
A General Method To Solve Complex Problems By
Combining Multiple Answer Set Programs

Marcello Balduccini

Intelligent Systems, OCTO
Eastman Kodak Company

Rochester, NY 14650-2102 USA
marcello.balduccini@gmail.com

Abstract This paper introduces the notion of Answer Set Programming (ASP)
Machine, which is loosely inspired to Turing’s Oracle Machines. The aim of this
research is to use ASP “oracles” and ASP-represented transition systems to al-
low programmers to use exclusively ASP to solve problems that are beyond the
expressive power of the basic language, rather than having to resort to auxiliary,
often procedural programs. The advantage of our approach is a more uniform
level of abstraction throughout the programs used to solve the problem, greater
elaboration tolerance, as well as simplified proofs of the properties of programs,
such as soundness and completeness.

1 Introduction

Answer Set Programming (ASP) [1,2] is a powerful programming paradigm that fea-
tures sophisticated knowledge representation and reasoning capabilities.

In recent years, ASP has been used for a number of successful applications (e.g.
[3,4,5,6]). One hurdle that programmers often face when using ASP, is that normal
programs1 can only solve NP-complete problems [7]. Whenever a problem of higher
computational complexity is to be solved, either a suitable extension of ASP has to be
selected (e.g. disjunctive programs, CR-Prolog [8], weak constraints [9]), or ad-hoc so-
lutions have to be devised, such as writing an auxiliary, often procedural, program. In
this second approach, the problem is reduced to computing the answer sets of a suit-
able sequence of ASP programs. For example, to find shortest plans, one can use the
#minimize statement of LPARSE/SMODELS [10], or (in particular to have more con-
trol on the search strategy) write a normal program that solves the decision problem,
and an auxiliary program that solves the optimization problem by selecting at each step
a different plan length limit, and by checking if the normal program together with a
specification of the given limit is consistent.

Unfortunately, it is often not easy to find suitable extensions of ASP that can be used in a
natural way to solve the problem at hand. In that case, programmers are forced to write
auxiliary programs. As we mentioned above, in other cases, one resorts to the use of
auxiliary programs to have more control on the search strategy and increase efficiency.

1 That is, logic programs with negation as failure but no disjunction.

Such auxiliary programs are typically relatively conceptually simple, but they still sub-
stantially complicate the task of proving properties of the overall program, such as
soundness and completeness. Moreover, from a practical point of view, these auxiliary
programs, being often procedural, require a substantial shift of perspective, and their
writing involves the rather error-prone and cumbersome task of writing specifications
at a substantially different level of abstraction compared to the ASP programs at the
core of the application.

An additional motivation to the exclusive use of ASP stems from the recent observation
[11,12] that describing an algorithm using a transition system instead of pseudocode
makes it easier to prove its properties, compare it with other algorithms, and design
new algorithms.

In this paper we explore an extension of the ASP paradigm that exploits these observa-
tions. Our approach to solving problems of high complexity is indeed based on reducing
the task to computing the answer sets of a suitable sequence of ASP programs, but we
use ASP to form such sequence. Although we do not suggest that our approach be used
indiscriminately for general-purpose programming, we believe that it can be useful in
simplifying the task of writing many ASP-based applications, as well as for testing
search strategies before implementing with more efficient paradigms.

The paper is structured as follows. In Section 3 we describe our framework and show
its application to a well-known NP-hard problem. In Section 4 we show how to the
computations involved in our framework can be automated. In Section 5 we discuss
related work. Finally, in Section 6 we draw conclusions and discuss future work.

2 Background

The syntax and semantics of answer set programming [1,2] are defined as follows. Let
Σ be a signature containing constant, function and predicate symbols. Terms and atoms
are formed as usual. A literal is either an atom a or its strong (also called classical or
epistemic) negation ¬a. The sets of atoms and literals formed from Σ are denoted by
atoms(Σ) and literals(Σ) respectively.

A rule is a statement of the form:2

[r] h← l1, . . . , lm, not lm+1, . . . , not ln (1)

where r is an optional name of the rule (a label useful when talking about the
rule), h and li’s are literals and not is the so-called default negation. The intuitive
meaning of the rule is that a reasoner who believes {l1, . . . , lm} and has no rea-
son to believe {lm+1, . . . , ln}, has to believe h. We call h the head of the rule, and
{l1, . . . , lm, not lm+1, . . . , not ln} the body of the rule. Given a rule r, we denote its
head and body by head(r) and body(r) respectively.

2 For simplicity we focus on non-disjunctive programs. Our results extend to disjunctive (and
other) programs in a natural way.

Often, rules of the form h ← not h, l1, . . . , not ln are abbreviated into ←
l1, . . . , not ln, and called constraints. The intuitive meaning of a constraint is that its
body must not be satisfied.

An ASP program (or program for short) is a pair 〈Σ,Π〉, where Σ is a signature and
Π is a set of rules over Σ. Often we denote programs by just the second element of
the pair, and let the signature be defined implicitly. In that case, the signature of Π is
denoted by Σ(Π).

A set A of literals is consistent if no two complementary literals, a and ¬a, belong to
A. A literal l is satisfied by a consistent set of literals A if l ∈ A. In this case, we write
A |= l. If l is not satisfied by A, we write A 6|= l. A set {l1, . . . , lk} of literals is satisfied
by a set A of literals (A |= {l1, . . . , lk}) if each li is satisfied by A.

Programs not containing default negation are called definite. A consistent set of literals
A is closed under a definite program Π if, for every rule of the form (1) such that the
body of the rule is satisfied by A, the head belongs to A.

Definition 1. A consistent set of literals A is an answer set of definite program Π if
A is closed under all the rules of Π and A is set-theoretically minimal among the sets
closed under all the rules of Π .

The reduct of a program Π with respect to a set of literals A, denoted by ΠA, is the
program obtained from Π by deleting:

– Every rule, r, such that l ∈ A for some expression of the form not l from the body
for r;

– All expressions of the form not l from the bodies of the remaining rules.

We are now ready to define the notion of answer set of a program.

Definition 2. A consistent set of literals A is an answer set of program Π if it is an
answer set of the reduct ΠA.

To simplify the programming task, variables are often allowed to occur in ASP pro-
grams. A rule containing variables (called a non-ground rule) is then viewed as a short-
hand for the set of its ground instances, obtained by replacing the variables in it by all
the possible ground terms. Similarly, a non-ground program is viewed as a shorthand
for the program consisting of the ground instances of its rules.

Later, we will also need the following notation. Given a program Π and a literal l, we
say that Π entails l, and write Π |= l, if, for every answer set A of Π , A |= l. We say
that Π does not entail l, and write Π 6|= l, if there exists one answer set A of Π such
that A 6|= l.

3 ASP Machines and Execution Traces

Our approach is loosely inspired to the notion of Oracle Turing Machines [13], and
consists in reducing the computation needed to solve a problem to a sequence of calls to

an “oracle” Ω, such that both the oracle and the program that generates the sequence of
calls can be written in ASP. At this stage of the investigation, we focus on NP-complete
oracles, as they can be implemented directly using ASP normal programs. Hence, from
now on we identify an oracle with the normal program that implements it.

We denote the signature of an oracle Ω by ΣΩ , and the set of literals, formed from
ΣΩ according to the usual conventions, by litΩ . An input to Ω is a consistent subset of
litΩ .3

Given an input I , invoking oracle Ω is reduced to computing the answer sets of I ∪Ω.
To simplify dealing with situations in which I ∪ Ω is inconsistent, we work under the
convention that, for every input I , every answer set of I ∪ Ω is non-empty.4 Thus, an
output of Ω (for input I) is an answer set of I ∪Ω, or ∅ if I ∪Ω is inconsistent. Notice
that, generally speaking, I ∪ Ω may have multiple answer sets. We denote the set of
outputs of Ω for I by Ω(I) (if I ∪Ω is inconsistent, it follows that Ω(I) = {∅}).

The computation that leads to calling the oracle is modeled as a sequence of transitions.
Because of the similarity with the domain of reasoning about actions and change (see
e.g. [14]), we call fluents the properties of interest of the states of the computation,
whose truth value typically varies with state transitions. A fluent literal is either a fluent
f or its negation ¬f . A state of the computation is a consistent set of fluent literals.5

A configuration is a pair 〈σ, ρ〉, where σ is a state of the computation and ρ is a con-
sistent subset of litΩ . Intuitively, σ is the current state of the computation and ρ is one
output from the latest call to the oracle. The initial configuration is 〈σi, ∅〉, where σi

is a pre-determined initial state. Our goal is to use ASP to model a transition function
that takes as input a configuration 〈σ, ρ〉 and returns a pair 〈σ′, π′〉, where σ′ is the
next state of the computation and π′ is the input to the next call to the oracle. The next
configuration will then be 〈σ′, ρ′〉, for some ρ′ ∈ Ω(π′) (there may be multiple next
configurations). The computation terminates when it reaches a terminal configuration,
which we will define using ASP. A terminal configuration may be successful, or failed,
meaning that the configuration does not lead to a solution.

The formalization is as follows. Notice that, because here we focus on using a nor-
mal program to model the transition function, we restrict our attention to NP-complete
transition functions. Given oracle Ω, let Στ be a signature such that:

– all constant and function symbols of ΣΩ occur also in Στ ;
– all the fluent literals of interest can be formed from function and constant symbols

of Στ ;6

– all relation symbols of ΣΩ are function symbols in Στ ;7

3 Although here we use a different approach, one might also view Ω as an lp-function [14].
4 This can be trivially achieved by ensuring that the oracle contains at least one fact.
5 Although it is possible to require states of the computation to be also complete sets of fluent

literals, that does not appear to play a major role in the formulation of our approach.
6 As often done in the literature, we assume that either terms can contain strong negation, or a

suitable function symbol and axioms are introduced to allow writing negative fluent literals.
7 That is, we reify the relations of ΣΩ .

– unary relation symbols state, next state, param, result, and zero-ary relation
symbols terminal and failed belong to Στ , and are called fixed relations.

Literals of Στ are denoted by litτ and are formed according to the usual conventions.
Notice that the conditions above, together with the normal assumption that function and
relation symbols in a signature are disjoint, imply that the relation symbols of ΣΩ and
of Στ are disjoint. In the rest of the paper, we use the term Ω-literals to refer to both
the literals formed from ΣΩ and to the corresponding terms formed from Στ . The fixed
relations of Στ are used to encode the transition function and to provide an interface
with the oracle. Intuitively:

– state(L) says that fluent literal L holds in the current state of the computation;
– next state(L) says that fluent literal L will hold in the next state of the computa-

tion;
– terminal says that the current configuration is terminal;
– failed says that the current configuration does not lead to a solution;
– param(I) says that Ω-literal I is part of the input for the next call to oracle Ω;
– result(O) says that Ω-literal O is part of an output of the latest call to Ω.

Given a relation r and a set of literals A, A|r (called restriction of A to r) denotes the
set of literals of A formed by relation r. If r is a unary relation, by A ↓r we denote the
set of arguments of the atoms from A|r. For example, {r(a), r(c)} ↓r= {a, c}. We also
denote by A ↑r the set of atoms formed by unary relation r, with the elements of A as
arguments. For example, {a, c} ↑r= {r(a), r(c)}.

A configuration 〈σ, ρ〉 is encoded in ASP by means of relations state and result.
For example, the configuration 〈{f1, f2}, {r1, r2}〉 is encoded by the set of atoms
{state(f1), state(f2), result(r1), result(r2)}. We denote the ASP encoding of a con-
figuration γ by α(γ). More precisely, α(〈σ, ρ〉) = (σ ↑state) ∪ (ρ ↑result).

The transition function is encoded by a program τ , over signature Στ

Definition 3. Program τ over Στ is a transition program if, for every configuration γ:

– if some answer set of α(γ)∪τ entails terminal, then α(γ)∪τ has a unique answer
set;

– for every answer set A of α(γ) ∪ τ , A |= failed implies A |= terminal.

For simplicity, in this paper we focus on deterministic transitions, and consequently, for
every configuration γ, α(γ) ∪ τ has a unique answer set (but recall that the oracle may
have multiple answer sets).

Definition 4. An ASP machine is a tuple 〈τ, σi, Ω〉, where τ is a transition program,
Ω is an oracle, and σi is the initial state of the computation.

To simplify the notation, we adopt the convention that the initial state of the computa-
tion is the set {initial}, where initial is a suitable fluent literal from Στ . In that case,
an ASP machine is denoted simply by the pair 〈τ,Ω〉.

Definition 5. An execution trace for ASP machine 〈τ, σi, Ω〉 from configuration
〈σ0, ρ0〉 is a (possibly infinite) sequence:

〈σ0, ρ0, π1, σ1, ρ1, π2, σ2, ρ2, π3, σ3, ρ3, . . .〉,

where σi’s are states of the computation, and πi’s, ρi’s are subsets of litΩ , such that:

– α(〈σi, ρi〉) ∪ τ |= terminal iff σi, ρi are the last two elements of the sequence;
– for every i such that α(〈σi, ρi〉) ∪ τ 6|= terminal, there exists an answer set A of

α(〈σi, ρi〉)∪ τ such that: (i) σi+1 = A ↓next state, (ii) πi+1 = A ↓param, and (iii)
ρi+1 ∈ Ω(πi+1).

It follows from the definition that a configuration γ0 = 〈σ0, ρ0〉 is an execution trace
from γ0 for ASP machine 〈τ, σi, Ω〉 if α(〈σ0, ρ0〉)∪τ |= terminal. By execution trace
for an ASP machine 〈τ, σi, Ω〉, without any reference to a configuration, we mean an
execution trace of the ASP machine from its initial configuration 〈σi, ∅〉.

We distinguish between finite execution traces and infinite execution traces. In a fi-
nite execution trace 〈σ0, ρ0, . . . , πn, σn, ρn〉, the pair formed by its last two elements,
〈σn, ρn〉, is called the terminal configuration. We also distinguish between successful
(finite) execution traces and failed (finite) execution traces. A finite execution trace s
is failed if its terminal configuration 〈σn, τn〉 is such that α(〈σi, ρi〉) ∪ τ |= failed.
Otherwise, s is successful.

It is not difficult to check that every finite execution trace has 2 + 3k elements for some
k ≥ 0. We call k the number of transitions in the execution trace.

Definition 6. A set σ ∪ ρ is a hyper answer set of an ASP machine 〈τ, σi, Ω〉 if 〈σ, ρ〉
is a terminal configuration for some successful execution trace for 〈τ, σi, Ω〉.

To better illustrate the framework developed so far, let us demonstrate how it can be
applied to the task of solving the Traveling Salesman Problem (TSP). Given a directed
graph G with edges labeled by weights (representing the cost of traveling from one
vertex to the other) and an initial vertex v0, the goal, in the TSP, is to find a Hamiltonian
cycle C from v0 such that the sum of the weights of the edges traversed by C (also
called cost) is minimal. The TSP is known to be NP-hard, while the decision problem
version of TSP is NP-complete. Although the TSP can be solved quite naturally with
some extensions of ASP, such as the #minimize statement of LPARSE/SMODELS [10]
or weak constraints from DLV [9], we chose this problem because it is well-known and
has a simple structure. Furthermore, to demonstrate the programmer’s control on the
search strategy, we implement the transition program so that it performs binary search.

We use an oracle ΩH to solve the decision problem version of TSP. That is, ΩH finds a
Hamiltonian cycle C from v0 such that the cost of C is less than or equal to some given
limit l.

A possible ASP program for ΩH is:8

% Path P visits every vertex V at most once.
← vertex(V 2), vertex(V 1), vertex(V),

in(V 1, V), in(V 2, V), V 1 6= V 2.
← vertex(V 2), vertex(V 1), vertex(V),

in(V, V 1), in(V, V 2), V 1 6= V 2.

% Path P must visit every vertex of the graph.
reached(V 2)← vertex(V 1), vertex(V 2), init(V 1), in(V 1, V 2).
reached(V 2)← vertex(V 1), vertex(V 2), reached(V 1), in(V 1, V 2).

← vertex(V), not reached(V).

{in(V 1, V 2) : edge(V 1, V 2)}.

% Edge cost – cost of a selected edge.
[r1] ecost(V 1, V 2, L)←

vertex(V 1), vertex(V 2), in(V 1, V 2), length(V 1, V 2, L).

[r2] cost(T)←
T [ecost(V 1, V 2, C) : vertex(V 1) : vertex(V 2) : ldom(C) = C]T,
ldom(T).

% Path P must have a cost no greater than the current limit.
← ldom(T), ldom(L), cost(T), limit(L), T > L.

The input to the oracle is provided as follows: the list of vertexes is specified by relation
vertex; the initial vertex is specified by relation init; an edge from v1 to v2 is specified
by an atom edge(v1, v2); the weight of the edge from v1 to v2 is specified by an atom
length(v1, v2, l);9 the limit to the cost of the Hamiltonian cycle is specified as limit(l);
relation ldom specifies the domain for the weights and path cost.10

The first 6 rules use well-know techniques to find Hamiltonian cycles. Rule r1 deter-
mines the cost of each selected edge. Rule r2 uses a special LPARSE/SMODELS [10]
construct to compactly specify that cost(T) must hold if T is the cost of the selected
Hamiltonian cycle. Finally, the last constraint discards any cycles whose cost is greater
than the given limit.

8 The program shown here is an extension of the one described at
http://www.cs.ttu.edu/∼mgelfond/FALL02/asp.pdf. To increase read-
ability, the program is written using constructs available in LPARSE/SMODELS [10].
Converting to the language described in Section 2 is not difficult.

9 More compact representations are also possible, which avoid using two separate relations edge

and length, but we prefer this encoding as it allows us to build incrementally on top of the
existing ASP solutions to the problem of finding Hamiltonian cycles in non-weighted graphs.

10 The use of ldom is required only for proper grounding by LPARSE. We include it here to make
the program directly executable with LPARSE+SMODELS [10].

Consider the problem instance PTSP encoded by:

ldom(0..50).

vertex(s0; s1; s2; s3).
init(s0).

length(s0, s1, 6). length(s1, s2, 5). length(s2, s3, 4).
length(s3, s0, 3). length(s0, s2, 2). length(s1, s3, 1).

% Edges oriented in the opposite direction, same weights.
length(s1, s0, 6). length(s2, s1, 5). length(s3, s2, 4).
length(s0, s3, 3). length(s2, s0, 2). length(s3, s1, 1).

edge(V 1, V 2)← length(V 1, V 2, L).

It is not difficult to check that ΩH ∪PTSP ∪ {limit(25)} has an answer set containing
the atoms {in(s0, s1), in(s1, s3), in(s3, s2), in(s2, s0), cost(13)}, encoding the solu-
tion to the decision problem corresponding to path 〈s0, s1, s3, s2, s0〉, of cost 13.

A transition function that performs binary search is encoded by program, τH , consisting
of the rules described next. The general idea is to maintain, as part of the state of the
computation, an encoding of the current search interval and of its midpoint, used as the
limit value for the next call to the oracle. Fluents of interest are, thus, latest min(V),
latest max(V) and latest limit(V). The first set of rules from τH detects terminal
configurations, checks if a Hamiltonian cycle was found by the latest call to the oracle,
and detects failed execution traces.

terminal←
ldom(T),
state(latest min(T)), state(latest max(T)).

hamcycle found←
ldom(T), result(cost(T)).

failed←
terminal, not hamcycle found.

The next set of rules uses information about the current state to determine the next
search interval and its midpoint, and encode them using auxiliary relations, as follows:11

new interval(dom min, dom max)← state(first run).

new interval(X,Y)←
ldom(X), ldom(Y),
hamcycle found, state(latest limit(Y)), state(latest min(X)).

11 The search could be made more efficient by taking into account, in the determination of the
next search interval, the cost of the Hamiltonian cycle just found by the oracle. For illustrative
purposes, however, we use the simpler technique described here.

new interval(X + 1, Y)←
ldom(X), ldom(Y),
not hamcycle found, state(latest limit(X)), state(latest max(Y)).

selected limit(T)←
ldom(X), ldom(Y), ldom(T), new interval(X,Y), T = ((X + Y)/2).

In the rules above, dom min and dom max are predefined constants that define the
range of interest for the search. Also notice how hamcycle found is used, above, to
select either the left or right subinterval of the current search interval. The next set
of rules determines the next state of the computation from the auxiliary relations just
defined:

next state(latest min(X))← ldom(X), ldom(Y), new interval(X,Y).

next state(latest max(Y))← ldom(X), ldom(Y), new interval(X,Y).

next state(latest limit(T))← ldom(T), selected limit(T).

The final set of rules defines the parameters to be passed to the oracle, and in particular
the value of the limit for the decision problem:

param(limit(V))← ldom(V), selected limit(V).
param(ldom(X))← ldom(X).
param(vertex(V ert))← vertex(V ert).
param(init(V ert))← init(V ert).
param(edge(V 1, V 2))← edge(V 1, V 2).
param(length(V 1, V 2, L))← length(V 1, V 2, L).

Let us now focus on constructing an execution trace 〈σ0, ρ0, π1, σ1, ρ1, . . .〉 for the
ASP machine 〈τH ∪ PTSP , ΩH〉 from the initial configuration γ0 = 〈{initial}, ∅〉.
To save space, we will construct the relevant portions of the answer sets of the
various programs by using the informal meaning of the ASP rules, rather than
mathematical proofs. Let dom min, dom max be respectively 0 and 50. It is
not difficult to show that α(γ0) ∪ τH has a unique answer set A0 containing
new interval(0, 50), selected limit(25), param(limit(25)), and the correspond-
ing definition of relation next state. According to our definition of execution trace,
π1 = A0 ↓param= {limit(25), vertex(s0), . . .} = PTSP ∪ {limit(25)} and σ1 =
{latest min(0), latest min(50), latest limit(25)}. Next, let us consider ρ1. By defi-
nition, ρ1 ∈ ΩH(π1). Notice that ΩH ∪π1 has possibly multiple answer sets. One such
answer set encodes the solution to the decision problem with cost(13) shown earlier.
Let us select that solution for the execution trace considered in this example. Hence,
ρ1 = {in(s0, s1), in(s1, s3), in(s3, s2), in(s2, s0), . . .}. Let γ1 denote 〈σ1, ρ1〉. The
next step consists in determining σ2 and π2 from the answer set, A1, of α(γ1) ∪ τH .
It can be shown that A1 contains atoms new interval(0, 25) and selected limit(12).
Hence, σ2 = {latest min(0), latest max(25), latest limit(12)} and π2 = PTSP ∪
{limit(12)}. Set ΩH(π2) contains two answer sets, both encoding solutions with cost
11. Let us pick arbitrarily one such answer set as ρ2. At this point, σ3 and π3 can

be found as above: σ3 is {latest min(0), latest max(12), latest limit(6)}, while π3

is PTSP ∪ {limit(6)}. Because no Hamiltonian cycle exists of cost 6 or less for the
given instance, ΩH(π3) = {∅}. Hence, ρ3 = ∅. Let us now consider the answer set,
A3, of α(〈σ3, ρ3〉). Obviously, hamcycle found 6∈ A3. That causes the right search
subinterval to be selected, that is A3 ⊇ {new interval(7, 12), selected limit(9)}.
Thus, π4 = PTSP ∪ {limit(9)}. As the shortest Hamiltonian cycle for the
problem instance considered here has cost 11, once again ΩH(π4) = {∅}. The
search proceeds along these lines until subinterval [11, 11] is selected. In other
words, it is not difficult to show that there exists some index k such that σk =
{latest min(11), latest max(11), latest limit(11)} and πk = PTSP ∪{limit(11)}.
Set ΩH(πk) contains two answer sets, both encoding solutions with cost 11. Let us se-
lect:

ρk = {in(s0, s2), in(s2, s1), in(s1, s3), in(s3, s0), cost(11), . . .}.

Let us now consider Ak = α(〈σk, ρk〉). Clearly terminal ∈ Ak. More-
over, hamcycle found ∈ Ak, which implies that failed 6∈ Ak. Therefore,
〈σ0, ρ0, π1, . . . , σk, ρk〉 is a successful execution trace, and σk ∪ ρk is a hyper answer
set of the ASP machine. The hyper answer set encodes the solution, of cost 11, corre-
sponding to the path 〈s0, s2, s1, s3, s0〉.

4 Computing Execution Traces

An algorithm that computes a successful finite execution trace for an ASP machine
〈τ,Ω〉 from configuration 〈σ0, ρ0〉 is shown below (Algorithm 1).

Algorithm 1: FindSuccessfulTrace
Input: ASP machine 〈τ, Ω〉

A configuration 〈σ0, ρ0〉
Output: A successful finite execution trace 〈σ0, ρ0, π1, σ1, ρ1, . . . , σn, ρn〉 or ⊥ if none

was found.
A := the answer set of τ ∪ α(〈σ0, ρ0〉)1

if {terminal, failed} ⊆ A then return ⊥2

if terminal ∈ A then return 〈σ0, ρ0〉3

π := (A ↓param)4

σ := (A ↓next state)5

O := Ω(π)6

while O 6= ∅ do7

ρ := an arbitrary element of O8

O := O \ {ρ}9

s := FindSuccessfulTrace(〈τ, Ω〉, 〈σ, ρ〉)10

if s 6= ⊥ then return 〈σ0, ρ0, π〉 ◦ s11

end12

return ⊥13

Given a configuration γ0 = 〈σ0, ρ0〉, algorithm FindSuccessfulTrace starts by checking
whether γ0 is failed. That is accomplished, as per the definition of execution trace, by
checking whether the answer set A of τ ∪ α(〈σ0, ρ0〉) contains {terminal, failed}. If
γ0 is failed, the algorithm returns⊥. Next, FindSuccessfulTrace checks if γ0 is terminal,
and if so returns it. Otherwise, the algorithm extracts from A the next state of the com-
putation, σ, and the parameters for the call to the oracle, π. The oracle is then invoked,
and its outputs are stored in O. Notice that, by definition, O is guaranteed to be non-
empty. Next, the algorithm attempts to construct a successful trace using each output of
the oracle. To do that, an arbitrary element ρ of O is selected and removed from O. The
algorithm is called recursively, to attempt to find a successful execution trace s from the
new configuration 〈σ, ρ〉. If the attempt succeeds, the algorithm prepends to s the initial
configuration as well as the parameters used in the call to the oracle and returns the
resulting execution trace. Otherwise, the algorithm selects another output from the call
to the oracle, and iterates. If all the attempts fail at constructing a successful execution
trace from the configuration obtained from σ and an output of the oracle, the algorithm
returns ⊥. Let us now discuss soundness and completeness of the algorithm.

Lemma 1. For every ASP machine 〈τ,Ω〉 and every configuration 〈σ0, ρ0〉, if
FindSuccessfulTrace(〈τ,Ω〉, 〈σ0, ρ0〉) returns a sequence s 6= ⊥, then the first two
elements of s are σ0 and ρ0; that is,

s = 〈σ0, ρ0, . . . , 〉.

It is not difficult to show that every sequence (that is, every result except for ⊥) re-
turned by FindSuccessfulTrace has 2 + 3k elements, for some k ≥ 0. Therefore,
let us extend the notion of number of transitions to the sequences returned by algorithm
FindSuccessfulTrace. We denote the number of transitions in such a sequence s by
|s|.

Theorem 1. For every ASP machine 〈τ,Ω〉 and every configuration 〈σ0, ρ0〉, if
FindSuccessfulTrace(〈τ,Ω〉, 〈σ0, ρ0〉) returns a sequence s 6= ⊥, then s is a suc-
cessful execution sequence for 〈τ,Ω〉 from 〈σ0, ρ0〉.

Proof. We proceed by induction on the number of transitions in the sequence returned
by algorithm FindSuccessfulTrace.

Base case: |s| = 0.
If |s| = 0, then by definition s contains two elements, that is, by Lemma 1, s = 〈σ0, ρ0〉.
Hence, s was returned at step 3 of the algorithm, which implies that τ ∪α(〈σ0, ρ0〉) en-
tails terminal, but it does not entail failed. By Definition 5, s is a successful execution
trace.

Inductive step.
Let us assume that, if FindSuccessfulTrace(〈τ,Ω〉, 〈σ, ρ〉) returns a sequence s
with n − 1 transitions, then s is a successful execution trace, and let us prove that, if
FindSuccessfulTrace(〈τ,Ω〉, 〈σ, ρ〉) returns a sequence s′ with n transitions, then
s′ is a successful execution trace.

Because |s′| ≥ 1, s′ contains at least 2 + 3 · 1 = 5 elements. Hence, the final result
of algorithm FindSuccessfulTrace must have been returned by step 11. Let σ1, ρ1,

π1 denote the values of variables σ, ρ, and π at the moment of the execution of step
11, and notice that those variables had the same values at step 10. Consequently, there
exists s such s = FindSuccessfulTrace(〈τ,Ω〉, 〈σ1, ρ1〉) and s′ = 〈σ0, ρ0, π1〉 ◦ s.
By Lemma 1, the first two elements of s are σ1 and ρ1; that is, s = 〈σ1, ρ1, . . .〉.

Because |s′| = n, |s| = n−1. By inductive hypothesis, s is a successful execution trace
from 〈σ1, ρ1〉.

To prove the thesis, we need to show that the conditions of Definition 5 are satisfied.
Because s has already been shown to be a successful execution trace, the conditions
simplify to:

1. α(〈σ0, ρ0〉) ∪ τ entails neither terminal nor failed;
2. the answer set, A, of α(〈σ0, ρ0〉) ∪ τ is such that:

(a) σ1 = A ↓next state;
(b) π1 = A ↓param;
(c) ρ1 ∈ Ω(π1).

The fact that α(〈σ0, ρ0〉) ∪ τ entails neither terminal nor failed follows from the
observation that, if that were not the case, steps 2 and 3 of the algorithm would have
returned either ⊥ or a sequence with 0 transitions.12

The fact that the other conditions hold is demonstrated as follows. Notice that the value
of variable π does not change between step 4 and step 11. We have already established
that the value of π at step 11 is π1. Hence, step 4 guarantees that π1 = A ↓param. With
a similar reasoning, we conclude that σ1 = A ↓next state and ρ1 ∈ Ω(π1).

Therefore, s′ is an execution trace by Definition 5. The fact that it is finite follows
from the fact that s is finite. Finally, s′ is successful because, if step 2 detects a failed
execution sequence, the algorithm returns ⊥ instead of a sequence.

Obviously, the algorithm is not complete, as it finds only one successful execution trace.
What is more important, however, is that not even termination is guaranteed: in fact,
if an infinite execution trace exists, nothing prevents the algorithm from attempting
to construct it. To make guarantees about termination, we need to consider a more
restricted class of ASP machines.

Definition 7. An ASP machine µ = 〈τ,Ω〉 is finite if every execution trace of µ is finite.

Finite ASP machines allow one to guarantee not only termination, but also a weak
notion of completeness.

Theorem 2. For every finite ASP machine µ = 〈τ,Ω〉:

1. FindSuccessfulTrace(µ, 〈σi, ∅〉) terminates;
2. If a successful execution trace exists for µ, FindSuccessfulTrace(µ, 〈σi, ∅〉) re-

turns a successful execution trace.

Proof. Both statements can be proven by induction similarly to Theorem 1.

12 Regarding step 2, the fact that τ is a transition program guarantees that, if failed is entailed
by α(〈σ0, ρ0〉) ∪ τ , then terminal is also entailed.

It is possible to extend FindSuccessfulTrace into an algorithm that returns a set of
successful finite execution traces, as shown below (Algorithm 2). Not only the extended
algorithm is sound, but, for finite ASP machines, it can also be shown to terminate and
be complete.

Algorithm 2: FindAllSuccessfulTraces
Input: ASP machine 〈τ, Ω〉

A configuration 〈σ0, ρ0〉
Output: A (possibly empty) set of successful finite execution traces.
A := the answer set of τ ∪ α(〈σ0, ρ0〉)1

if {terminal, failed} ⊆ A then return ∅2

if terminal ∈ A then return {〈σ0, ρ0〉}3

π := (A ↓param)4

σ := (A ↓next state)5

H := ∅6

O := Ω(π)7

while O 6= ∅ do8

ρ := an arbitrary element of O9

O := O \ {ρ}10

S := FindAllSuccessfulTraces(〈τ, Ω〉, 〈σ, ρ〉)11

if S 6= ∅ then H := H ∪ {〈σ0, ρ0, π〉 ◦ s | s ∈ S}12

end13

return H14

5 Related Work

In [11] and [12], it is argued that describing an algorithm using a transition system
instead of pseudocode makes it easier to prove its properties, compare it with other
algorithms, and design new algorithms.

The fact that ASP provides a convenient framework to represent state transitions was
highlighted by the research on using ASP for reasoning about actions and change, see
e.g. [15,14,4].

Several extensions of the language of ASP allow one to deal with problems of complex-
ity higher than NP-complete, e.g. [1,9,8,16].

The GnT system [17] finds answer sets of disjunctive logic programs by computing the
answer sets of two normal programs automatically derived from the original program.
Our approach is more general than [17] in that the oracle and the transition program are
independently programmed, rather than obtained from automatic translation, and thus
our technique can be applied to solve a variety of problems besides just the computation
of the answer sets of disjunctive programs.

In [7], an ASP program is used to simulate a non-deterministic Turing machine. Hence,
the encoding presented there is at a considerably lower level of abstraction than the
one we discussed. Furthermore, [7] is focused upon a single ASP program, while in
the present work a considerable effort was devoted to developing a suitable framework
allowing the interaction between two ASP programs.

6 Conclusions and Future Work

In this paper we have explored the use of answer set programming to solve problems
that cannot be solved with a normal program. Although extensions of ASP exist that
allow solving some of these problems, for practical applications often programmers
are forced to resort to writing auxiliary (often procedural) programs, which reduce the
task of solving the problem to that of computing the answer sets of a suitable sequence
of ASP programs. The rather different level of abstraction used in the auxiliary pro-
grams, compared to the ASP programs at the core of the application, causes various
difficulties, and makes it hard to prove properties of the overall program. Our approach
is based on the consideration that algorithms can be represented by transition systems,
and that ASP has been proven to be a useful tool for representing state transitions. By
using ASP to encode the auxiliary algorithms needed to solve problems of complexity
beyond NP-complete, we remove the problems introduced by the use of different levels
of abstraction, and simplify proving the properties of the overall program.

This paper has been focused upon solving problems by calling an NP-complete oracle.
However, our definitions extend to more powerful oracles, ultimately allowing to use
an ASP machine as an oracle to another ASP machine. Another interesting extension
consists in allowing the use of multiple oracles, with the transition program determining
which oracles to execute at each transition.

Finally, although here we have mostly focused on finite execution sequences, we believe
that infinite execution sequences deserve attention. In fact, infinite execution sequences
appear to be useful in the specification of closed-loop algorithms, such as agent control
loops. In this area, ASP machines might provide an interesting middle-ground between
the fully-logical specifications (e.g. [18]) and the mixed procedural/logical specifica-
tions (e.g. [19]) of control loops.

References

1. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Computing (1991) 365–385

2. Marek, V.W., Truszczynski, M. The Logic Programming Paradigm: a 25-Year Perspective.
In: Stable models and an alternative logic programming paradigm. Springer Verlag, Berlin
(1999) 375–398

3. Soininen, T., Niemela, I.: Developing a declarative rule language for applications in product
configuration. In: Proceedings of the First International Workshop on Practical Aspects of
Declarative Languages. (May 1999)

4. Balduccini, M., Gelfond, M., Nogueira, M.: Answer Set Based Design of Knowledge Sys-
tems. Annals of Mathematics and Artificial Intelligence (2006)

5. Baral, C., Chancellor, K., Tran, N., Joy, A., Berens, M.: A Knowledge Based Approach
for Representing and Reasoning About Cell Signalling Networks. In: Proceedings of the
European Conference on Computational Biology, Supplement on Bioinformatics. (2004) 15–
22

6. Son, T.C., Sakama, C.: Negotiation Using Logic Programming with Consistency Restoring
Rules. In: IJCAI’09. (2009)

7. Marek, V.W., Remmel, J.B.: On the expressibility of stable logic programming. Journal of
Theory and Practice of Logic Programming (TPLP) 3(4–5) (2003) 551–567

8. Balduccini, M., Gelfond, M.: Logic Programs with Consistency-Restoring Rules. In Doherty,
P., McCarthy, J., Williams, M.A., eds.: International Symposium on Logical Formalization
of Commonsense Reasoning. AAAI 2003 Spring Symposium Series (Mar 2003) 9–18

9. Buccafurri, F., Leone, N., Rullo, P.: Strong and Weak Constraints in Disjunctive Datalog. In:
Proceedings of the 4th International Conference on Logic Programming and Non-Monotonic
Reasoning (LPNMR’97). Volume 1265 of Lecture Notes in Artificial Intelligence (LNCS).
(1997) 2–17

10. Niemela, I., Simons, P., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence 138(1–2) (Jun 2002) 181–234

11. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Module Theories: From an
Abstract Davis-Putnam-Longemann-Loveland Procedure to DPLL(T). Journal of Artificial
Intelligence Research 53(6) (2006) 937–977

12. Lierler, Y.: Abstract Answer Set Solvers. In: Proceedings of the 24th International Confer-
ence on Logic Programming (ICLP08). (Dec 2008) 377–391

13. Turing, A.M.: Systems of logic based on ordinals. Proceedings of the London Mathematical
Society. Second Series 45 (1939) 161–228

14. Gelfond, M.: Representing Knowledge in A-Prolog. In Kakas, A.C., Sadri, F., eds.: Compu-
tational Logic: Logic Programming and Beyond, Essays in Honour of Robert A. Kowalski,
Part II. Volume 2408., Springer Verlag, Berlin (2002) 413–451

15. Lifschitz, V., Turner, H.: Representing transition systems by logic programs. In: Proceedings
of the 5th International Conference on Logic Programming and Non-monotonic Reasoning
(LPNMR-99). Number 1730 in Lecture Notes in Artificial Intelligence (LNCS), Springer
Verlag, Berlin (1999) 92–106

16. Dell’Armi, T., Faber, W., Ielpa, G., Leone, N., Pfeifer, G.: Aggregate Functions in Disjunc-
tive Logic Programming: Semantics, Complexity, and Implementation in DLV. In: Proceed-
ings of the 18th International Joint Conference on Artificial Intelligence (IJCAI 03), Morgan
Kaufmann (Aug 2003)

17. Janhunen, T., Niemela, I., Simons, P., You, J.H.: Unfolding Partiality and Disjunctions in
Stable Model Semantics. In: Principles of Knowledge Representation and Reasoning: Pro-
ceedings of the 7th International Conference (KR00), Morgan Kaufmann (2000) 411–419

18. Levesque, H.J., Reiter, R., Lin, F., Scherl, R.: GOLOG: A logic programming language for
dynamic domains. Journal of Logic Programming 31 (1997)

19. Balduccini, M., Gelfond, M.: The AAA Architecture: An Overview. In: AAAI Spring Sym-
posium 2008 on Architectures for Intelligent Theory-Based Agents (AITA08). (Mar 2008)

