
CR-Prolog as a Specification Language for Constraint

Satisfaction Problems

Marcello Balduccini

Intelligent Systems, OCTO

Eastman Kodak Company

Rochester, NY 14650-2102 USA

marcello.balduccini@gmail.com

Abstract In this paper we describe an approach for integrating CR-Prolog and

constraint programming, in which CR-Prolog is viewed as a specification lan-

guage for constraint satisfaction problems. Differently from other methods of

integrating ASP and constraint programming, our approach has the advantage of

allowing the use of off-the-shelf, unmodified ASP solvers and constraint solvers,

and of global constraints, which substantially increases practical applicability.

1 Introduction

Particular interest has been recently devoted to the integration of Answer Set Program-

ming (ASP) [1] with Constraint Logic Programming (CLP) (see [2,3]), aimed at com-

bining the ease of knowledge representation of ASP with the powerful support for nu-

merical computations of CLP. Such approaches are mostly based on extending the ASP

language and on using answer set and constraint solvers modified so that they can work

together. Although the combination of ASP and CLP showed substantial performance

improvements over ASP alone, the restriction of using ad-hoc ASP and CLP solvers

limits the practical applicability of the approach. In fact, programmers can no longer

select the solvers that best fit their needs (most notably, SMODELS, DLV, SWI-Prolog

and SICStus Prolog), as is instead commonly done in ASP. Another limitation is the

general lack of specific support for global constraints. Without global constraints, ap-

plications’ performance is often heavily impacted by the combinatorial explosion of the

underlying search space.

In [4] we have presented a method for integrating ASP and constraint program-

ming. In this paper we extend the approach and integrate constraint programming with

an extension of ASP, called CR-Prolog [5]. CR-Prolog introduces in ASP the notion

of consistency restoring rule, which is particularly useful to represent unlikely events,

less-desired choices, etc. Our technique consists in viewing CR-Prolog as a specifica-

tion language for constraint satisfaction problems. CR-Prolog programs are written in

such a way that their answer sets encode the desired constraint satisfaction problems;

the solutions to those problems are found using constraint satisfaction techniques. Both

the answer sets and the solutions to the constraint problems can be computed with ar-

bitrary off-the-shelf solvers, as long as a (relatively simple) translation procedure is

defined from the ASP encoding of the constraint problems to the input language of the

constraint solver selected. Moreover, our approach allows the use of the global con-

straints available in the selected constraint solver. Compared to the other approaches to

the integration of ASP and CLP, our technique allows programmers to exploit the full

power of the underlying state-of-the-art solvers when tackling industrial-size problems.

Finally, although space restrictions prevent us from discussing it here, our experiments

have also shown that our technique produces programs that are arguably more compact

and easy to understand than those written in CLP alone, but with comparable perfor-

mance.

2 Background

The syntax of CR-Prolog is defined as follows. A regular rule is a statement of the form1

h ← l1, . . . , lm, not lm+1, . . . , not ln, where h and li’s are literals (defined as usual).

The intuitive meaning of the statment is that a reasoner who believes {l1, . . . , lm} and

has no reason to believe {lm+1, . . . , ln}, has to believe h. A consistency-restoring rule

(or cr-rule) is a statement of the form: r : h
+
← l1, . . . , lm, not lm+1, . . . , not ln, where

r, called the cr-rule’s name, is a (possibly compound) term uniquely identifying the cr-

rule. The intuitive reading of the statement is that a reasoner who believes {l1, . . . , lm}
and has no reason to believe {lm+1, . . . , ln}, may possibly believe h. The implicit as-

sumption is that this possibility is used as little as possible, only when the reasoner

cannot otherwise form a non-contradictory set of beliefs. A preference order on the use

of cr-rules can also be given by means of atoms of the form prefer(r1, r2) [5]. By

rule we mean a regular rule or a cr-rule. Given rule ρ, we call {l1, . . . , not ln} its body

(body(ρ)). Given cr-rule name r, body(r) denotes the body of the corresponding cr-rule.

A program is a set of rules. As usual, a non-ground program is viewed as a shorthand

for the program consisting of the ground instances of its rules. Given a program Π , the

regular part of Π is the set of its regular rules, and is denoted by reg(Π). The set of its

cr-rules is denoted by cr(Π). The semantics of CR-Prolog can be found in [5].

Let us now turn our attention to Constraint Programming. The definition of con-

straint satisfaction problem that follows is adapted from [6]. A Constraint Satisfaction

Problem (CSP) is a triple 〈X,D,C〉, where X = {x1, . . . , xn} is a set of variables,

D = {D1, . . . ,Dn} is a set of domains, such that Di is the domain of variable xi (i.e.

the set of possible values that the variable can be assigned), and C is a set of constraints.

Each constraint c ∈ C is a pair c = 〈σ, ρ〉 where σ is a list of variables and ρ is a sub-

set of the Cartesian product of the domains of such variables. An assignment is a pair

〈xi, a〉, where a ∈ Di, whose intuitive meaning is that variable xi is assigned value a. A

compound assignment is a set of assignments to distinct variables from X . A complete

assignment is a compound assignment to all the variables in X . A constraint 〈σ, ρ〉 spec-

ifies the acceptable assignments for the variables from σ. We say that such assignments

satisfy the constraint. A solution to a CSP 〈X,D,C〉 is a complete assignment satis-

fying every constraint from C. Constraints can be represented either extensionally, by

specifying the pair 〈σ, ρ〉, or intensionally, by specifying an expression involving vari-

ables, such as x < y. In this paper we focus on constraints represented intensionally.

1 For simplicity we focus on non-disjunctive programs. Our results extend to disjunctive pro-

grams in a natural way.

A global constraint is a constraint that captures a relation between a non-fixed number

of variables [7], such as sum(x, y, z) < w and all different(x1, . . . , xk). One should

notice that the mapping of an intensional constraint specification into a pair 〈σ, ρ〉 de-

pends on the constraint domain. For example, the expression 1 ≤ x < 2 corresponds

to the constraint 〈〈x〉, {〈1〉}〉 if the finite domain is considered, while it corresponds

to 〈〈x〉, {〈v〉 | v ∈ [1, 2)}〉 in a continuous domain. For this reason, in this paper we

assume that a CSP includes the specification of the intended constraint domain.

3 Encoding Constraint Problems in CR-Prolog

Our approach consists in writing CR-Prolog programs whose answer sets encode the

desired constraint satisfaction problems (CSPs). The solutions to the CSPs are then

computed using constraint satisfaction techniques.

CSPs are encoded in CR-Prolog using the following three types of statements: (1)

a constraint domain declaration is a statement of the form cspdomain(D), where D
is a constraint domain such as fd, q, or r; informally, the statement says that the CSP

is over the specified constraint domain, thereby fixing an interpretation for the inten-

sionally specified constraints; (2) a constraint variable declaration is a statement of the

form cspvar(x, l, u), where x is a ground term denoting a variable of the CSP (CSP

variable or constraint variable for short), and l and u are numbers from the constraint

domain; the statement says that the domain of x is [l, u];2 (3) a constraint statement

is a statement of the form required(γ), where γ is an expression that intensionally

represents a constraint on (some of) the variables specified by the cspvar statements;

intuitively the statement says that the constraint intensionally represented by γ is re-

quired to be satisfied by any solution to the CSP. For the purpose of specifying global

constraints, we allow γ to contain expressions of the form [δ/k]. If δ is a function

symbol, the expression intuitively denotes the sequence of all variables formed from

function symbol δ and with arity k, ordered lexicographically. For example, given CSP

variables v(1), v(2), v(3), [v/1] denotes the sequence 〈v(1), v(2), v(3)〉. If δ is a rela-

tion symbol and k ≥ 1, the expression intuitively denotes the sequence 〈e1, e2, . . . , en〉
where ei is the last element of the ith k-tuple satisfying relation δ, according to the

lexicographic ordering of such tuples. For example, given a relation r′ defined by

r′(a, 3), r′(b, 1), r′(c, 2), the expression [r′/2] denotes the sequence 〈3, 1, 2〉.

Example 1. A simple CSP is encoded by A1 = {cspdomain(fd), cspvar(v(1), 1, 3),
cspvar(v(2), 2, 5), cspvar(v(3), 1, 4), required(v(1) + v(2) ≤ 4),
required(v(2)− v(3) > 1), required(sum([v/1]) ≥ 4)}.

In the rest of this paper, we consider signatures that contain: relations cspdomain,

cspvar, required; constant symbols for the constraint domains FD, Q, and R; suit-

able symbols for the variables, functions and relations used in the CSP; the numerical

constants needed to encode the CSP.

Let A be a set of atoms formed from relations cspdomain, cspvar, and required.

We say that A is a well-formed CSP definition if: A contains exactly one constraint

2 As an alternative, the domain of the variables could also be specified using constraints. We use

a separate statement for similarity with CLP languages.

domain declaration; the same CSP variable does not occur in two or more constraint

variable declarations of A; every CSP variable that occurs in a constraint statement

from A also occurs in a constraint variable declaration from A. Let A be a well-

formed CSP definition. The CSP defined by A is the triple 〈X,D,C〉 such that:

X = {x1, x2, . . . , xk} is the set of all CSP variables from the constraint variable dec-

larations in A; D = {D1,D2, . . . ,Dk} is the set of domains of the variables from X ,

where the domain Di of variable xi is given by arguments l and u of the constraint vari-

able declaration of xi in A, and consists of the segment between l and u in the constraint

domain specified by the constraint domain declaration from A; C is a set containing a

constraint γ′ for each constraint statement required(γ) of A, where γ′ is obtained by:

(1) replacing the expressions of the form [f/k], where f is a function symbol, by the

list of variables from X formed by f and of arity k, ordered lexicographically; (2) re-

placing the expressions of the form [r/k], where r is a relation symbol and k ≥ 1, by

the sequence 〈e1, . . . , en〉, where, for each i, r(t1, t2, . . . , tk−1, ei) is the ith element

of the sequence, ordered lexicographically, of atoms from A formed by relation r; (3)

interpreting the resulting intensionally specified constraint w.r.t. the constraint domain

specified by the constraint domain declaration from A.

Example 2. Set A1 from Example 1 defines the CSP:

〈{v(1), v(2), v(3)},

{

{1, 2, 3}, {2, 3, 4, 5},
{1, 2, 3, 4}

}

,

{

v(1) + v(2) ≤ 4, v(2)− v(3) > 1,
sum(v(1), v(2), v(3)) ≥ 4

}

〉.

Let A be a set of literals. We say that A contains a well-formed CSP definition if the

set of atoms from A formed by relations cspdomain, cspvar, and required is a well-

formed CSP definition. We also say that a CSP is defined by a set of literals A if it is

defined by the well-formed CSP definition contained in A. Notice that, if a set A of

literals does not contain a well-formed CSP definition, A does not define any CSP. For

simplicity, in the rest of the discussion we omit the term “well-formed” and simply talk

about CSP definitions.

Definition 1.

– A pair 〈A,α〉 is an extended answer set of cr-rule free program Π iff A is an answer

set of Π and α is a solution to the CSP defined by A.

– Let Π be a program, and R be a set of names of cr-rules from Π , and prefer∗

be the transitive closure of relation prefer. V = 〈A,R〉 is an extended view of

Π if: (1) A is an extended answer set of reg(Π) ∪ θ(R); (2) for every r1, r2, if

S |= prefer∗(r1, r2), then {r1, r2} 6⊆ R; (3) for every r in R, body(r) is satisfied

by S.

– An extended view V is an extended candidate answer set of Π if, for every view V ′

of Π , V ′ does not dominate V .3

– A is an extended answer set of Π if: (1) there exists a set R of names of cr-rules

from Π such that 〈A,R〉 is a candidate answer set of Π , and (2) for every extended

candidate answer set 〈A′, R′〉 of Π , R′ 6⊂ R.

3 The notion of dominance extends to extended views in a natural way.

Example 3. Consider set A1 from Example 1. An extended answer set of A1 is

〈A1, {(v(1), 1), (v(2), 3), (v(3), 1)}〉. Consider program P1 below and a correspond-

ing extended answer set. Notice that the cr-rule is used to say that the sum of the CSP

variables should be less than 20 if at all possible.

P1 =

i(1). . . . i(4). cspdomain(fd).

cspvar(v(I), 1, 10)← i(I).

required(v(I1)− v(I2) ≥ 3)←
i(I1), i(I2), I2 = I1 + 1.

required(sum([v/1]) ≥ 20)←
not can violate.

r : can violate
+
← .

Extended answer set:

〈{i(1), . . . , i(4), cspdomain(fd),
cspvar(v(1), 1, 10), . . . ,

cspvar(v(4), 1, 10),
required(v(1)− v(2) ≥ 3), . . . ,

required(v(3)− v(4) ≥ 3)},
{(v(1), 10), (v(2), 7), (v(3), 4), (v(4), 1)}〉

To compute the extended answer sets of a cr-rule free program, we combine the use

of answer set solvers and constraint solvers (see Algorithm 1). As discussed in [4], step

(5) of Algorithm 1 relies on the correctness of the translation from the CSP definition to

the encoding for the constraint solver. Soundness and completeness results for the algo-

rithm can be found in [4]. The extended answer sets of arbitrary CR-Prolog programs

can be computed by extending the CRMODELS algorithm from [8]. The complete algo-

rithm is shown below (see Algorithm 2). We refer the reader to [8] for the definition of

operators γi, τ , λ, ν and hr. To compute extended answer sets, the original algorithm is

modified to use a new function ǫ1(Π), which returns an arbitrary element of ǫ(Π) (and

replaces function α1 as used in the original algorithm). Soundness and completeness

of the algorithm follow from soundness and completeness of Algorithm 1 and from the

results in [8].

Algorithm 1: ǫ

Input: Program Π
Output: The set of extended answer sets of Π
E := ∅1

Let A be the set of answer sets of Π containing a CSP definition.2

for each A ∈ A do3

Select solver solveD for constraint domain D as specified by cspdomain(D) ∈ A.4

Translate the CSP definition from A into an encoding χD

A suitable for solveD .5

Let S = {α1, . . . , αk} be the set of solutions returned by solveD(χD

A).6

for each α ∈ S do E := E ∪ 〈A, α〉.7

end8

return E9

4 Related Work

The clingcon system [3] integrates the answer set solver Clingo and the constraint solver

Gecode. The system thus differs significantly from ours in that programmers cannot

arbitrarily select the most suitable ASP and constraint solvers for the task at hand.

The approach proposed in [2] is based on an extension, calledAC(C), of CR-Prolog,

allowing the use of CSP-style constraints in the body of the rules. The assignment of

values to the constraint variables is denoted by means of special atoms occurring in the

Algorithm 2: CRMODELS-CSP

Input: A CR-Prolog program Π
Output: The extended answer sets of Π
C := ∅ ; A := ∅ ; i := 01

while i ≤ |cr(Π)| do2

C′ := ∅3

repeat4

if γi(Π) ∪ C is inconsistent then M := ⊥5

else6

〈M, α〉 := ǫ1(γi(Π) ∪ C)7

if τ(M, Π) is inconsistent then8

A := A ∪ {〈M ∩Σ(Π), α〉 }9

C′ := C′ ∪ { ← λ(M ∩ atoms(appl, hr(Π))). }10

end11

C := C ∪ { ← λ(M), ν(M). }12

end13

until M = ⊥14

C := C ∪ C′ ; i := i + 1 [now consider views obtained with one more cr-rule]15

end16

return A17

body of the rules. Such atoms are treated as abducibles, and their truth determined by

solving a suitable CSP. The following result connects our approach and AC(C).

Theorem 1. An AC0 program Π can be translated into a CR-Prolog program whose

extended answer sets are in one-to-one correspondence with the answer sets of Π .

References

1. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.

New Generation Computing (1991) 365–385

2. Mellarkod, V.S., Gelfond, M., Zhang, Y.: Integrating Answer Set Programming and Constraint

Logic Programming. Annals of Mathematics and Artificial Intelligence (2008)

3. Gebser, M., Ostrowski, M., Schaub, T.: Constraint Answer Set Solving. In: 25th International

Conference on Logic Programming (ICLP09). Volume 5649. (2009)

4. Balduccini, M.: Representing Constraint Satisfaction Problems in Answer Set Programming.

In: ICLP09 Workshop on Answer Set Programming and Other Computing Paradigms (AS-

POCP09). (2009)

5. Balduccini, M., Gelfond, M.: Logic Programs with Consistency-Restoring Rules. In Doherty,

P., McCarthy, J., Williams, M.A., eds.: International Symposium on Logical Formalization of

Commonsense Reasoning. AAAI 2003 Spring Symposium Series (Mar 2003) 9–18

6. Smith, B.M.: 11. Modelling. Foundations of Artificial Intelligence. In: Handbook of Con-

straint Programming. Elsevier (2006) 377–406

7. Katriel, I., van Hoeve, W.J.: 6. Global Constraints. Foundations of Artificial Intelligence. In:

Handbook of Constraint Programming. Elsevier (2006) 169–208

8. Balduccini, M.: CR-MODELS: An Inference Engine for CR-Prolog. In: LPNMR 2007. (May

2007) 18–30

