on the same device, overlap (that is, one
starts before the other is completed), then they must be executed on two
separate instances of the device;

[Resources] at any time, no more instances of a device can be used than are available.

This can be accomplished compactly and efficiently using global constraint
cumulative [4]. The cumulative constraint takes as arguments: (1) a list of con-
straint variables encoding start times; (2) a list specifying the execution length
of each job whose starts time is to be assigned; (3) a list specifying the amount
of resources required for each job whose start time is to be assigned; (4) the



maximum number of resources available at any time on the device. In order to
use cumulative, we represent the number of available device instances as an
amount of resources, and use a separate cumulative constraint for the schedule
of each device. The list of start times for the jobs that are to be processed by
device d can be specified, in ezcsp, by a term [st(d)/2], intuitively denoting the
list of terms (1) formed by function symbol st, (2) of arity 2, and (3) with d as
first argument. We also introduce auxiliary relations len by dev and res by dev,
which specify, respectively, the length and number of resources for the execution
on device d of job j. The auxiliary relations are used to specify the remaining
two lists for the cumulative constraint, using ezcsp terms [len by dev(D)/3]
and [res by dev(D)/3]. The complete scheduling module, Πsolv, is:

required(cumulative([st(D)/2], [len by dev(D)/3], [res by dev(D)/3], N))←
instances(D, N).

len by dev(D, J, N)← job(J), job device(J, D), job len(J, N).

res by dev(D, J, 1)← job(J), job device(J, D).

Notice that, since we identify the resources with the instances of a device, the
amount of resources required by any job j at any time is 1.

Schedules for a cost-based decision problem 〈J, c, k〉, where c computes total
tardiness, can be then found by computing the extended answer sets of the
program ε(〈J, c, k〉) ∪Πsolv. Using the definitions from Section 3, one can prove
the following:

Proposition 1. Let 〈J, c, k〉 be a cost-based decision problem, where c computes
total tardiness. The global schedules of 〈J, c, k〉 are in one-to-one correspondence
with the extended answer sets of the program ε(〈J, c, k〉) ∪Πsolv.

5 Incremental and Penalty-Based Scheduling

In this section, we describe the solution to more sophisticated scheduling prob-
lems. To give more space to the encoding, we omit the precise problem defini-
tions, which can be obtained by extending the definitions from Section 3.

It is important to stress that these extensions to the scheduler are entirely
incremental, with no modifications needed to the encoding from Section 4. This
remarkable and useful property is the direct result of the elaboration tolerance
typical of ASP encodings.

The first extension of the scheduler consists in considering a more sophisti-
cated cost-based decision problem, 〈J, c∗, k∗〉. In everyday use, some orders take
precedence over others, depending on the service level agreement the shop has
with its customers. Each service level intuitively yields a different penalty if the
corresponding jobs are delivered late. The total penalty of a schedule is thus
obtained as the weighted sum of the tardiness of the jobs, where the weights
are based on each job’s service level. The encoding, ε(c∗), of c∗ consists of ε(c)



together with (relation weight defines the assignments of weights to jobs):

cspvar(penalty(J), 0, MP )← job(J), max penalty(MP ).

required(penalty(J) == td(J, O) ∗Weight)← job(J), weight(J, Weight).

cspvar(tot penalty, 0, MP )← max penalty(MP ).

required(sum([penalty/2], ==, tot penalty)).

The encoding of ε(k∗) extends ε(k) by the rule:

required(tot penalty ≤ P )← max total penalty(P ).

which encodes constraint (2) for penalties. Notice that, thanks to the elaboration
tolerance of the encoding developed in Section 4, it is safe for ε(k∗) to include
ε(k), since now relation max total tardiness is left undefined.

Another typical occurrence in everyday use is that the schedule must be
updated incrementally, either because new orders were received, or because of
equipment failures. During updates, intuitively one needs to avoid re-scheduling
jobs that are already being executed. We introduce a new decision problem
〈J∗, c∗, k∗〉, where c∗, k∗ are as above, and J∗ extends J to include information
about the current schedule; ε(J∗) includes ε(J) and is discussed next.

To start, we encode the current schedule by relations curr start(j, t)
and curr device(j, d). The current (wall-clock) time t is encoded by relation
curr time(t). The following rules informally state that, if according to the cur-
rent schedule production of a job has already started, then its start time and
device must remain the same. Conversely, all other jobs must have a start time
that is no less than the current time.1

already started(J)← curr start(J, T ), curr time(CT ), CT > T.

must not schedule(J)← already started(J), not ab(must not schedule(J)).

required(st(D, J) ≥ CT )← job device(J, D), curr time(CT ), not must not schedule(J).

required(st(D, J) == T )← curr device(J, D), curr start(J, T ), must not schedule(J).

It is worth noting that the use of a default to define must not schedule allows
extending the scheduler in a simple and elegant way by defining exceptions.

Whereas the above rules allow scheduling new jobs without disrupting cur-
rent production, the next set deals with equipment going offline, even during
production. Notice that by “equipment” we mean a particular instance of a
device. To properly react to this situation, the system first needs to have an ex-
plicit representation of which device instance is assigned to perform which job.
This can be accomplished by introducing a new variable on instance(j). The
value of the variable is a number that represents the device instance assigned to
the job (among the instances of the device prescribed by job device(j, d)). The

1 One may not want to schedule jobs to start exactly at the current time, as there
would not be time to move the supplies and set up the job. Extending the rules to
accomplish that is straightforward.



corresponding variable declaration and constraints are encoded by:

cspvar(on instance(J), 1, N)← job device(J, D), instances(D, N).

required((on instance(J1) 6= on instance(J2)) ∨
(st(D, J2) ≥ st(D, J1) + Len1) ∨ (st(D, J1) ≥ st(D, J2) + Len2))←

job device(J1, D), job device(J2, D), J1 6= J2,
len(J1, Len1), len(J2, Len2), instances(D, N), N > 1.

required(on instance(J) 6= I)←
job device(J, D), offline instance(D, I), not must not schedule(J).

The second rule intuitively says that, if d has more than one instance and is
scheduled to run two (or more) jobs, then either a job ends before the other starts,
or the jobs must be assigned to two different instances. The rule is an example
of use of reified constraints, as defined for example in [5]. The last rule says
that no job can be assigned to an offline instance. For incremental scheduling,
we also extend the encoding of the current schedule by introducing a relation
curr on instance(j, i), which records the instance-job previously determined.

The reader might wonder about the overlap between cumulative, used ear-
lier, and the above constraints. In fact, cumulative already performs a limited
form of reasoning about instance-job assignments when it determines if sufficient
resources are available to perform the jobs. Although it is possible to replace
cumulative by a set of specific constraints for the assignment of start times, we
believe that using cumulative makes the encoding more compact and readable.

The encoding ε(J∗) is completed by rules that detect situations in which a
device went offline while executing a job. Relation offline instance(d, i) states
that instance i of device d is currently offline.

already finished(J)← curr start(J, T ), len(J, Len), curr time(CT ), CT ≥ T + Len.

ab(must not schedule(J))←
already started(J), not already finished(J), curr device(J, D),
curr on instance(J, I), offline instance(D, I).

The last rule defines an exception to the default introduced earlier. Informally,
the rule says that if instance i is offline, any job assigned to it that is currently
in production constitutes an exception to the default. It is not difficult to see
that such exceptional jobs are subjected to regular rescheduling. The presence
of atoms formed by relation ab in the extended answer set is also used by the
system to warn the user that a reschedule was forced by a device malfunction.

In conclusion, the solutions to problem 〈J∗, c∗, k∗〉 can be found by computing
the extended answer sets of ε(〈J∗, c∗, k∗〉).

6 Conclusions

In this paper we have described what to the best of our knowledge is the first
industrial-size application of an ASP+CP hybrid language. The application is
currently being considered for use in commercial products. Performance evalu-
ation of our system is under way. A simplified version of the domain has been



accepted as a benchmark for the Third ASP Competition at LPNMR-11. Prelim-
inary analysis on customer data showed that performance is comparable to that
of similar implementations written using CP alone, with schedules for customer-
provided instances typically found in less than one minute, and often in a few
seconds. In comparison with direct CP encodings, we found that the compact-
ness, elegance, and elaboration tolerance of the EZCSP encoding are superior.
In a CLP implementation that we have developed for comparison, the number
of rules in the encoding was close to one order of magnitude larger than the
number of rules in the EZCSP implementation. Moreover, writing those rules
often required one to consider issues with procedural flavor, such as how and
where certain information should be collected.
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