
Improving DPLL Solver Performance with

Domain-Specific Heuristics: the ASP Case

Marcello Balduccini

Intelligent Systems, KRL

Eastman Kodak Company

Rochester, NY 14650-2102 USA

marcello.balduccini@gmail.com

Abstract In spite of the recent improvements in the performance of the solvers

based on the DPLL procedure, it is still possible for the search algorithm to fo-

cus on the wrong areas of the search space, preventing the solver from returning

a solution in an acceptable amount of time. This prospect is a real concern e.g.

in an industrial setting, where users typically expect consistent performance. To

overcome this problem, we propose a framework that allows learning and using

domain-specific heuristics in solvers based on the DPLL procedure. The learn-

ing is done off-line, on representative instances from the target domain, and the

learned heuristics are then used for choice-point selection. In this paper we focus

on Answer Set Programming (ASP) solvers. In our experiments, the introduc-

tion of domain-specific heuristics improved performance on hard instances by up

to 3 orders of magnitude (and 2 on average), nearly completely eliminating the

cases in which the solver had to be terminated because the wait for an answer had

become unacceptable.

1 Introduction

In recent years, solvers based on the DPLL procedure [1,2] have become amazingly fast.

Mostly, that is due to good heuristics that direct the search toward the most promising

areas of the search space, and to learning algorithms that discover features of the search

space on-the-fly. Unfortunately, when the search space is sufficiently large, it is still

possible for the search algorithm to mistakenly focus on areas of the search space that

contain no solutions or very few. When that happens, performance degrades substan-

tially, even to the point that the solver may need to be terminated before returning an

answer. This prospect is a real concern when one is considering using such a solver

in an industrial application, in which the solver will act as part of a black-box from

which users typically expect consistent performance. It should be noted that the phe-

nomenon of performance degradation is often due to the fact that the heuristics used in

choice-point selection are general-purpose, and thus may not fit well a given domain.

Various methods have been proposed in the literature to improve solver stability. A

basic technique involves using parametrized general-purpose heuristics, for which the

user can manually specify parameter values that are suitable for the domain of inter-

est. An interesting step in that direction is provided by CLASPFOLIO [3], which makes

use of different configurations of the CLASP solver [4]. The program in input is auto-

matically analyzed, and the most promising configuration of CLASP is selected accord-

ingly. A different approach consists in having the solver adapt to the problem in input

at run-time by means of learning. This is the case of the clause learning and conflict

learning techniques that have recently become very popular especially in SAT and ASP

solvers (see e.g. [5,4]), and have brought about substantial performance improvements.

The idea behind these learning techniques is to record information about the conflicts

that are detected during the exploration of the search space, and to use the information

to avoid descending similar branches later. Hence, the basic heuristic is still general-

purpose, but it is adjusted, during execution, depending on the features of the problem

in input. One drawback of this approach is that the learning is limited to the current

program, and the information that has been learned in one run cannot be used in later

runs of the solver.

In this paper we propose a framework, called DORS, which instead allows learn-

ing and using domain-specific heuristics in solvers based on the DPLL procedure. The

results of learning are retained and can be used in later runs. In fact, the learning tech-

nique relies on the availability of information from multiple runs of the solver. Although

here we focus on solvers for Answer Set Programming (ASP) [6,7], the DORS frame-

work can be applied to any solver based on the DPLL procedure, including SAT and

constraint solvers. Furthermore, the current framework is aimed at improving the effi-

ciency of the computation of one model of consistent programs, but could be extended

further. The learning is done off-line, on representative instances from the target do-

main. The particular learning technique used here is intendedly extremely simple, but

already shows remarkable performance improvements. In experimental evaluation, the

use of our technique improved performance on hard instances by up to 3 orders of mag-

nitude (and 2 on average on industrial problems), nearly completely eliminating the

situations in which the solver had to be terminated because the wait for an answer had

become unacceptable.

This paper is organized as follows. In the next section we give some background

on ASP. Next, we discuss the basic search algorithm used in most ASP solvers. Then,

in Section 4, we present the DORS framework. Experimental results are discussed in

Section 5. Finally, in Section 6, we draw conclusions.

2 Answer Set Programming

We define the syntax of the language precisely, but only give its informal semantics

in order to save space. We refer the reader to [6,8] for a specification of the formal

semantics. Let Σ be a signature containing constant, function and predicate symbols.

Terms and atoms are formed as usual in first-order logic. A (basic) literal is either an

atom a or its strong (also called classical or epistemic) negation ¬a. The set of literals

formed from Σ is denoted by lit(Σ). A rule is a statement of the form:

h1 ∨ . . . ∨ hk ← l1, . . . , lm, not lm+1, . . . , not ln

where hi’s and li’s are ground literals and not is the so-called default negation. The

intuitive meaning of the rule is that a reasoner who believes {l1, . . . , lm} and has no

reason to believe {lm+1, . . . , ln}, has to believe one of hi’s. The part of the statement

to the left of ← is called head; the part to its right is called body. Symbol ← can be

omitted if no li’s are specified. Often, rules of the form h ← not h, l1, . . . , not ln are

abbreviated into ← l1, . . . , not ln, and called constraints. The intuitive meaning of a

constraint is that its body must not be satisfied. A rule containing variables is interpreted

as the shorthand for the set of rules obtained by replacing the variables with all the pos-

sible ground terms (called grounding of the rule). A program is a pair 〈Σ,Π〉, where

Σ is a signature and Π is a set of rules over Σ. We often denote programs just by the

second element of the pair, and let the signature be defined implicitly. In that case, the

signature of Π is denoted by Σ(Π). Finally, an answer set (or model) of a program Π is

a collection of its consequences under the answer set semantics. Because a convenient

representation of alternatives is often important in the formalization of knowledge, the

language of ASP has been extended with constraint literals [8], which are expressions

of the form m{l1, l2, . . . , lk}n, where m and n are arithmetic expressions and li’s are

basic literals as defined above. A constraint literal is satisfied whenever the number of

literals that hold from {l1, . . . , lk} is between m and n, inclusive. Using constraint lit-

erals, the choice between p and q, under some set of conditions Γ , can be compactly

encoded by the rule 1{p, q}1← Γ . A rule of this form is called choice rule. When solv-

ing sets of problems from a given domain of interest, ASP programs are often divided

into a domain description and a problem instance. Intuitively, the domain description

encodes a description of the problem domain and of the solutions, while each problem

instance encodes a different problem from the domain.

3 Search in ASP Solvers

The search algorithm used by many ASP solvers (e.g. SMODELS [9], DLV [10]) is based

on the DPLL procedure [1,2]. The basic algorithm for the computation of a single an-

swer set, which we will later refer to as standard algorithm, is show in Figure 1. The

function solve (Π : Program,A : Set of Extended Literals)

B := expand(Π, A);

if (B is answer set of Π) then return B;

if (B is not consistent or B is complete) then return ⊥;
e := choose literal(Π, B);

B′
:= solve(Π, B ∪ {e});

if (B′ = ⊥) then B′
:= solve(Π, B ∪ {not(e)});

return B′
;

Figure 1. Basic Search Algorithm for ASP

algorithm is based on the idea of growing a particular set of (ground) literals, often

called partial answer set, until it is either shown to be an answer set of the program,

or it becomes inconsistent. To achieve this, guesses have to be made as to which lit-

erals may be in the answer set. Let us now describe the algorithm more precisely. By

extended literal we mean a literal l or the expression not l, intuitively meaning that l is

known not to hold in the answer set (but its complement, l, may or may not hold). Given

an extended literal e, not(e) denotes the expression not l if e = l and it denotes l if

e = not l. Algorithm solve takes as input program, Π , and partial answer set, A, which

is a set of extended literals. A is initially empty. Function expand [9] is then used to

add to the partial answer set all the literals that must hold given Π and A. If the result

of expand is an answer set of Π , the algorithm returns it (and terminates). If instead a

contradiction is discovered, then the algorithm returns no model (⊥). In all other cases,

the partial answer set is still incomplete but consistent. Then, function choose literal
selects an extended literal e such that neither e nor not(e) occur in B. This is called

the choice literal or choice point. The algorithm then calls itself recursively in order to

find an answer set of Π from the partial answer set B ∪ {e}. If one such answer set is

found, then the algorithm returns it. If instead no answer set is found, then the algorithm

attempts to find an answer set of Π that contains B∪{not(e)}. If the attempt succeeds,

the answer set is returned. Otherwise, the algorithm returns no model (⊥).

It is not difficult to see how the choices made by choose literal greatly influence

the number of choice points picked by the algorithm, and ultimately its performance.

Consider for example the program:

P1 =



































p← not q. q ← not p.

r.
← p, r.
← q, not s.

u(X)← t(X), not v(X).
v(X)← t(X), not u(X).

t(0). t(1). . . . t(1000).

The program is clearly inconsistent. In fact, the first two rules force either p or q to hold,

but the next three rules forbid p and q from holding. So, if the first call to choose literal
were to select e.g. not p, then the following call to expand would conclude that q
must hold, and that inconsistency follows (since s is not defined by any rule and thus

the body of the corresponding constraint is satisfied). The algorithm would then back-

track and select p. This time, expand would derive inconsistency from the fact that

the body of the first constraint is satisfied. Hence, the algorithm would return ⊥ (no

model). However, consider what would happen if choose literal were to select u(0)
instead of not p. Function expand would derive the consequence not v(0) and fail to

reach inconsistency. Then, the algorithm would recurse, and possibly select say u(1).
As before, expand would not detect any inconsistency, and allow the algorithm to re-

curse again. Suppose now choose literal were to pick not p. Following the same steps

outlined earlier, the algorithm would derive inconsistency. Upon backtracking, the al-

gorithm would also derive inconsistency from the selection of p. However, the finding

would only affect the current branch of the search stemming from the selection of u(1),
and the algorithm would then backtrack, select not u(1), and recurse. At this point, the

algorithm would be again free to select any of the remaining u(X) literals, which from

an intuitive point of view means going in the wrong direction. Even if the algorithm

were to select not p right away, it would still have to backtrack over the choice of u(0)
and explore the corresponding branch of the search tree that starts from not u(0) before

finally concluding that the program is inconsistent. The reader can imagine the effect

on the algorithm’s performance if choose literal were to choose not p at an even later

point in the search process.

In order to reduce the chances of choose literal making “wrong” selections, mod-

ern solvers base literal selection on carefully designed heuristics. For example, in

SMODELS the selection is roughly based on maximizing the number of consequences

that can be derived after selecting the given extended literal [9]. These techniques work

well in a number of cases, but not always. In fact, particular features of the program can

confuse the heuristics. When that happens at an early stage of the search process, the

effect is often disastrous, causing the solver to fail to return an answer in an acceptable

amount of time. Particularly frustrating is the fact that the efficiency of the heuristics

may change largely in correspondence of small elaborations of the program in input.

For example, the choose literal heuristics may make good selections for one problem

instance, while they may cause the search to take an unacceptable amount of time for a

not-too-different problem instance.

As we mentioned in the introduction, one way to limit the effect of wrong selections

by choose literal is that of allowing the solver to learn about relevant conflicts at run-

time. Once learned, the information about conflicts can be used for the early pruning of

other branches of the search space (e.g. [5,4]). Although this technique has proven to

be extremely effective, it does not address directly the issue of choose literal making

wrong choices, but rather curbs the problem by making some of those choices impos-

sible after learning has taken place, or by allowing to quickly backtrack after a wrong

choice has been made. Furthermore, because the learning occurs at run-time, during the

initial phase of the computation in which learning has not yet occurred, choose literal
may once again affect efficiency negatively by taking the search process in the wrong

direction. Finally, whatever has been learned in one execution of the algorithm is dis-

carded upon termination, and cannot be used in later runs.

In the next section, we describe a different approach, aimed at improving directly

the selections made by choose literal and at retaining what the algorithm has learned.

4 The DORS Framework

Our technique for learning domain-specific heuristics and using them for literal selec-

tion applies to the situation in which one is interested in solving a number of problem

instances from a given problem domain. Such situations are very common in the ASP

community – see e.g. the Second Answer Set Programming Competition [11]. More-

over, this is particularly the case in industrial applications, where the application con-

tains the domain description, and the user describes the instance using some interface

(refer e.g. to [12]), which then automatically encodes the problem instance.

Program P1, shown earlier, can be viewed as consisting of a domain description

and a problem instance: the first 7 rules constitute the former, while the definition of

predicate t is the problem instance. A different problem instance might then define t
as {t(5), t(6), t(7)}. In this case, it is obvious that a good strategy for the selection

of the literals consists in first choosing among {p, not p, q, not q} and only later (if

necessary) considering the extended literals formed by u and v.

In general, the domain-specific heuristics for choose literal will be learned – rather

than manually specified – by analyzing the choices made by the standard solver solve
when solving representative problem instances from the domain. This approach is par-

ticularly useful in applications in which a number of problem instances from the same

class of problems will have to be solved over time – for example, in the setting of an

industrial application, or in a programming/solver competition in which benchmark-

ing is involved – and computational power is available off-line to allow learning the

domain-specific heuristics (e.g. before deploying the application, or before submitting

the solver or solutions to a competition).

Next, we discuss how choices made in previous runs of the algorithm can be ex-

tracted and combined for future use. The final result will be the learning of a policy

(see e.g. [13] for a comprehensive introduction on the topic), that is, in general terms,

of a mapping from states to probabilities of selecting each available action. To achieve

this, the algorithm from Figure 1 is modified to maintain a record of the choice points

selected, and to return the list of such choice points together with the answer set, when

one is found. The modified algorithm is shown in Figure 2. In the algorithm, the list of

function solvecp (Π : Program,A : Set of Extended Literals, S : Ordered List of Extended Literals)

B := expand(Π, A);

if (B is answer set of Π) then return 〈B, S〉;
if (B is not consistent or B is complete) then return ⊥;
e := choose literal(Π, B);

〈B′, S′〉 := solve(Π, B ∪ {e}, S ◦ e);

if (B′ 6= ⊥) then return 〈B′, S′〉;
〈B′, S′〉 := solve(Π, B ∪ {not(e)}, S ◦ not(e));
return 〈B′, S′〉;

Figure 2. Search Algorithm for ASP with Explicit Tracking of Choice Points

choice points is stored in variable S. Symbol ◦ represents concatenation. When solvecp
is initially invoked, S is the empty list.

Now we turn our attention to combining the information collected by solvecp into a

domain-specific heuristics. Given the domain description M and a problem instance I
that is to be used to learn the domain-specific heuristics, the decision-sequence of I (de-

noted by d(I)) is⊥ if solvecp(I∪M, ∅, ∅) = ⊥ and S if solvecp(I∪M, ∅, ∅) = 〈A,S〉
for some A. From now on, given a decision-sequence d, we denote its nth element by

dn. Moreover, given an extended literal e, level(e, d) denotes the index i such that

di = e (e is guaranteed not to occur at more than one position by construction of the

decision-sequence in solvecp). Intuitively, level(e, d) represents the level in the deci-

sion tree at which e was selected. Notice that, by construction of the sequence of choice

points in solvecp, if d(I) 6= ⊥, then d(I) only enumerates the choice points that led

directly to the answer sets. All the choice points that did not lead directly to it, in the

sense that they were later backtracked upon, are in fact discarded every time the algo-

rithm backtracks.

In order to improve the quality of the learned heuristics, we divide the class of prob-

lem instances in subclasses, and associate with each problem instance I an expression

σ denoting the subclass it belongs to. The intuition is that using subclasses allows to

further tailor the literal selection heuristics to the particular features of the problem in-

stances. For example, in a planning domain, σ might be the maximum length of the plan

(often called lasttime or maxtime in ASP-based planning). The subclass of a problem

instance I is denoted by σ(I).
Let I denote the set of all problem instances that will be used for the learning of

the domain-specific heuristics. Next, we specify a way to determine how many times

an extended literal e was selected at a certain level of the decision-sequences for the

problem instances in I. More precisely, given a positive integer δ, called the scaling

factor, and subclass σ, the occurrence count of an extended literal e w.r.t. a level l and

set of instances I is

oδ,σ(e, l, I) = | { I | I ∈ I ∧ σ(I) = σ ∧ d(I) 6= ⊥ ∧
l − δ/2 ≤ index(e, d(I)) < l + δ/2 } |.

The scaling factor δ allows taking into account all the occurrences of e at a level in the

interval [l − δ/2, l + δ/2). If δ = 1, then only the occurrences of e with level equal to

l are considered. Values of δ greater than 1 can be useful in those cases in which all or

most permutations of a subsequence of choice points lead to an answer set.

Let now E = {e1, e2, . . . , ek} be a set of extended literals, representing possible

choice points at some level l of the decision tree. The set of best choice points among

E is:

bestδ(l, E, σ, I) = {e | e ∈ E ∧ ∀e′ ∈ E oδ,σ(e, l, I) ≥ oδ,σ(e′, l, I)}.

Intuitively, bestδ(l, E, σ, I) returns the choice points that, if taken at level l, are most

likely to lead to an answer set without backtracking, based on the information col-

lected about the instances of subclass σ in I. Algorithms for the computation of

bestδ(l, E, σ, I) and oδ,σ(e, l, I) are simple and are omitted to save space.

Function bestδ(l, E, σ, I) encodes the essence of the domain-specific heuristics, or,

more precisely, the policy1 for the selection of choice points. Algorithm choose literal
can now be extended to perform literal selection guided by the domain-specific

heuristics. The modified algorithm, choose literal dspec, is shown in Figure 3. In

choose literal dspec, argument T is the set of extended literals that have previously

been selected by choose literal dspec. If bestδ(level, E′, σ(I), I) is the empty set,

then choose literal dspec falls back to performing standard extended literal selection

via choose literal. This is for instances in which the learned heuristics do not prescribe

any extended literal for the current decision level, or in which all the extended literals

that the learned heuristics prescribed have already been tried. Modifying the standard

solver’s algorithm in order to use the domain-specific heuristics for choice-point selec-

tion is rather straightforward. A simple version, which for the most part follows the

well-known iterative version of the SMODELS algorithm, is shown in Figure 4.

Next, we describe how grounding is handled in the DORS framework. The dis-

cussion is based on the architecture of the LPARSE+SMODELS system but can be ex-

tended to other ASP systems as well. ASP solvers typically expect in input ground

1 We assume uniform probability of selection among the elements of the set returned by

bestδ(l, E, σ, I).

function choose literal dspec (Π : Program, σ : Problem Subclass, A : Set of Extended Literals,

level : Integer /* Current Level in the Decision Tree */,

T : Set of Extended Literals, I : Set of Instances,

δ : Integer /* Scaling Factor*/)

L := lit(Σ(Π)); E := L ∪ {not l | l ∈ L};
E′ = ∅;
for each e ∈ E

if (e 6∈ A ∧ not(e) 6∈ A ∧ e 6∈ T) then E′ := E′ ∪ {e};
end for

B := bestδ(level, E′, σ, I);
if (B 6= ∅) then chosen := one element of(B);

else chosen := choose literal(Π, A);

return chosen;

Figure 3. Function for Literal Selection with Domain-Specific Heuristics

(i.e. variable-free) programs. Because however using variables in ASP programs is con-

venient, programs are first pre-processed by a grounder (LPARSE and GRINGO in the

systems considered here), which replaces each non-ground rule by the set of its ground

instances. The main difficulty in implementing our technique in state-of-the-art ASP

systems is that their grounders often introduce “unnamed atoms” during the grounding

process. An unnamed atom is an atom that does not occur in the original program, and

is used internally by the ASP system. Because of their local use, unnamed atoms are

assigned identifiers that are only valid for the current run of the system. There is no

guarantee that unnamed atoms will be assigned the same identifiers when the system

is run on a different problem instance. Because nothing prevents unnamed atoms from

being used as choice points by the solver, one needs to ensure that unnamed atoms

are given a unique, known identifier, so that choice-point information regarding them

can be properly handled. One possible solution is to modify the ASP grounders so that

unnamed atoms are given identifiers that remain valid across multiple executions. Al-

though conceptually simple, this solution requires modifying each grounder that one is

interested in using. In this paper we present instead a relatively simple, indirect method

that consists of a pre-processing phase and a post-processing phase, and does not in-

volve modifications to the grounders.

In LPARSE and GRINGO, unnamed atoms are introduced during the grounding of

rules containing certain constraint literals, in order to simplify their structure.2 For ex-

ample, the choice rule in the program:
{

p(1). p(2). p(3).
1{a(X) : p(X)}2.

is translated by the grounder as:










{a(1), a(2), a(3)}.
← µ1.
µ1 ← 3{not a(1), not a(2), not a(3)}.
← µ0.
µ0 ← 3{a(3), a(2), a(1)}.

2 A thorough explanation of the process is beyond the scope of this paper. We refer the interested

reader to e.g. [8].

function solve dspec (Π : Program, σ : Problem Subclass, I : Set of Instances, δ : Scaling Factor)

var S : Stack of Sets of Extended Literals;

var B, T : Set of Extended Literals;

var terminate : Boolean;

S := ∅; B := ∅; T := ∅; level := 0;
terminate := false;
while (terminate = false)

B := expand(Π, B);
if (B is answer set of Π) then

terminate := true;
else

if (B is not consistent or B is complete) then

if (S = ∅) then

B := ⊥;
terminate := true;

else

/* Backtrack */

B := top(S); S := pop(S);
level := level− 1;

end if

else

/* Select a choice point */

e := choose literal dspec(Π, σ, B, level, T, I, δ);
T := T ∪ {e};
S := push(B ∪ {not(e)}, S);
B := B ∪ {e}; level := level + 1;

end if

end if

end while

return B;

Figure 4. Search Algorithm for ASP with Domain-Specific Heuristics for Choice-Point Selection

where µ0 and µ1 are unnamed atoms. As we mentioned above, no assumptions can be

made about which identifiers are used for the unnamed atoms. If we were for example

to add to the program a second choice rule3, the grounding of the new program could

use some new identifiers µ2, µ3 for the above translation. On the other hand, because

of the structure of the grounding algorithm, the relative order of the rules belonging to

the grounding of the choice rule is independent from the changes made to the rest of

the program. Moreover, whenever multiple unnamed atoms occur in the body of a rule,

their relative order is independent of changes made to the rest of the program. We will

make use of these two properties later.

In the pre-processing phase, the user specifies a name for each rule whose grounding

may cause the introduction of unnamed atoms. Because we want to avoid modifications

to the grounder, we cannot extend the syntax of rules to allow specifying a name explic-

itly.4 Therefore, the name of the rule is rather specified in the body of the rule, using a

special relation ν.5 So, the choice rule above can be written as:

1{a(X) : p(X)}2← ν(r1). (1)

3 Or if the number of ground instances of the choice rule of our example were to change because

of changes in the problem instance.
4 However, a pre-processor can be used, as discussed later.
5 Notice that the specification of the name of the rule in the body is purely a technical device,

and should not be intended to convey any semantic information.

Generally speaking, given a list, X , of all the free variables in the rule, and some fresh

constant ρ, the name is specified by the atom ν(ρ,X). A rule whose name is specified

as above is called an augmented rule.

To ensure that the meaning of a rule is not altered by the augmentation, a definition

of atom ν(·) must also be provided (otherwise the body of the augmented rule is never

satisfied). Because state-of-the-art grounders usually drop trivially-true atoms from the

body of the rules, we define the new atom by a choice rule with no bounds and suitable

domain predicates for the arguments of relation ν, such as { ν(r1) }. (The choice rule

will be removed later, to avoid affecting the performance of the solver.) When process-

ing (1), the grounder produces:











{a(1), a(2), a(3)} ← ν(r1).
← µ1, ν(r1).
µ1 ← 3{not a(1), not a(2), not a(3)}.
← µ0, ν(r1).
µ0 ← 3{a(3), a(2), a(1)}.

Notice how the unnamed atoms co-occur with the ν(·) atom in the body of some of

the rules. Because of the structure of the grounding algorithm, this is the case for the

grounding of any rule that introduces unnamed atoms. The reader should also notice

that the addition of ν(·) atoms to the program can be easily automated. A user could

then specify a name for the rule using a more convenient syntax, and have a simple

pre-processor introduce the ν(·) atoms in the program as shown above.

The post-processing phase is based on the algorithm shown in Figure 5. The al-

function postp (G : GroundProgram)

Assoc := ∅; G′ := G;

for each rule ρ ∈ G and unnamed atom µ in ρ
if ρ contains an atom ν(X) for some X then

i := smallest positive integer such that ∀µ′ 〈µ′, ν(i, X)〉 6∈ Assoc;
Assoc := Assoc ∪ {〈µ, ν(i, X)〉};

end if

end for

for each atom of the form ν(X)
Remove from G′

rule {ν(X)} ← Γ (for some Γ);

Remove every occurrence of ν(X) from G′
;

end for

for each 〈µ, ν(i, X)〉 ∈ Assoc

Replace all occurrences of µ in G′
by ν(i, X);

end for

return G′
;

Figure 5. Post-processing algorithm

gorithm works as follows. First, the ground rules are scanned for co-occurrences of

unnamed atoms and ν atoms. The goal is to use the information provided by the ν
atoms to give a name to the unnamed atoms they co-occur with. The association of

names to unnamed atoms is stored in variable Assoc. Because multiple unnamed atoms

may be introduced by the grounding of a single rule, an extra integer argument is added

to relation ν when naming unnamed atoms. Values for that argument are assigned on

a first-come, first-serve basis. Because, as we noted above, the relative order of un-

named atoms in the ground rules does not change, we are guaranteed that the naming

of unnamed atoms will be consistent throughout multiple runs of the grounder with dif-

ferent input programs (as long as the domain description remains the same). In the next

for loop, all ν atoms and their definitions are removed from the program. Finally, the

unnamed atoms are renamed according to the associations encoded by variable Assoc.

5 Experimental Evaluation

In this section we discuss an experimental evaluation of the DORS framework. To en-

sure applicability to a wider variety of cases, we have tested our implementation on

both abstract problems and on problems from industrial applications of ASP. Here we

show the results of testing on the 15 puzzle problem and on the task of planning for the

Reaction Control System of the Space Shuttle.

The solver used in the experiments is SMODELS, which we modified to obtain im-

plementations of algorithms solvecp and solve dspec. It should be noted that we did

not use CLASP for our experiments. In fact, extending the DORS framework to CLASP

is complicated by the fact that this solver is based on conflict-driven clause learning

(CDCL) (e.g. [5]) rather than DPLL. Although we believe that certain similarities be-

tween DPLL and CDCL make it technically possible to extend the DORS framework

to CDCL-based systems, work on implementing the DORS framework within CLASP

is still in the early stages and results will be discussed in a later paper.

In the rest of the discussion, we refer to the implementation of solve dspec within

SMODELS as DSPEC. The grounders used were GRINGO for the 15 puzzle (because the

original solution of the puzzle used some features specific of GRINGO’s language) and

LPARSE for the Reaction Control System. It is important to note that this interchange-

able use of grounders is only possible because of the grounding technique we described

in the previous section.

The 15 puzzle problem was one of the benchmarks used for the Second ASP Pro-

gramming Competition [11]. The description of the puzzle, taken from the competi-

tion’s web site, is shown in Figure 6a. The goal configuration used in the competition is

shown in Figure 6b. For the domain description, we have used the program published

on the competition’s web site 6, modified to provide names of select rules, as explained

earlier. Next, for every value of k ranging between 10 and 30, we have generated 100

random problem instances that can be solved with k moves or less. The subclass that a

problem instance belongs to is identified by the value of k (i.e. the maximum allowed

length of a plan for that instance, called maxtime in the original encoding). Next, we

ran all the instances in each subclass with a timeout value of 6000 sec. The instances

that took more than a time threshold tk were then used to learn the domain-specific

heuristics, while the remaining instances – called hard instances – were used for the

evaluation phase. In the evaluation phase, we have run the hard instances using the

learned domain-specific heuristics. The scaling factor δ (discussed earlier) was set to

1. Figure 7 compares the performance of SMODELS and DSPEC for the subclass with

6 The collection is available from http://www.cs.kuleuven.be/∼dtai/events/
ASP-competition/problem instances.tar.gz.

“In 15-Puzzle, we have a 4 × 4 grid

where there are 15 numbers (1 to 15)

and one blank. The goal is to arrange

the numbers from their initial config-

uration to the goal configuration by

swapping one number at a time with

its adjacent blank position. Let (x, y)
be the coordinates of a number on the

grid and (i, j) be those of the blank.

Then (x, y) and (i, j) are adjacent, if

|x − i| + |y − j| = 1.”

Figure 6. (a) Description of the 15 Puzzle; (b) Goal Configuration

maxtime = 28, where we set the threshold tk to 70 seconds (selected to have a suffi-

cient number of samples for learning). The domain-specific heuristics gave an average

speedup of 6.4 times7 over the standard solver, with a maximum speedup of more than

24. What’s more important, out of 11 instances for which the standard solver timed out,

all were solved within the time limit by DSPEC, substantiating our claim that the use of

domain-specific heuristics helps to make solver’s performance more consistent. (Simi-

lar performance was obtained on other subclasses. We omit the results to save space.)

Instance SMODELS (sec) DSPEC (sec) Speedup (times)

38 95.754 3.859 24.8

40 72.831 3.714 19.6

71 6000 959.157 6.3

73 6000 600.448 10.0

74 1226.096 654.586 1.9

75 317.459 156.184 2.0

76 6000 987.010 6.1

77 415.760 129.066 3.2

78 427.494 170.919 2.5

79 6000 780.723 7.7

80 270.246 167.075 1.6

81 6000 473.997 12.7

82 183.667 162.769 1.1

83 471.565 137.465 3.4

84 6000 845.182 7.1

Instance SMODELS (sec) DSPEC (sec) Speedup (times)

85 176.233 138.327 1.3

86 6000 758.293 7.9

87 397.587 173.338 2.3

88 6000 706.968 8.5

89 402.882 178.329 2.3

90 267.338 173.345 1.5

91 439.324 247.809 1.8

92 391.290 175.358 2.2

93 6000 769.548 7.8

94 6000 830.665 7.2

95 314.586 178.609 1.8

96 6000 865.279 6.9

98 1100.905 72.243 15.2

99 725.745 50.194 14.5

100 661.419 74.023 8.9

Figure 7. Performance Comparison on the 15 Puzzle. Machine specs: Intel Q6600 CPU, 2.4GHz, 6GB RAM.

The second problem domain for which we report experimental results is that of

planning for the Reaction Control System (RCS) of the Space Shuttle. As described

in e.g. [14,12], the RCS is the Shuttle’s system that has primary responsibility for ma-

neuvering the Shuttle while it is in space. It consists of fuel and oxidizer tanks, valves,

and other plumbing needed to provide propellant to the maneuvering jets of the Shuttle.

7 This is just the lower bound of the estimate, since SMODELS timed out several times.

The RCS also includes electronic circuitry, both to control the valves in the fuel lines

and to prepare the jets to receive firing commands. In order to configure the Shuttle for

an orbital maneuver, the RCS must be configured by opening and closing appropriate

valves. This is accomplished by either changing the position of the associated switches,

or by issuing computer commands. In normal conditions, the procedures for the con-

figuration of the RCS for a given maneuver are known in advance by the astronauts.

However, if components of the RCS are faulty, then the standard procedures may not

be applicable. Moreover, because of the amount of possible combinations of faults, it is

impossible to prepare in advance a set of configuration procedures for faulty situations.

In those cases, ground control needs to carefully examine the problem and manually

come up with a configuration procedure. The system described in [14,12] uses a model

of the RCS, as well as ASP-based reasoning algorithms, to provide ground control with

a decision-support system that automatically generates configuration procedures for the

RCS and that can be used when faulty components are present (incidentally, the system

can also perform diagnostic reasoning [12]).

A collection of problem instances from the domain of the RCS is publicly available,

together with the ASP encoding of the model of the RCS.8 The interested reader may

refer to [14] for a description of the instances. For our testing, we have selected a set

of 425 instances from the collection, corresponding to the public instances with no

electrical faults and 3, 8, and 10 mechanical faults respectively, for which a plan of

length 6 or less (determined by parameter lasttime) was found in the experiments

discussed in [14,12], and we have analyzed the performance of the solver on planning

with maximum lengths ranging between 6 and 10.

As before, first we ran all the instances with the standard solver and a timeout of

6000 sec. Of those, the instances that took less than 50 sec were used to learn the

domain-specific heuristics, while the remaining “hard instances” were used for the eval-

uation phase. The problem subclasses were defined by the pair 〈lasttime,maneuver〉,
where lasttime specifies the maximum plan length and maneuver is the maneuver

that the RCS must be configured for (in our experiments, using the maneuver in the

subclass definition substantially improved the performance of the learned heuristics).

Figure 8 shows the results of the comparison for the 91 hard instances with 8 and 10
mechanical faults and values of lasttime of 9 and 10. We believe the speedup obtained

with the domain-specific heuristics is remarkable. First of all, out of 53 instances for

which the standard solver timed out before finding a solution, in 48 cases the domain-

specific heuristics allowed to find a solution within the time limit, and in some cases

in under 10 seconds. The average speedup is 259.2, with a peak of 1253.1 for an in-

stance for which SMODELS timed out9, and a peak of 544.5 for an instance for which

SMODELS did not time out. In 6 cases (out of 91) DSPEC performed worse than the

standard solver. We believe that these outliers can be eliminated if more samples are

made available for learning.

8 The files are available from http://www.krlab.cs.ttu.edu/Software/Download/.
9 The actual speedup could in fact be higher, since SMODELS timed out. As a test, we have let

SMODELS run on some of these instances for over 60, 000 seconds (16 hours) without getting

a solution.

Lasttime/ SMODELS DSPEC Speedup

Instance (sec) (sec) (times)

9 / 025 6000 17.643 340.1

9 / 027 6000 9.597 625.2

9 / 038 125.244 8.616 14.5

9 / 044 1439.027 6.846 210.2

9 / 053 6000 13.599 441.2

9 / 059 85.151 551.806 0.2

9 / 074 6000 8.961 669.6

9 / 075 736.134 3.837 191.9

9 / 087 6000 6000 1.0

9 / 090 6000 14.111 425.2

9 / 093 2451.649 6.477 378.5

9 / 098 114.643 10.529 10.9

9 / 103 52.219 12.544 4.2

9 / 122 6000 4.788 1253.1

9 / 140 6000 11.493 522.1

9 / 165 6000 13.027 460.6

9 / 170 6000 6000 1.0

9 / 179 6000 14.304 419.5

9 / 184 6000 20.254 296.2

9 / 188 6000 6000 1.0

8 Mechanical Faults

Lasttime/ SMODELS DSPEC Speedup

Instance (sec) (sec) (times)

9 / 191 4829.019 8.869 544.5

9 / 199 437.379 7.144 61.2

10 / 013 94.623 21.663 4.4

10 / 022 6000 423.565 14.2

10 / 025 6000 2035.089 2.9

10 / 027 6000 10.248 585.5

10 / 032 2949.169 13.820 213.4

10 / 037 6000 12.218 491.1

10 / 044 6000 18.162 330.4

10 / 050 72.596 12.521 5.8

10 / 053 1907.445 23.370 81.6

10 / 059 6000 15.163 395.7

10 / 061 266.024 7.756 34.3

10 / 070 519.583 16.343 31.8

10 / 074 6000 13.903 431.6

10 / 077 251.754 7.518 33.5

10 / 087 6000 24.962 240.4

10 / 088 3830.141 18.512 206.9

10 / 092 318.830 11.712 27.2

10 / 093 6000 494.850 12.1

Lasttime/ SMODELS DSPEC Speedup

Instance (sec) (sec) (times)

10 / 096 789.351 13.787 57.3

10 / 103 6000 16.781 357.5

10 / 110 6000 255.421 23.5

10 / 113 264.419 6000 0.044

10 / 120 1983.466 20.254 97.9

10 / 140 64.451 6000 0.011

10 / 147 187.800 7.125 26.4

10 / 154 942.008 6000 0.157

10 / 165 6000 30.008 199.9

10 / 166 6000 820.789 7.3

10 / 177 6000 12.605 476.0

10 / 178 6000 6000 1.0

10 / 179 6000 16.740 358.4

10 / 188 5235.985 12.740 411.0

10 / 189 3773.981 11.765 320.8

10 / 190 6000 1010.510 5.9

10 / 194 6000 12.407 483.6

10 / 199 6000 9.452 634.8

Lasttime/ SMODELS DSPEC Speedup

Instance (sec) (sec) (times)

9 / 011 6000 12.745 470.8

9 / 036 223.258 5.546 40.3

9 / 062 6000 14.127 424.7

9 / 077 6000 7.663 783.0

9 / 082 371.375 17.191 21.6

9 / 083 6000 11.068 542.1

9 / 096 550.659 16.294 33.8

9 / 104 6000 13.471 445.4

9 / 115 6000 2141.781 2.8

9 / 175 79.346 9.756 8.1

10 / 008 172.772 19.576 8.8

10 Mechanical Faults

Lasttime/ SMODELS DSPEC Speedup

Instance (sec) (sec) (times)

10 / 014 6000 15.671 382.9

10 / 035 6000 18.642 321.9

10 / 036 327.915 8.000 41.0

10 / 052 4878.440 13.202 369.5

10 / 053 6000 11.523 520.7

10 / 056 5585.635 11.041 505.9

10 / 059 6000 6000 1.0

10 / 062 6000 19.492 307.8

10 / 064 6000 14.095 425.7

10 / 072 556.285 6000 0.1

10 / 078 748.273 5.797 129.1

Lasttime/ SMODELS DSPEC Speedup

Instance (sec) (sec) (times)

10 / 081 6000 23.573 254.5

10 / 082 6000 24.662 243.3

10 / 094 6000 16.976 353.4

10 / 096 6000 19.369 309.8

10 / 099 6000 20.283 295.8

10 / 115 6000 14.852 404.0

10 / 133 6000 5.812 1032.3

10 / 136 3144.372 14.080 223.3

10 / 143 67.685 6000 0.011

10 / 147 6000 5.110 1174.2

10 / 180 6000 170.726 35.1

Figure 8. Performance Comparison on the RCS Domain. Machine specs: Intel i7 CPU, 2.93GHz, 8GB RAM.

6 Conclusions

In this paper we have described a framework that allows learning and using domain-

specific heuristics for choice-point selection, and we have demonstrated its application

to ASP. Our experimental evaluation has shown that domain-specific heuristics can give

remarkable speedups, and allow to find answers that cannot otherwise be computed in

a reasonable amount of time. In the case of the RCS domain, a large number of the

instances for which the standard solver timed out, could be solver in a matter of seconds

using the domain-specific heuristics, with an average speedup of more than 2 orders of

magnitude and peaks of more than 3. This is the type of consistent performance that

makes a solver viable for industrial applications. We believe that an appealing feature

of the DORS framework is that in principle it can be applied to any solver based on the

DPLL procedure. Hence, it is possible to extend the approach shown here to other ASP

solvers, or even to e.g. constraint solvers. Work is also ongoing on extending the DORS

framework to solvers based on conflict-driven clause learning, such as CLASP. As a final

note, we would like to point out that the method used here to learn the domain-specific

heuristics is a very simple instance of policy learning. It will be interesting to investigate

how more sophisticated techniques from reinforcement learning, but also from machine

learning and data mining, can be applied within the DORS framework. We expect that

doing so will allow to improve performance of the solvers even further.

References

1. Davis, M., Putnam, H.: A Computing Procedure for Quantification Theory. Communications

of the ACM 7 (1960) 201–215

2. Davis, M., Logemann, G., Loveland, D.: A Machine program for theorem proving. Com-

munications of the ACM 5(7) (1962) 394–397

3. Gebser, M., Kaufmann, B., Schaub, T.: The Conflict-Driven Answer Set Solver clasp:

Progress Report. In: 10th International Conference on Logic Programming and Nonmono-

tonic Reasoning (LPNMR09). (Sep 2009) 509–514

4. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In

Veloso, M.M., ed.: Proceedings of the Twentieth International Joint Conference on Artificial

Intelligence (IJCAI’07), MIT Press (2007) 386–392

5. Goldberg, E., Novikov, Y.: BerkMin: A Fast and Robust Sat-Solver. In: Proceedings of

Design, Automation and Test in Europe Conference (DATE-2002). (Mar 2002) 142–149

6. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.

New Generation Computing 9 (1991) 365–385

7. Marek, V.W., Truszczynski, M.: Stable models and an alternative logic programming

paradigm. In: The Logic Programming Paradigm: a 25-Year Perspective. Springer Verlag,

Berlin (1999) 375–398

8. Niemela, I., Simons, P.: Extending the Smodels System with Cardinality and Weight Con-

straints. In: Logic-Based Artificial Intelligence. Kluwer Academic Publishers (2000) 491–

521

9. Niemela, I., Simons, P., Soininen, T.: Extending and implementing the stable model seman-

tics. Artificial Intelligence 138(1–2) (Jun 2002) 181–234

10. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV

System for Knowledge Representation and Reasoning. ACM Transactions on Computational

Logic 7(3) (2006) 499–562

11. Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczynski, M.: The Second Answer

Set Programming Competition. In: 10th International Conference on Logic Programming

and Nonmonotonic Reasoning (LPNMR09). (Sep 2009) 637–654

12. Balduccini, M., Gelfond, M., Nogueira, M.: Answer Set Based Design of Knowledge Sys-

tems. Annals of Mathematics and Artificial Intelligence (2006)

13. Barto, A.G., Sutton, R.S.: Reinforcement learning: an introduction. MIT Press (1998)

14. Nogueira, M.: Building Knowledge Systems in A-Prolog. PhD thesis, University of Texas

at El Paso (May 2003)

