
Submitted to the Technical Communications of the International Conference on Logic Programming (ICLP’10)

http://www.floc-conference.org/ICLP-home.html

LEARNING DOMAIN-SPECIFIC HEURISTICS FOR ANSWER SET SOLVERS

MARCELLO BALDUCCINI 1

1 Intelligent Systems, KRL

Eastman Kodak Company

Rochester, NY 14650-2102 USA

E-mail address: marcello.balduccini@gmail.com

ABSTRACT. In spite of the recent improvements in the performance of Answer Set Programming

(ASP) solvers, when the search space is sufficiently large, it is still possible for the search algorithm

to mistakenly focus on areas of the search space that contain no solutions or very few. When that

happens, performance degrades substantially, even to the point that the solver may need to be ter-

minated before returning an answer. This prospect is a concern when one is considering using such

a solver in an industrial setting, where users typically expect consistent performance. To overcome

this problem, in this paper we propose a technique that allows learning domain-specific heuristics for

ASP solvers. The learning is done off-line, on representative instances from the target domain, and

the learned heuristics are then used for choice-point selection. In our experiments, the introduction of

domain-specific heuristics improved performance on hard instances by up to 3 orders of magnitude

(and 2 on average), nearly completely eliminating the cases in which the solver had to be terminated

because the wait for an answer had become unacceptable.

1. Introduction

In recent years, solvers for Answer Set Programming (ASP) [Gel91, Mar99] have become

amazingly fast. Mostly, that is due to good heuristics that direct the search toward the most promis-

ing areas of the search space, and to learning algorithms that discover features of the search space

on-the-fly (see e.g. [Geb07]). Unfortunately, when the search space is sufficiently large, it is still

possible for the search algorithm to mistakenly focus on areas of the search space that contain no

solutions or very few. When that happens, performance degrades substantially, even to the point

that the solver may need to be terminated before returning an answer. This prospect is a concern

when one is considering using such a solver in an industrial application, in which the solver will act

as part of a black-box from which users typically expect consistent performance. It should be noted

that the phenomenon of performance degradation is often due to the fact that the heuristics used in

choice-point selection are general-purpose, and thus can be side-tracked by peculiar features of a

given domain. To overcome this problem, in this paper we propose a technique that allows learning

domain-specific heuristics for ASP solvers. The technique is mainly aimed at improving the effi-

ciency of the computation of one answer set (as opposed to multiple answer sets of a program) of

consistent programs, but could be extended further. The learning is done off-line, on representative

instances from the target domain. In our experiments, the introduction of domain-specific heuristics

improved performance on hard instances by up to 3 orders of magnitude (and 2 on average), nearly

1998 ACM Subject Classification: I.2.3, I.2.4, I.2.5.

Key words and phrases: answer set programming, solvers, domain-specific heuristics.

c© M. Balduccini
Confidential — submitted to ICLP

2 M. BALDUCCINI

completely eliminating the situations in which the solver had to be terminated because the wait for

an answer had become unacceptable.

This paper is organized as follows. In the next section we give some background on ASP. Next, we

discuss the basic search algorithm used in most ASP solvers. Then, in Section 3, we present our

technique for learning domain-specific heuristics. Experimental results are discussed in Section 4.

Finally, in Section 5, we draw conclusions.

2. Answer Set Programming

Let us start by giving some background on ASP. We define the syntax of the language precisely,

but only give the informal semantics of the language in order to save space. We refer the reader to

[Gel91, Nie00] for a specification of the formal semantics. Let Σ be a signature containing constant,

function and predicate symbols. Terms and atoms are formed as usual in first-order logic. A (basic)

literal is either an atom a or its strong (also called classical or epistemic) negation ¬a. The set of

literals formed from Σ is denoted by lit(Σ). A rule is a statement of the form:

h1 ∨ . . . ∨ hk ← l1, . . . , lm, not lm+1, . . . , not ln

where hi’s and li’s are ground literals and not is the so-called default negation. The intuitive

meaning of the rule is that a reasoner who believes {l1, . . . , lm} and has no reason to believe

{lm+1, . . . , ln}, has to believe one of hi’s. The part of the statement to the left of ← is called

head; the part to its right is called body. Symbol← can be omitted if no li’s are specified. Often,

rules of the form h ← not h, l1, . . . , not ln are abbreviated into← l1, . . . , not ln, and called con-

straints. The intuitive meaning of a constraint is that its body must not be satisfied. A rule containing

variables is interpreted as the shorthand for the set of rules obtained by replacing the variables with

all the possible ground terms (called grounding of the rule). A program is a pair 〈Σ, Π〉, where Σ
is a signature and Π is a set of rules over Σ. We often denote programs just by the second element

of the pair, and let the signature be defined implicitly. In that case, the signature of Π is denoted

by Σ(Π). Finally, an answer set (or model) of a program Π is one of the possible collections of

its consequences under the answer set semantics. Notice that the semantics of ASP is defined in

such a way that programs may have multiple answer sets, intuitively corresponding to alternative

views of the specification given by the program. In that respect, the semantics of default negation

allows for a simple way to encode choices. For example, the set of rules {p← not q. q ← not p.}
intuitively states that either p or q hold, and the corresponding programs has two answer sets, {p},
{q}. Because a convenient representation of alternatives is often important in the formalization of

knowledge, the language of ASP has been extended with constraint literals [Nie00], which are ex-

pressions of the form m{l1, l2, . . . , lk}n, where m, n are arithmetic expressions and li’s are basic

literals as defined above. A constraint literal is satisfied whenever the number of literals that hold

from {l1, . . . , lk} is between m and n, inclusive. Using constraint literals, the choice between p and

q, under some set of conditions Γ, can be compactly encoded by the rule 1{p, q}1 ← Γ. A rule

of this form is called choice rule. When solving sets of problems from a given domain of interest,

ASP programs are often divided into a domain description and a problem instance. Intuitively, the

domain description encodes a description of the problem domain and of the solutions, while each

problem instance encodes a different problem from the domain. In this paper we will make the

simplifying assumption (usually satisfied even in practical applications) that the signature of every

problem instance of interest is contained in the signature of the domain description. Another notion

that is important for practical purposes is that of domain predicate. Domain predicates are relations

whose definition is given with rules following syntactic restrictions, in such a way that the definition

LEARNING DOMAIN-SPECIFIC HEURISTICS FOR ANSWER SET SOLVERS 3

of the relation can be derived from the rules without performing a complete answer set computation

for the containing program. Domain predicates are used by the grounding procedures in order to

determine the ranges of the variables that occur in the program. The precise definition of the syn-

tactic restrictions varies depending on the grounding procedure used. A commonly used definition

is the one given in [Syr98].

3. Learning Domain-Specific Heuristics

The search algorithm used by most ASP solvers (e.g. SMODELS [Nie02], DLV [Cal02], CLASP

[Geb07]) builds upon the DPLL procedure [Dav60, Dav62]. The basic algorithm for the computa-

tion of a single answer set, which we will later refer to as standard algorithm, is show in Figure 1.

The term extended literal, used in the algorithm, identifies a literal l or the expression not l (intu-

itively meaning that l is known not to hold in the answer set, but its complement, l, may or may not

hold). Given an extended literal e, not(e) denotes the expression not l if e = l and it denotes l if

e = not l. The algorithm is based on the idea of growing a particular set of (ground) literals, often

function solve (Π : Program,A : Set of Extended Literals)

B := expand(Π, A);

if (B is answer set of Π) then return B;

if (B is not consistent or B is complete) then return ⊥;
e := choose literal(Π, B);

B′ := solve(Π, B ∪ {e});
if (B′ = ⊥) then B′ := solve(Π, B ∪ {not(e)});
return B′;

Figure 1: Basic Search Algorithm for ASP

called partial answer set, until it is either shown to be an answer set of the program, or it becomes

inconsistent. To achieve this, guesses have to be made as to which literals may be in the answer set.

It is not difficult to see how the choices made by choose literal greatly influence the num-

ber of choice points picked by the algorithm, and ultimately its performance. In order to reduce the

chances of choose literal making “wrong” selections, modern solvers base literal selection on care-

fully designed heuristics. For example, in SMODELS the selection is roughly based on maximizing

the number of consequences that can be derived after selecting the given extended literal [Nie02].

These techniques work well in a number of cases, but not always. In fact, particular features of the

program can confuse the heuristics. When that happens in the early stage of the search process,

the effect is often disastrous, causing the solver to fail to return an answer in an acceptable amount

of time. Particularly frustrating is the fact that the efficiency of the heuristics may change largely

in correspondence of small elaborations of the program in input. For example, the choose literal
heuristics may make good selections for one problem instance, while they may cause the search to

take an unacceptable amount of time for a not-too-different problem instance.

One way to limit the effect of wrong selections by choose literal is that of allowing the solver to

learn about relevant conflicts at run-time. Once learned, the information about conflicts can be used

for the early pruning of other branches of the search space (e.g. [Geb07]). Although this technique

has proven to be extremely effective, it does not address directly the issue of choose literal making

wrong choices, but rather curbs the problem by making some of those choices impossible after

learning has taken place, or by allowing to quickly backtrack after a wrong choice has been made.

4 M. BALDUCCINI

Furthermore, because the learning occurs at run-time, during the initial phase of the computation in

which learning has not yet occurred, choose literal may once again affect efficiency negatively by

taking the search process in the wrong direction.

A different, more straightforward, way of limiting the wrong selections made by choose literal is

to directly improve the choice-making algorithm. In this paper, we adopt the approach of learning

domain-specific heuristics from a number of sample problems, and of using them for literal selec-

tion in a modified version of choose literal. This technique is suitable for situations in which one is

interested in solving a number of problem instances from a given problem domain. Such situations

are very common in the ASP community – see e.g. the Second Answer Set Programming Competi-

tion [Den09]. Moreover, this is particularly the case in industrial applications, where the application

contains the domain description, and the user describes the instance using some interface (refer e.g.

to [Bal06]), which then automatically encodes the problem instance.

Consider program P1:

P1 =











































p← not q. q ← not p.

r.

← p, r.

← q, not s.

u(X)← t(X), not v(X).
v(X)← t(X), not u(X).

t(0). t(1). . . . t(1000).

The program can be viewed as consisting of a domain description and a problem instance: the first

7 rules constitute the former, while the definition of predicate t is the problem instance. A different

problem instance might then define t as {t(5), t(6), t(7)}. In this case, it is obvious that a good

strategy for the selection of the literals consists in first choosing among {p, not p, q, not q} and

only later (if necessary) considering the extended literals formed by u and v.

In general, the domain-specific heuristics for choose literal will be learned – rather than manually

specified – by analyzing the choices made by the standard solver solve when solving representative

problem instances from the domain. This approach is particularly useful in applications in which a

number of problem instances from the same class of problems will have to be solved over time –

for example, in the setting of an industrial application, or in a programming/solver competition in

which benchmarking is involved – and computational power is available off-line to allow learning

the domain-specific heuristics (e.g. before deploying the application, or before submitting the solver

or solutions to a competition).

Let us now describe in more detail our technique for learning and using domain-specific heuristics.

We start with the learning phase. First of all, the algorithm from Figure 1 is modified to maintain a

record of the choice points, and to return the list of choice points together with the answer set, when

one is found. The modified algorithm is shown in Figure 2. In the algorithm, the list of choice points

is stored in variable S. Symbol ◦ represents concatenation. When solvecp is initially invoked, S is

the empty list.

Now we turn our attention to how the information collected by solvecp is used to guide the

domain-specific heuristics. Given the domain description M and a problem instance I that is to

be used to learn the domain-specific heuristics, the decision-sequence of I (denoted by d(I)) is ⊥
if solvecp(I ∪M, ∅, ∅) = ⊥ and S if solvecp(I ∪M, ∅, ∅) = 〈A, S〉 for some A. From now on,

given a decision-sequence d, we denote its nth element by dn. Moreover, given an extended literal

LEARNING DOMAIN-SPECIFIC HEURISTICS FOR ANSWER SET SOLVERS 5

function solvecp (Π : Program,A : Set of Extended Literals, S : Ordered List of Extended Literals)

B := expand(Π, A);

if (B is answer set of Π) then return 〈B, S〉;
if (B is not consistent or B is complete) then return ⊥;
e := choose literal(Π, B);

〈B′, S′〉 := solve(Π, B ∪ {e}, S ◦ e);

if (B′ 6= ⊥) then return 〈B′, S′〉;
〈B′, S′〉 := solve(Π, B ∪ {not(e)}, S ◦ not(e));
return 〈B′, S′〉;

Figure 2: Search Algorithm for ASP with Explicit Tracking of Choice Points

e, level(e, d) denotes the index i such that di = e (e is guaranteed not to occur at more than one

position by construction of the decision-sequence in solvecp). Intuitively, level(e, d) represents the

level in the decision tree at which e was selected. Notice that, by construction of the sequence of

choice points in solvecp, if d(I) 6= ⊥, then d(I) only enumerates the choice points that led directly

to the answer sets. All the choice points that did not lead directly to it, in the sense that they were

later backtracked upon, are in fact discarded every time the algorithm backtracks.

In order to improve the efficiency of the learned heuristics, we divide the class of problem instances

in subclasses, and associate with each problem instance I an expression σ denoting the subclass

it belongs to. The intuition is that using subclasses allows to further tailor the literal selection

heuristics to the peculiar features of the problem instances. For example, in a planning domain,

σ might be the maximum length of the plan (often called lasttime or maxtime in ASP-based

planning). The subclass of a problem instance I is denoted by σ(I).

Let I denote the set of all problem instances that will be used for the learning of the domain-specific

heuristics. Next, we specify a way to determine how many times an extended literal e was selected

at a certain level of the decision-sequences for the problem instances in I. More precisely, given

a positive integer δ, called the scaling factor, and subclass σ, the occurrence count of an extended

literal e w.r.t. a level l and set of instances I is

oδ,σ(e, l, I) = | { I | I ∈ I ∧ σ(I) = σ ∧ d(I) 6= ⊥ ∧
l − δ/2 ≤ index(e, d(I)) < l + δ/2 } |.

The scaling factor δ allows taking into account all the occurrences of e at a level in the interval

[l − δ/2, l + δ/2). If δ = 1, then only the occurrences of e with level equal to l are considered.

Values of δ greater than 1 can be useful in those cases in which all or most permutations of a

sub-sequence of choice points lead to an answer set.

Let now E = {e1, e2, . . . , ek} be a set of extended literals, representing possible choice points at

some level l of the decision tree. The set of best choice points among E is:

bestδ(l, E, σ, I) = {e | e ∈ E ∧ ∀e′ ∈ E oδ,σ(e, l, I) ≥ oδ,σ(e′, l, I)}.

Intuitively, bestδ(l, E, σ, I) returns the choice points that, if taken at level l, are most likely to lead

to an answer set without backtracking, based on the information collected about the instances of

subclass σ in I. Algorithms for the computation of bestδ(l, E, σ, I) and oδ,σ(e, l, I) are simple and

are omitted to save space.

Function bestδ(l, E, σ, I) encodes the essence of the domain-specific heuristics. Algorithm

choose literal can now be extended to perform literal selection guided by the domain-

specific heuristics. The modified algorithm, choose literal dspec, is shown in Figure 3. In

6 M. BALDUCCINI

function choose literal dspec (Π : Program,

σ : Problem Subclass,

A : Set of Extended Literals,

level : Integer /* Current Level in the Decision Tree */,

T : Set of Extended Literals,

I : Set of Instances,

δ : Integer /* Scaling Factor*/)

L := lit(Σ(Π));
E := L ∪ {not l | l ∈ L};
E′ = ∅;
for each e ∈ E

if (e 6∈ A ∧ not(e) 6∈ A ∧ e 6∈ T) then

E′ := E′ ∪ {e};
end if

end for

B := bestδ(level, E′, σ, I);
if (B 6= ∅) then

chosen := one element of(B);
else

chosen := choose literal(Π, A);
end if

return chosen;

Figure 3: Function for Literal Selection with Domain-Specific Heuristics

choose literal dspec, argument T is the set of extended literals that have previously been selected

by choose literal dspec. If bestδ(level, E′, σ(I), I) is the empty set, then choose literal dspec
falls back to performing standard extended literal selection via choose literal. This is for instances

in which the learned heuristics do not prescribe any extended literal for the current decision level,

or in which all the extended literals that the learned heuristics prescribed have already been tried.

Modifying the standard solver’s algorithm in order to use the domain-specific heuristics for choice-

point selection is rather straightforward. A simple version, which for the most part follows the

well-known iterative version of the SMODELS algorithm, is shown in Figure 4.

4. Experimental Evaluation

In this section we discuss the experiments we ran in order to evaluate our technique for learning

domain-specific heuristics and using them in computing answer sets. To ensure coverage of a wide

variety of cases, we have tested our implementation on both abstract problems and on problems

from industrial applications of ASP. Here we show the results of testing on the task of planning for

the Reaction Control System of the Space Shuttle.

The system used in the experiments is LPARSE+SMODELS, which we modified to obtain implemen-

tations of algorithms solvecp and solve dspec. One complication of the implementation process is

due to the fact that LPARSE often introduces unnamed atoms during the grounding of rules contain-

ing constraint literals, where by unnamed atoms we mean atoms that do not occur in the original

program, and that are assigned an identifier that is only meaningful in the context of the current

computation. Dealing with unnamed atoms is problematic because, in order to be used in the learn-

ing of the domain heuristics, all atoms must be assigned identifiers that are meaningful throughout

LEARNING DOMAIN-SPECIFIC HEURISTICS FOR ANSWER SET SOLVERS 7

function solve dspec (Π : Program,

σ : Problem Subclass,

I : Set of Instances,

δ : Scaling Factor)

var S : Stack of Sets of Extended Literals;

var B, T : Set of Extended Literals;

var terminate : Boolean;

S := ∅; B := ∅; T := ∅;
terminate := false;

while (terminate = false)

B := expand(Π, B);
if (B is answer set of Π) then

terminate := true;

else

if (B is not consistent or B is complete) then

if (S = ∅) then

B := ⊥;
terminate := true;

else

/* Backtrack */

B := top(S);
S := pop(S);

end if

else

/* Select a choice point */

e := choose literal dspec(Π, σ, B, level, T, I, δ);
T := T ∪ {e};
S := push(B ∪ {not(e)}, S);
B := B ∪ {e};

end if

end if

end while

return B;

Figure 4: Search Algorithm for ASP with Domain-Specific Heuristics for Choice-Point Selection

multiple computations (normally, the atoms’ own string representation satisfies this requirement).

We have thus developed a technique that uses pre-processing and post-processing for the execu-

tion of LPARSE to assign unnamed atoms identifiers satisfying this requirement. Space limitations

prevent us from giving more details on this technique.

It should also be noted that we did not use CLASP for our experiments: although CLASP is based,

like SMODELS, on the DPLL procedure, and thus technically viable for the implementation of our

algorithms, such implementation is complicated by the fact that, in CLASP, literal selection is al-

lowed to select special literals denoting the whole body of a rule. A further complication of the

implementation is due to the use of clause learning in CLASP. Work is ongoing on implementing

solvecp and solve dspec within this solver, and results will be discussed in a longer paper. In the

rest of the discussion, we refer to the implementation of solve dspec within SMODELS as DSPEC.

As described in e.g. [Nog03, Bal06], the RCS is the Shuttle’s system that has primary responsibility

for maneuvering the Shuttle while it is in space. It consists of fuel and oxidizer tanks, valves, and

other plumbing needed to provide propellant to the maneuvering jets of the Shuttle. The RCS also

8 M. BALDUCCINI

includes electronic circuitry, both to control the valves in the fuel lines and to prepare the jets to

receive firing commands.

In order to configure the Shuttle for an orbital maneuver, the RCS must be configured by opening

and closing appropriate valves. This is accomplished by either changing the position of the asso-

ciated switches, or by issuing computer commands. In normal conditions, the procedures for the

configuration of the RCS for a given maneuver are known in advance by the astronauts. However, if

components of the RCS are faulty, then the standard procedures may not be applicable. Moreover,

because of the amount of possible combinations of faults, it is impossible to prepare in advance a

set of configuration procedures for faulty situations. In those cases, ground control needs to care-

fully examine the problem and manually come up with a configuration procedure. The system

described in [Nog03, Bal06] uses a model of the RCS, as well as ASP-based reasoning algorithms,

to provide ground control with a decision-support system that automatically generates configuration

procedures for the RCS and that can be used when faulty components are present (incidentally, the

system can also perform diagnostic reasoning [Bal06]).

A collection of problem instances from the domain of the RCS is publicly available, together with

the ASP encoding of the model of the RCS.1 The interested reader may refer to [Nog03] for a

description of the instances. For our testing, we have selected a set of 425 instances from the

collection, corresponding to the public instances with no electrical faults and 3, 8, and 10 mechanical

faults respectively, for which a plan of length 6 or less (determined by parameter lasttime) was

found in the experiments discussed in [Nog03, Bal06], and we have analyzed the performance of

the solver on planning with maximum lengths ranging between 6 and 10.

The comparison between SMODELS and DSPEC was conducted as follows. First of all, for each

instance we found one plan using SMODELS. Each computation was set up in such a way as to

timeout after 6000 seconds, if no answer set had yet been found. Next, we generated the domain-

specific heuristics. The set of instances used for learning consisted of all the instances for which

our implementation of solvecp found a solution in 50 seconds of less, while the remaining “hard

instances” were used for the evaluation phase. The problem subclasses were defined by the pair

〈lasttime, maneuver〉, where lasttime specifies the maximum plan length and maneuver is the

maneuver that the RCS must be configured for (in our experiments, using the maneuver in the sub-

class definition substantially improved the performance of the learned heuristics). Figure 5 shows

the results of the comparison for the 58 hard instances with 8 mechanical faults and values of last-

time of 9 and 10. The results were obtained with δ = 1. We believe the speedup obtained with

the domain-specific heuristics is remarkable. First of all, out of 32 instances for which the standard

solver timed out before finding a solution, in 28 cases the domain-specific heuristics allowed to find

a solution within the time limit, and in some cases in under 10 seconds. The average speedup is

232.3, with a peak of 1253.1 for an instance for which SMODELS timed out2, and a peak of 544.5
for an instance for which SMODELS did not time out. In 4 cases (out of 32) DSPEC performed worse

than the standard solver. We believe that these outliers can be eliminated if more samples are made

available for learning.

1The files are available from http://www.krlab.cs.ttu.edu/Software/Download/.
2The actual speedup could in fact be higher, since SMODELS timed out. As a test, we have let SMODELS run on some

of these instances for over 60, 000 seconds (16 hours) without getting a solution.

LEARNING DOMAIN-SPECIFIC HEURISTICS FOR ANSWER SET SOLVERS 9

8 Mechanical Faults

Lasttime/ SMODELS DSPEC Speedup

Instance (sec) (sec) (times)

9 / 025 6000 17.643 340.1

9 / 027 6000 9.597 625.2

9 / 038 125.244 8.616 14.5

9 / 044 1439.027 6.846 210.2

9 / 053 6000 13.599 441.2

9 / 059 85.151 551.806 0.2

9 / 074 6000 8.961 669.6

9 / 075 736.134 3.837 191.9

9 / 087 6000 6000 1.0

9 / 090 6000 14.111 425.2

9 / 093 2451.649 6.477 378.5

9 / 098 114.643 10.529 10.9

9 / 103 52.219 12.544 4.2

9 / 122 6000 4.788 1253.1

9 / 140 6000 11.493 522.1

9 / 165 6000 13.027 460.6

9 / 170 6000 6000 1.0

9 / 179 6000 14.304 419.5

9 / 184 6000 20.254 296.2

9 / 188 6000 6000 1.0

9 / 191 4829.019 8.869 544.5

9 / 199 437.379 7.144 61.2

10 / 013 94.623 21.663 4.4

10 / 022 6000 423.565 14.2

10 / 025 6000 2035.089 2.9

10 / 027 6000 10.248 585.5

10 / 032 2949.169 13.82 213.4

10 / 037 6000 12.218 491.1

10 / 044 6000 18.162 330.4

Lasttime/ SMODELS DSPEC Speedup

Instance (sec) (sec) (times)

10 / 050 72.596 12.521 5.8

10 / 053 1907.445 23.37 81.6

10 / 059 6000 15.163 395.7

10 / 061 266.024 7.756 34.3

10 / 070 519.583 16.343 31.8

10 / 074 6000 13.903 431.6

10 / 077 251.754 7.518 33.5

10 / 087 6000 24.962 240.4

10 / 088 3830.141 18.512 206.9

10 / 092 318.83 11.712 27.2

10 / 093 6000 494.85 12.1

10 / 096 789.351 13.787 57.3

10 / 103 6000 16.781 357.5

10 / 110 6000 255.421 23.5

10 / 113 264.419 6000 0.044

10 / 120 1983.466 20.254 97.9

10 / 140 64.451 6000 0.011

10 / 147 187.8 7.125 26.4

10 / 154 942.008 6000 0.157

10 / 165 6000 30.008 199.9

10 / 166 6000 820.789 7.3

10 / 177 6000 12.605 476.0

10 / 178 6000 6000 1.0

10 / 179 6000 16.74 358.4

10 / 188 5235.985 12.74 411.0

10 / 189 3773.981 11.765 320.8

10 / 190 6000 1010.51 5.9

10 / 194 6000 12.407 483.6

10 / 199 6000 9.452 634.8

Figure 5: Performance Comparison on the RCS Domain. Machine specs: Intel i7 CPU, 2.93GHz,

8GB RAM.

5. Conclusions

In this paper we have demonstrated how domain-specific heuristics for choice-point selection

can be learned and used in ASP solvers. Our experimental evaluation has shown that domain-

specific heuristics can give remarkable speedups, and allow to find answer sets that otherwise cannot

be computed in a reasonable time. In the case of the RCS domain, a large number of the instances for

which the standard solver timed out, could be solver in a matter of seconds using the domain-specific

heuristics, with an average speedup of more than 2 orders of magnitude and peaks of more than 3.

This is the type of consistent performance that makes a solver viable for industrial applications.

We believe that an appealing feature of our approach is that in principle it can be applied to any

solver built around the DPLL procedure. Hence, it is technically possible to apply the same approach

shown here to other ASP solvers, or even to, say, SAT solvers and constraint solvers. Work is

ongoing on implementing our technique within CLASP.

As a final note, we would like to point out that the method used here to learn the domain-specific

heuristics is a very simple instance of policy learning. It will be interesting to investigate how

10 M. BALDUCCINI

more sophisticated techniques from reinforcement learning, but also from machine learning and

data mining, can be applied to the learning of the domain-specific heuristics. We expect that doing

so will allow to improve performance of the solvers even further.

References

[Bal06] Marcello Balduccini, Michael Gelfond, and Monica Nogueira. Answer Set Based Design of Knowledge Sys-

tems. Annals of Mathematics and Artificial Intelligence, 2006.

[Cal02] Francesco Calimeri, Tina Dell’Armi, Thomas Eiter, Wolfgang Faber, Georg Gottlob, Giovanbattista Ianni,

Giuseppe Ielpa, Christoph Koch, Nicola Leone, Simona Perri, Gerard Pfeifer, and Axel Polleres. The DLV

System. In Sergio Flesca and Giovanbattista Ianni (eds.), Proceedings of the 8th European Conference on Arti-

ficial Intelligence (JELIA 2002). 2002.

[Dav60] Martin Davis and Hillary Putnam. A Computing Procedure for Quantification Theory. Communications of the

ACM, 7:201–215, 1960.

[Dav62] Martin Davis, Geroge Logemann, and Donald Loveland. A Machine program for theorem proving. Communi-

cations of the ACM, 5(7):394–397, 1962.

[Den09] Marc Denecker, Joost Vennekens, Stephen Bond, Martin Gebser, and Miroslaw Truszczynski. The Second An-

swer Set Programming Competition. In 10th International Conference on Logic Programming and Nonmono-

tonic Reasoning (LPNMR09), pp. 637–654. 2009.

[Geb07] Martin Gebser, B. Kaufmann, A. Neumann, and Torsten Schaub. Conflict-driven answer set solving. In

Manuela M. Veloso (ed.), Proceedings of the Twentieth International Joint Conference on Artificial Intelligence

(IJCAI’07), pp. 386–392. MIT Press, 2007.

[Gel91] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunctive databases. New

Generation Computing, 9:365–385, 1991.

[Mar99] Victor W. Marek and Miroslaw Truszczynski. The Logic Programming Paradigm: a 25-Year Perspective, chap.

Stable models and an alternative logic programming paradigm, pp. 375–398. Springer Verlag, Berlin, 1999.

[Nie00] Ilkka Niemela and Patrik Simons. Logic-Based Artificial Intelligence, chap. Extending the Smodels System

with Cardinality and Weight Constraints, pp. 491–521. Kluwer Academic Publishers, 2000.

[Nie02] Ilkka Niemela, Patrik Simons, and Timo Soininen. Extending and implementing the stable model semantics.

Artificial Intelligence, 138(1–2):181–234, 2002.

[Nog03] Monica Nogueira. Building Knowledge Systems in A-Prolog. Ph.D. thesis, University of Texas at El Paso, 2003.

[Syr98] Tommi Syrjanen. Implementation of logical grounding for logic programs with stable model semantics. Tech.

Rep. 18, Digital Systems Laboratory, Helsinki University of Technology, 1998.

If accepted for publication by ICLP, this work will be licensed under the Creative Commons Non-Commercial No
Derivatives License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/
3.0/.

