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Abstract This paper describes an exercise in the formalization of commonsense

with Answer Set Programming aimed at finding the answer to an interesting rid-

dle, whose solution is not obvious to many people. Solving the riddle requires a

considerable amount of commonsense knowledge and sophisticated knowledge

representation and reasoning techniques, including planning and adversarial rea-

soning. Most importantly, the riddle is difficult enough to make it unclear, at first

analysis, whether and how Answer Set Programming or other formalisms can be

used to solve it.

1 Introduction

This paper describes an exercise in the formalization of commonsense [1,2] with An-

swer Set Programming (ASP) [3], aimed at solving the riddle:

“A long, long time ago, two cowboys where fighting to marry the daughter of the OK

Corral rancher. The rancher, who liked neither of these two men to become his future

son-in-law, came up with a clever plan. A horse race would determine who would be

allowed his daughter’s hand. Both cowboys had to travel from Kansas City to the OK

Corral, and the one whose horse arrived LAST would be proclaimed the winner.

The two cowboys, realizing that this could become a very lengthy expedition, finally

decided to consult the Wise Mountain Man. They explained to him the situation, upon

which the Wise Mountain Man raised his cane and spoke four wise words. Relieved, the

two cowboys left his cabin: They were ready for the contest!

Which four wise words did the Wise Mountain Man speak?”

This riddle is interesting because it is easy to understand, but not trivial, and the solu-

tion is not obvious to many people. The story can be simplified in various ways without

losing the key points. The story is also entirely based upon commonsense knowledge.

The amount of knowledge that needs to be encoded is not large, which simplifies the

encoding; on the other hand, as we will see in the remainder of this paper, properly

dealing with the riddle requires various sophisticated capabilities, including modeling

direct and indirect effects of actions, encoding triggers, planning, dealing with defaults



and their exceptions, and concepts from multi-agent systems such as adversarial reason-

ing. The riddle is difficult enough to make it unclear, at first analysis, whether and how

ASP or other formalisms can be used to formalize the story and underlying reasoning.

In the course of this paper we will discuss how the effects of the actions involved in the

story can be formalized and how to address the main issues of determining that “this

could be a lengthy expedition” and of answering the final question.

We begin with a brief introduction on ASP. Next, we show how the knowledge about

the riddle is encoded and how reasoning techniques can be used to solve the riddle.

Finally, we draw conclusions.

2 Background

ASP [3] is a programming paradigm based on language A-Prolog [4] and its extensions

[5,6,7]. In this paper we use the extension of A-Prolog called CR-Prolog [5], which al-

lows, among other things, simplified handling of exceptions, rare events. To save space,

we describe only the fragment of CR-Prolog that will be used in this paper.

Let Σ be a signature containing constant, function, and predicate symbols. Terms and

atoms are formed as usual. A literal is either an atom a or its strong (also called classical

or epistemic) negation ¬a.

A regular rule (rule, for short) is a statement of the form:

h1 ∨ . . . ∨ hk ← l1, . . . , lm, not lm+1, . . . , not ln

where hi’s and li’s are literals and not is the so-called default negation.1 The intuitive

meaning of a rule is that a reasoner, who believes {l1, . . . , lm} and has no reason to

believe {lm+1, . . . , ln}, must believe one of hi’s.

A consistency restoring rule (cr-rule) is a statement of the form:

h1 ∨ . . . ∨ hk

+
← l1, . . . , lm, not lm+1, . . . , not ln

where hi’s and li’s are as before. The informal meaning of a cr-rule is that a reasoner,

who believes {l1, . . . , lm} and has no reason to believe {lm+1, . . . , ln}, may believe

one of hi’s, but only if strictly necessary, that is, only if no consistent set of beliefs can

be formed otherwise.

A program is a pair 〈Σ,Π〉, where Σ is a signature and Π is a set of rules and cr-rules

over Σ. Often we denote programs by just the second element of the pair, and let the

signature be defined implicitly.

Given a CR-Prolog program Π , we denote the set of its regular rules by Πr and the

set of its cr-rules by Πcr. By α(r) we denote the regular rule obtained from cr-rule r

by replacing the symbol
+
← with ←. Given a set of cr-rules R, α(R) denotes the set

obtained by applying α to each cr-rule in R. The semantics of a CR-Prolog program is

defined in two steps.

1 We also allow the use of SMODELS style choice rules, but omit their formal definition to save

space.



Definition 1. Given a CR-Prolog program Π , a minimal (with respect to set-theoretic

inclusion) set R of cr-rules of Π , such that Πr ∪α(R) is consistent is called an abduc-

tive support of Π .

Definition 2. Given a CR-Prolog program Π , a set of literals A is an answer set of Π

if it is an answer set of the program Πr ∪ α(R) for some abductive support R of Π .

To represent knowledge and reason about dynamic domains, we use ASP to encode

dynamic laws, state constraints and executability conditions [8]. The laws are written

directly in ASP, rather than represented using an action language [9], to save space and

to have a more uniform representation.

The key elements of the representation are as follows; we refer the readers to e.g. [9]

for more details. The evolution of a dynamic domain is viewed as a transition dia-

gram, which is encoded in a compact way by means of an action description consisting

of dynamic laws (describing the direct effects of actions), state constraints (describ-

ing the indirect effects), and executability conditions (stating when the actions can be

executed). Properties of interest, whose truth value changes over time, are represented

by fluents (e.g., on(block1, block2)). A state of the transition diagram is encoded as a

consistent and complete set of fluent literals (i.e., fluents and their negations). The truth

value of a fluent f is encoded by a statement of the form h(f, s), where s is an integer

denoting the step in the evolution of the domain, intuitively saying that f holds at step s.

The fact that f is false is denoted by ¬h(f, s). Occurrences of actions are traditionally

represented by expressions of the form o(a, s), saying that a occurs at step s.

3 Formalizing the Riddle

The next step is to encode the knowledge about the domain of the story. To focus on

the main issues, we abstract from several details and concentrate on the horse ride. The

objects of interest are the two competitors (a, b), the two horses (hrs(a), hrs(b)), and

locations start, finish, and en route. Horse ownership is described by relation owns,

defined by the rule owns(C, hrs(C))← competitor(C).

The fluents of interest and their informal meanings are: at(X,L), “competitor or horse

X is at location L”; riding(C,H), “competitor C is riding horse H”; crossed(X),
“competitor or horse X has crossed the finish line.”

The actions of interest are wait, move (the actor moves to the next location along the

race track), and cross (the actor crosses the finish line). Because this domain involves

multiple actors, we represent the occurrence of actions by a relation o(A,C, S), which

intuitively says that action A occurred, performed by competitor C, at step S.2

The formalization of action move deserves some discussion. Typically, it is difficult to

predict who will complete a race first, as many variables influence the result of a race.

2 This simple representation is justified because the domain does not include exogenous actions.

Otherwise, we would have to use a more sophisticated representation, such as specifying the

actor as an argument of the terms representing the actions.



To keep our formalization simple, we have chosen a rather coarse-grained model of

the movements from one location to the other. Because often one horse will be faster

than the other, we introduce a relation faster(H), which informally says that H is the

faster horse. This allows us to deal with both simple and more complex situations: when

it is known which horse is faster, we encode the information as a fact. When the infor-

mation is not available, we use the disjunction faster(hrs(a)) ∨ faster(hrs(b)).
Action move is formalized so that, when executed, the slower horse moves from loca-

tion start to en route and from en route to finish. The faster horse, instead, moves

from start directly to finish.3 The direct effects of the actions can be formalized in

ASP as follows:4

– Action move:

% If competitor C is at start and riding the faster horse,

% action move takes him to the finish line.

h(at(C, finish), S + 1)←
h(at(C, start), S),
h(riding(C,H), S),
faster(H),
o(move,C, S).

% If competitor C is at start and riding the slower horse,

% action move takes him to location “en route.”

h(at(C, en route), S + 1)←
h(at(C, start), S),
h(riding(C,H), S),
not faster(H),
o(move,C, S).

% Performing move while “en route” takes the actor

% to the finish line.

h(at(C, finish), S + 1)←
h(at(C, en route), S),
o(move,C, S).

% move cannot be executed while at the finish line.

← o(move,C, S), h(at(C, finish), S).

3 More refined modeling is possible, but is out of the scope of the present discussion. However,

we would like to mention the possibility of using the recent advances in integrating ASP and

constraint satisfaction [7] to introduce numerical distances, speed, and to take into account

parameters such as stamina in their computation.
4 Depending upon the context, executability conditions might be needed stating that each com-

petitor must be riding in order to perform the move or cross actions. Because the story as-

sumes that the competitors are riding at all times, we omit such executability conditions to

save space.



– Action cross:

% Action cross, at the finish line, causes the actor to

% cross the finish line.

h(crossed(C), S + 1)←
o(cross, C, S),
h(at(C, finish), S).

% cross can only be executed at the finish line.

← o(cross, C, S), h(at(C,L), S), L 6= finish.

% cross can be executed only once by each competitor.

← o(cross, C, S), h(crossed(C), S).

No rules are needed for action wait, as it has no direct effects. The state constraints are:

– “Each competitor or horse can only be at one location at a time.”

¬h(at(X,L2), S)←
h(at(X,L1), S),
L1 6= L2.

– “The competitor and the horse he is riding on are always at the same location.”

h(at(H,L), S)←
h(at(C,L), S),
h(riding(C,H), S).

h(at(C,L), S)←
h(at(H,L), S),
h(riding(C,H), S).

It is worth noting that, in this formalization, horses do not perform actions on their

own (that is, they are viewed as “vehicles”). Because of that, only the first of the

two rules above is really needed. However, the second rule makes the formalization

more general, as it allows one to apply it to cases when the horses can autonomously

decide to perform actions (e.g., the horse suddenly moves to the next location and

the rider is carried there as a side-effect).

– “Each competitor can only ride one horse at a time; each horse can only have one

rider at a time.”

¬h(riding(X,H2), S)←
h(riding(X,H1), S),
H1 6= H2.

¬h(riding(C2,H), S)←
h(riding(C1,H), S),
C1 6= C2.



– “The competitor and the horse he is riding on always cross the finish line together.”

h(crossed(H), S)←
h(crossed(C), S),
h(riding(C,H), S).

h(crossed(C), S)←
h(crossed(H), S),
h(riding(C,H), S).

As noted for the previous group of state constraints, only the first of these two rules

is strictly necessary, although the seconds increases the generality of the formaliza-

tion.

The action description is completed by the law of inertia [10], in its usual ASP repre-

sentation (e.g. [9]):

h(F, S + 1)← h(F, S), not ¬h(F, S + 1).

¬h(F, S + 1)← ¬h(F, S), not h(F, S + 1).

4 Reasoning About the Riddle

Let us now see how action description AD, consisting of all of the rules from the pre-

vious section, is used to reason about the riddle.

The first task that we want to be able to perform is determining the winner of the race,

based upon the statement from the riddle “the one whose horse arrived LAST would

be proclaimed the winner.” In terms of the formalization developed so far, arriving last

means being the last to cross the finish line. Encoding the basic idea behind this notion

is not difficult, but attention must be paid to the special case of the two horses crossing

the finish line together. Commonsense seems to entail that, if the two horses cross the

line together, then they are both first. (One way to convince oneself about this is to

observe that the other option is to say that both horses arrived last. But talking about

“last” appears to imply that they have been preceded by some horse that arrived “first.”)

The corresponding definition of relations first to cross and last to cross is:5

% first to cross(H): horse H crossed the line first.

first to cross(H1)←
h(crossed(H1), S2),
¬h(crossed(H2), S1),
S2 = S1 + 1,
horse(H2),H1 6= H2.

5 To save space, the definitions of these relations are given for the special case of a 2-competitor

race. Extending the definitions to the general case is not difficult, but requires some extra rules.



% last to cross(H): horse H crossed the line last.

last to cross(H1)←
h(crossed(H1), S2),
¬h(crossed(H1), S1),
S2 = S1 + 1,
h(crossed(H2), S1), horse(H2),H1 6= H2.

Winners and losers can be determined from the previous relations and from horse own-

ership:

% C wins if his horse crosses the finish line last.

wins(C)← owns(C,H), last to cross(H).

% C loses if his horse crosses the finish line first.

loses(C)← owns(C,H), first to cross(H).

LetW be the set consisting of the definitions of last to cross, first to cross, wins,

and loses. It is not difficult to check that, given suitable input about the initial state,

AD∪W entails intuitively correct conclusions. For example, let σ denote the intended

initial state of the riddle, where each competitor is at the start location, riding his horse:

h(at(a, start), 0). h(at(b, start), 0).

h(riding(C,H), 0)←
owns(C,H),
not ¬h(riding(C,H), 0).

¬h(F, 0)← not h(F, 0).

The rule about fluent riding captures the intuition that normally one competitor rides

his own horse, but there may be exceptions. Also notice that the last rule in σ encodes

the Closed World Assumption, and provides a compact way to specify the fluents that

are false in σ. Also, notice that it is not necessary to specify explicitly the location of

the horses, as that will be derived from the locations of their riders by state constraints

of AD. Assuming that a’s horse is the faster, let F a = {faster(hrs(a))}. Let also O0

denote the set {o(a,move, 0), o(b,move, 0)}. It is not difficult to see that σ ∪ F a ∪
O0 ∪ AD ∪W entails:

{h(at(a, finish), 1), h(at(b, en route), 1)},

meaning that a is expected to arrive at the finish, and b at location “en route.” Similarly,

given

O1 =















o(a,move, 0). o(b,move, 0).
o(a,wait, 1). o(b,move, 1).
o(a,wait, 2). o(b, cross, 2).
o(a, cross, 3).



the theory σ ∪ F a ∪O1 ∪ AD ∪W entails:

{h(at(a, finish), 1), h(at(b, finish), 2),
h(crossed(a), 4), h(crossed(b), 3),
last to cross(hrs(a)), first to cross(hrs(b)),
wins(a), loses(b)},

meaning that both competitors crossed the finish line, but b’s horse crossed it first, and

therefore b lost the race.

The next task of interest is to use the theory developed so far to determine that the race

“could become a very lengthy expedition.” Attention must be paid to the interpretation

of this sentence. Intuitively, the sentence refers to the fact that none of the competitors

might be able to end the race. However, this makes sense only if interpreted with com-

monsense. Of course sequences of actions exist that cause the race to terminate. For

example, one competitor could ride his horse as fast as he can to the finish line and then

cross, but that is likely to cause him to lose the race.

We believe the correct interpretation of the sentence is that we need to check if the

two competitors acting rationally (i.e. selecting actions in order to achieve their own

goal) will ever complete the race. In the remainder of the discussion, we call this the

completion problem. Notice that, under the assumption of rational acting, no competitor

will just run as fast as he can to the finish line and cross it, without paying attention to

where the other competitor is.

In this paper, we will focus on addressing the completion problem from the point of

view of one of the competitors. That is, we are interested in the reasoning that one

competitor needs to perform to solve the problem. So, we will define a relation me, e.g.

me(a). In the remainder of the discussion, we refer to the competitor whose reasoning

we are examining as “our competitor,” while the other competitor is referred to as the

“adversary.”

The action selection performed by our competitor can be formalized using the well-

known ASP planning technique (e.g., [9]) based upon a generate-and-test approach,

encoded by the set Pme of rules:

me(a).

1{ o(A,C, S) : relevant(A) }1← me(C).
← not wins(C),me(C), selected goal(win).

relevant(wait). relevant(move). relevant(cross).

where the first rule informally states that the agent should consider performing any

action relevant to the task (and exactly one at a time), while the second rule says that

sequences of actions that do not lead our competitor to a win should be discarded (if

our competitor’s goal is indeed to win). Relation relevant allows one to specify which

actions are relevant to the task at hand, thus reducing the number of combinations that

the reasoner considers.



Our competitor also needs to reason about his adversary’s actions. For that purpose, our

competitor possesses a model of the adversary’s behavior,6 based upon the following

heuristics:

– Reach the finish line;
– At the finish line, if crossing would cause you to lose, then wait; otherwise cross.
– In all other cases, wait.

This model of the adversary’s behavior could be more sophisticated – for example,

it could include some level of non-determinism – but even such a simple model is

sufficient to solve the completion problem for this simple riddle. The heuristics are

encoded by the set Padv of triggers:7

my adversary(C2)← me(C1), C1 6= C2.

o(move,C, S)←
my adversary(C),
¬h(at(C, finish line), S).

o(wait, C1, S)←
my adversary(C1),
h(at(C1, finish), S),
owns(C1,H1), crossing causes first(C1,H1, S).

o(cross, C1, S)←
my adversary(C1),
h(at(C1, finish), S),
¬h(crossed(C1), S),
owns(C1,H1), not crossing causes first(C1,H1, S).

crossing causes first(C1,H1, S)←
h(at(C1, finish), S),
h(riding(C1,H1), S),
¬h(crossed(C1), S), C1 6= C2, ¬h(crossed(C2), S).

¬o(A2, C, S)←
my adversary(C),
o(A1, C, S),
A2 6= A1.

o(wait, C, S)←
my adversary(C),
not ¬o(wait, C, S).

At the core of the above set of rules is the definition of relation

crossing causes first(C,H, S), which intuitively means that C’s crossing the finish

6 The model here is hard-coded, but could be learned, e.g. [11,12].
7 A discussion on the use of triggers can be found in the Conclusions section.



line at S would cause H to be the first horse to cross. Such a determination is made by

ensuring that (1) C is at the finish line, and thus can cross it; (2) C is riding H , and

thus by crossing would cause H to cross as well; and (3) no competitor has already

crossed.

Now let us see how the theory developed so far can be used to reason about the com-

pletion problem. Let P denote the set Pme ∪ Padv . It is not difficult to see that the

theory

σ ∪ F a ∪ AD ∪W ∪ P

is inconsistent. That is, a has no way of winning if his horse is faster. Let us now show

that the result does not depend upon the horse’s speed. Let F∨ denote the rule

faster(hrs(a)) ∨ faster(hrs(b)).

which informally says that it is not known which horse is faster. The theory

σ ∪ F∨ ∪ AD ∪W ∪ P

is still inconsistent. That is, a cannot win no matter whose horse is faster. Therefore,

because our competitor is acting rationally, he is not going to take part in the race.

Because the domain of the race is fully symmetrical, it is not difficult to see that b

cannot win either, and therefore we will refuse to take part in the race as well.

However, that is not exactly what the statement of the completion problem talks about.

The statement in fact seems to suggest that, were the competitors to take part in the

race (for example, because they hope for a mistake by the opponent), they would not

be able to complete the race. To model that, we allow our competitor to have two goals

with a preference relation among them: the goal to win, and the goal to at least not lose,

where the former is preferred to the second. The second goal formalizes the strategy of

waiting for a mistake by the adversary. To introduce the second goal and the preference,

we obtain P ′ from P by adding to it the rules:

selected goal(win)←
not ¬selected goal(win).

¬selected goal(win)←
selected goal(not lose).

← lose(C),me(C), selected goal(not lose).

selected goal(not lose)
+
← .

The first rule says that our competitor’s goal is to win, unless otherwise stated. The

second rule says that one exception to this is if the selected goal is to not lose. The

constraint says that, if the competitor’s goal is to not lose, all action selections causing

a loss must be discarded. The last rule says that our competitor may possibly decide to

select the goal to just not lose, but only if strictly necessary (i.e., if the goal of winning

cannot be currently achieved).



Now, it can be shown that the theory

σ ∪ F∨ ∪ AD ∪W ∪ P ′

is consistent. One of its answer sets includes for example the atoms:

{faster(hrs(a)),
o(wait, a, 0), o(move, b, 0),
o(wait, a, 1), o(move, b, 1),
o(move, a, 2), o(wait, b, 2),
o(wait, a, 3), o(wait, b, 3),
o(wait, a, 4), o(wait, b, 4) }

which represent the possibility that, if a’s horse is faster, a and b will reach the finish

line and then wait there indefinitely. To confirm that the race will not be completed, let

us introduce a set of rules C containing the definition of completion, together with a

constraint that requires the race to be completed in any model of the underlying theory:

completed← h(crossed(X), S).
← not completed.

The first rule states that the race has been completed when one competitor has crossed

the finish line (the result of the race at that point is fully determined). Because the theory

σ ∪ F∨ ∪ AD ∪W ∪ P ′ ∪ C

is inconsistent, we can conclude formally that, if the competitors act rationally, they

will not complete the race.

The last problem left to solve is answering the question “Which four wise words did the

Wise Mountain Man speak?” In terms of our formalization, we need to find a modifica-

tion of the theory developed so far that yields the completion of the race. One possible

approach is to revisit the conclusions that were taken for granted in the development of

the theory. Particularly interesting are the defaults used in the encoding. Is it possible

that solving the riddle lies in selecting appropriate exceptions to some defaults?

The simple formalization given so far contains only one default, the rule for fluent

riding in σ:

h(riding(C,H), 0)←
owns(C,H),
not ¬h(riding(C,H), 0).

To allow the reasoner to consider the possible exceptions to this default, we add a cr-rule

stating that a competitor may possibly ride the opponent’s horse, although that should

happen only if strictly necessary.

h(riding(C,H2), 0)
+
←

owns(C,H1),
horse(H2),
H1 6= H2.



We use a cr-rule to capture the intuition that the competitors will not normally switch

horses. Let σ′ be obtained from σ by adding the new cr-rule. It can be shown that the

theory8

σ′ ∪ F∨ ∪ AD ∪W ∪ P

is consistent and its unique answer set contains:

{faster(hrs(b)),
h(riding(a, hrs(b)), 0), h(riding(b, hrs(a)), 0),
o(move, a, 0), o(move, b, 0),
o(cross, a, 1), o(move, b, 1),
o(wait, a, 2), o(cross, b, 2),
o(wait, a, 3), o(wait, b, 3),
o(wait, a, 4), o(wait, b, 4) }

which encodes the answer that, if the competitors switch horses and the horse owned

by b is faster, then a can win by immediately reaching the finish line and crossing it.

In agreement with commonsense, a does not expect to win if the horse that b owns is

slower. On the other hand, it is not difficult to see that b will win in that case. That is,

the race will be completed no matter what.

The conclusion obtained here formally agrees with the accepted solution of the riddle:

“Take each other’s horse.”

5 Conclusions

In this paper we have described an exercise in the use of ASP for commonsense knowl-

edge representation and reasoning, aimed at formalizing and reasoning about an easy-

to-understand but non-trivial riddle. One reason why we have selected this particular

riddle, besides its high content of commonsense knowledge, is the fact that upon an

initial analysis, it was unclear whether and how ASP or other formalisms could be used

to solve it. Solving the riddle has required the combined use of some of the latest ASP

techniques, including using consistency restoring rules to allow the reasoner to select

alternative goals, and to consider exceptions to the defaults in the knowledge base as a

last resort, and has shown how ASP can be used for adversarial reasoning by employing

it to encode a model of the adversary’s behavior.

Another possible way of solving the riddle, not shown here for lack of space, consists in

introducing a switch horses action, made not relevant by default, but with the possi-

bility to use it if no solution can be found otherwise. Such action would be cooperative,

in the sense that both competitors would have to perform it together. However, as with

many actions of this type in a competitive environment, rationally acting competitors

are not always expected to agree to perform the action. An interesting continuation of

our exercise will consist of an accurate formalization of this solution to the riddle, which

8 The same answer is obtained by replacing P by P
′. However, doing that would require spec-

ifying preferences between the cr-rule just added and the cr-rule in P
′. To save space, we use

P to answer the final question of the riddle.



we think may yield useful results in the formalization of sophisticated adversarial rea-

soning. We think that this direction of research may benefit from the recent application

of CR-Prolog to the formalization of negotiation described in [13].

One last note should be made regarding the use of triggers to model the adversary’s

behavior. We hope the present paper has shown the usefulness of this technique and the

substantial simplicity of implementation using ASP. This technique has limits, however,

due to the fact that an a-priori model is not always available. Intuitively, it is possible

to use ASP to allow a competitor to “simulate” the opponent’s line of reasoning (e.g.,

by using choice rules). However, an accurate execution of this idea involves solving a

number of non-trivial technical issues. We plan to expand on this topic in a future paper.
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