
Splitting a CR-Prolog Program

Marcello Balduccini

Intelligent Systems Department
Eastman Kodak Company

Rochester, NY 14650-2102 USA
marcello.balduccini@gmail.com

Abstract CR-Prolog is an extension of A-Prolog, the knowledge representation
language at the core of the Answer Set Programming paradigm. CR-Prolog is
based on the introduction in A-Prolog of consistency-restoring rules (cr-rules for
short), and allows an elegant formalization of events or exceptions that are un-
likely, unusual, or undesired. The flexibility of the language has been extensively
demonstrated in the literature, with examples that include planning and diagnostic
reasoning. In this paper we hope to provide the technical means to further stimu-
late the study and use of CR-Prolog, by extending to CR-Prolog the Splitting Set
Theorem, one of the most useful theoretical results available for A-Prolog. The
availability of the Splitting Set Theorem for CR-Prolog is expected to simplify
significantly the proofs of the properties of CR-Prolog programs.

1 Introduction

In recent years, Answer Set Programming (ASP) [1,2,3], a declarative programming
paradigm with roots in the research on non-monotonic logic and on the semantics of
default negation of Prolog, has been shown to be a useful tool for knowledge repre-
sentation and reasoning (e.g., [4,5]). The underlying language, often called A-Prolog,
is expressive and has a well-understood methodology of representing defaults, causal
properties of actions and fluents, various types of incompleteness, etc. Over time, sev-
eral extensions of A-Prolog have been proposed, aimed at improving even further the
expressive power of the language.

One of these extensions, called CR-Prolog [6], is built around the introduction of
consistency-restoring rules (cr-rules for short). The intuitive idea behind cr-rules is that
they are normally not applied, even when their body is satisfied. They are only applied
if the regular program (i.e., the program consisting only of conventional A-Prolog rules)
is inconsistent. The language also allows the specification of a partial preference order
on cr-rules, intuitively regulating the application of cr-rules.

Among the most direct uses of cr-rules is an elegant encoding of events or excep-
tions that are unlikely, unusual, or undesired (and preferences can be used to formalize
the relative likelihood of these events and exceptions).

The flexibility of CR-Prolog has been extensively demonstrated in the literature
[6,7,8,9,10], with examples including planning and diagnostic reasoning. For example,
in [6], cr-rules have been used to model exogenous actions that may occur unobserved
and cause malfunctioning in a physical system. In [10], instead, CR-Prolog has been
used to formalize negotiations.

To further stimulate the study and use of CR-Prolog, theoretical tools are needed
that simplify the proofs of the properties of CR-Prolog programs. Arguably, one of the
most important such tools for A-Prolog is the Splitting Set Theorem [11]. Our goal in
this paper is to extend the Splitting Set Theorem to CR-Prolog programs.

This paper is organized as follows. In the next section, we introduce the syntax
and semantics of CR-Prolog. Section 3 gives key definitions and states various lemmas
as well as the main result of the paper. Section 4 discusses the importance of some
conditions involved in the definition of splitting set, and gives examples of the use of
the Splitting Set Theorem to split CR-Prolog programs. In Section 5 we talk about
related work and draw conclusions. Finally, in Section 6, we give proofs for the main
results of this paper.

2 Background

The syntax and semantics of ASP are defined as follows. Let Σ be a signature contain-
ing constant, function, and predicate symbols. Terms and atoms are formed as usual.
A literal is either an atom a or its strong (also called classical or epistemic) negation
¬a. The complement of an atom a is literal ¬a, while the complement of ¬a is a. The
complement of literal l is denoted by l. The sets of atoms and literals formed from Σ

are denoted by atoms(Σ) and lit(Σ), respectively.
A regular rule is a statement of the form:

[r] h1 OR h2 OR . . . OR hk ← l1, . . . , lm, not lm+1, . . . , not ln (1)

where r, called name, is a possibly compound term uniquely denoting the regular rule,
hi’s and li’s are literals and not is the so-called default negation. The intuitive meaning
of the regular rule is that a reasoner who believes {l1, . . . , lm} and has no reason to
believe {lm+1, . . . , ln}, must believe one of hi’s.

A consistency-restoring rule (or cr-rule) is a statement of the form:

[r] h1 OR h2 OR . . . OR hk
+
← l1, . . . lm, not lm+1, . . . , not ln (2)

where r, hi’s, and li’s are as before. The intuitive reading of a cr-rule is that a reasoner
who believes {l1, . . . , lm} and has no reason to believe {lm+1, . . . , ln}, may possibly
believe one of hi’s. The implicit assumption is that this possibility is used as little as
possible, only when the reasoner cannot otherwise form a consistent set of beliefs. A
preference order on the use of cr-rules is expressed by means of the atoms of the form
prefer(r1, r2). Such an atom informally says that r2 should not be used unless there
is no way to obtain a consistent set of beliefs with r1. More details on preferences in
CR-Prolog can be found in [6,12,13].

By rule we mean a regular rule or a cr-rule. Given a rule ρ of the form
(1) or (2), we call {h1, . . . , hk} the head of the rule, denoted by head(ρ), and
{l1, . . . , lm, not lm+1, . . . , not ln} its body, denoted by body(ρ). Also, pos(ρ) denotes
{l1, . . . , lm}, neg(ρ) denotes {lm+1, . . . , ln}, name(ρ) denotes name r, and lit(ρ) de-
notes the set of all literals from ρ. When l ∈ lit(ρ), we say that l occurs in ρ.

A program is a pair 〈Σ,Π〉, where Σ is a signature and Π is a set of rules over Σ.
Often we denote programs by just the second element of the pair, and let the signature
be defined implicitly. In that case, the signature of Π is denoted by Σ(Π).

In practice, variables are often allowed to occur in ASP programs. A rule contain-
ing variables (called a non-ground rule) is then viewed as a shorthand for the set of its
ground instances, obtained by replacing the variables in it by all of the possible ground
terms. Similarly, a non-ground program is viewed as a shorthand for the program con-
sisting of the ground instances of its rules.

Given a program Π , µ(Π) denotes the set of names of the rules from Π . In the
rest of the discussion, letter r (resp., ρ), possibly indexed, denotes the name of a rule
(resp., a rule). Given a set of rule names R, ρ(R,Π) denotes the set of rules from Π

whose name is in R. ρ(r,Π) is shorthand for ρ({r}, Π). To simplify notation, we allow
writing r ∈ Π to mean that a rule with name r is in Π . We extend the use of the other
set operations in a similar way. Also, given a program Π , head(r) and body(r) denote1

the corresponding parts of ρ(r,Π). Given a CR-Prolog program, Π , the regular part of
Π is the set of its regular rules, and is denoted by reg(Π). The set of cr-rules of Π is
denoted by cr(Π). Programs that do not contain cr-rules are legal ASP programs, and
their semantics is defined as usual. Next, we define the semantics of arbitrary CR-Prolog
programs. Let us begin by introducing some notation.

For every R ⊆ cr(Π), θ(R) denotes the set of regular rules obtained from R by

replacing every connective
+
← with←. Given a program Π and a set R of rule names,

θ(R) denotes the application of θ to the rules of Π whose name is in R.
A literal l is satisfied by a set of literals S (S |= l) if l ∈ S. An expression not l is

satisfied by S if l 6∈ S. The body of a rule is satisfied by S if each element of the set is
satisfied by S. A set of literals S entails prefer∗(r1, r2) (S |= prefer∗(r1, r2)) if:

– S |= prefer(r1, r2), or
– S |= prefer(r1, r3) and S |= prefer∗(r3, r2).

The semantics of CR-Prolog is given in three steps.

Definition 1. Let S be a set of literals and R be a set of names of cr-rules from Π . The
pair V = 〈S,R〉 is a view of Π if:

1. S is an answer set2 of reg(Π) ∪ θ(R), and
2. for every r1, r2, if S |= prefer∗(r1, r2), then {r1, r2} 6⊆ R, and
3. for every r in R, body(r) is satisfied by S.

We denote the elements of V by VS and VR respectively. The cr-rules in VR are said to
be applied. This definition of view differs from the one given in previous papers (e.g.,
[6,13]) in that set R here is a set of names of cr-rules rather than a set of cr-rules. The
change allows one to simplify the proofs of the theorems given later. Because of the
one-to-one correspondence between cr-rules and their names, the two definitions are
equivalent.

1 The notation can be made more precise by specifying Π as an argument, but in the present
paper Π will always be clear from the context.

2 We only consider consistent answer sets.

For every pair of views of Π , V1 and V2, V1 dominates V2 if there exist r1 ∈ V
R
1 ,

r2 ∈ V
R
2 such that (VS

1 ∩ V
S
2) |= prefer∗(r1, r2).

Definition 2. A view, V , is a candidate answer set of Π if, for every view V ′ of Π , V ′

does not dominate V .

Definition 3. A set of literals, S, is an answer set of Π if:

1. there exists a set R of names of cr-rules from Π such that 〈S,R〉 is a candidate
answer set of Π , and

2. for every candidate answer set 〈S ′, R′〉 of Π , R′ 6⊂ R.

3 Splitting Set Theorem

Proceeding along the lines of [11], we begin by introducing the notion of splitting set
for a CR-Prolog program, and then use this notion to state the main theorems.

A preference set for cr-rule r with respect to a set of literals S is the set

π(r, S) = {r′ | S |= prefer∗(r, r′) or S |= prefer∗(r′, r)}.

Given a program Π , the preference set of r with respect to the literals from the signature
of Π is denoted by π(r).

Definition 4. Literal l is relevant to cr-rule r (for short, l is r-relevant) if:

1. l occurs in r, or
2. l occurs in some rule where a literal relevant to r occurs, or
3. l is relevant to r, or
4. l = prefer(r, r′) or l = prefer(r′, r).

Definition 5. A splitting set for a program Π is a set U of literals from Σ(Π) such
that:

– for every rule r ∈ Π , if head(r) ∩ U 6= ∅, then lit(r) ⊆ U ;
– for every cr-rule r ∈ Π , if some l ∈ U is relevant to r, then every r-relevant literal

belongs to U .

Observation 1 For programs that do not contain cr-rules, this definition of splitting set
coincides with the one given in [11].

Observation 2 For every program Π and splitting set U for Π , if l ∈ U is r-relevant
and r′ ∈ π(r), then every r′-relevant literal from Σ(Π) belongs to U .

We define the notions of bottom and partial evaluation of a program similarly to [11].
The bottom of a CR-Prolog program Π relative to splitting set U is denoted by bU (Π)
and consists of every rule ρ ∈ Π such that lit(ρ) ⊆ U . Given a program Π and a set R

of names of rules, bU (R) denotes the set of rule names in bU (ρ(R,Π)).
The partial evaluation of a CR-Prolog program Π w.r.t. splitting set U and set of

literals X , denoted by eU (Π,X), is obtained as follows:

– For every rule ρ ∈ Π such that pos(ρ) ∩ U is part of X and neg(ρ) ∩ U is disjoint
from X , eU (Π,X) contains the rule ρ′ such that:

name(ρ′) = name(ρ), head(ρ′) = head(ρ),
pos(ρ′) = pos(ρ) \ U, neg(ρ′) = neg(ρ) \ U.

– For every other rule ρ ∈ Π , eU (Π,X) contains the rule ρ′ such that:

name(ρ′) = name(ρ), head(ρ′) = head(ρ),
pos(ρ′) = {⊥} ∪ pos(ρ) \ U, neg(ρ′) = neg(ρ) \ U.

Given Π , U , and X as above, and a set R of names of rules from Π , eU (R,X) denotes
the set of rule names in eU (ρ(R,Π), X).

Observation 3 For every program Π , splitting set U and set of literals X , eU (Π,X)
is equivalent to the similarly denoted set of rules defined in [11].

Observation 4 For every program Π , set R of names of rules from Π , splitting set U ,
and set of literals X , R = eU (R,X).

From Observations 1 and 3, and from the original Splitting Set Theorem [11], one can
easily prove the following statement.

Theorem 1 (Splitting Set Theorem from [11]). Let U be a splitting set for a program
Π that does not contain any cr-rule. A set S of literals is an answer set of Π if and only
if: (i) X is an answer set of bU (Π); (ii) Y is an answer set of eU (Π \ bU (Π), X); (iii)
S = X ∪ Y is consistent.

We are now ready to state the main results of this paper. Complete proofs can be found
in Section 6.

Lemma 1 (Splitting Set Lemma for Views). Let U be a splitting set for a program Π ,
S a set of literals, and R a set of names of cr-rules from Π . The pair 〈S,R〉 is a view
of Π if and only if:

– 〈X, bU (R)〉 is a view of bU (Π);
– 〈Y,R \ bU (R)〉 is a view of eU (Π \ bU (Π), X);
– S = X ∪ Y is consistent.

Lemma 2 (Splitting Set Lemma for Candidate Answer Sets). Let U be a splitting
set for a program Π . A pair 〈S,R〉 is a candidate answer set of Π if and only if:

– 〈X, bU (R)〉 is a candidate answer set of bU (Π);
– 〈Y,R \ bU (R)〉 is a candidate answer set of eU (Π \ bU (Π), X);
– S = X ∪ Y is consistent.

Theorem 2 (Splitting Set Theorem for CR-Prolog). Let U be a splitting set for a
program Π . A consistent set of literals S is an answer set of Π if and only if:

– X is an answer set of bU (Π);
– Y is an answer set of eU (Π \ bU (Π), X);
– S = X ∪ Y is consistent.

4 Discussion

Now that the Splitting Set Theorem for CR-Prolog has been stated, in this section we
give examples of the application of the theorem and discuss the importance of the con-
ditions of Definition 4 upon which the definition of splitting set and the corresponding
theorem rely.

Let us begin by examining the role of the conditions of Definition 4.
Consider condition (3) of Definition 4. To see why the condition is needed, con-

sider the following program, P1 (as usual, rule names are omitted whenever possible to
simplify the notation):

[r1] q
+
← not p.

s← not q.

¬s.

It is not difficult to see that P1 has the unique answer set {q,¬s}, intuitively obtained
from the application of r1. Let us now consider set U1 = {q, p, s}. Notice that U1 sat-
isfies the definition of splitting set, as long as the condition under discussion is dropped
from Definition 4. The corresponding bU1

(P1) is:

[r1] q
+
← not p.

s← not q.

bU1
(P1) has a unique answer set, Xa

1 = {s}, obtained without applying r1. eU1
(P1 \

bU1
(P1), {s}) is:

¬s.

which has a unique answer set, Y a
1 = {¬s}. Notice that Xa

1 ∪ Y a
1 is inconsistent.

Because Xa
1 and Y a

1 are unique answer sets of the corresponding programs, it follows
that the answer set of P1 cannot be obtained from the any of the answer sets of bU1

(P1)
and of the corresponding partial evaluation of P1. Hence, dropping condition (3) of
Definition 4 causes the splitting set theorem to no longer hold.

Very similar reasoning shows the importance of condition (2): just obtain P2 from
P1 by (i) replacing ¬s in P1 by t and (ii) adding a constraint← t, s, and consider the
set U2 = {q, p}. Observe that, if the condition is dropped, then U2 is a splitting set for
P2, but the splitting set theorem does not hold.

Let us now focus on condition (4). Consider program P3:

[r1] q
+
← not p.

[r2] s
+
← not t.

prefer(r2, r1).

← not q.

← not s.

Observe that P3 is inconsistent, the intuitive explanation being that r1 can only be used
if there is no way to use r2 to form a consistent set of beliefs, but the only way to
form such a consistent set would be to use r1 and r2 together. Now consider set U3 =
{q, p, prefer(r2, r1)}. The corresponding bU3

(P3) is:

[r1] q
+
← not p.

prefer(r2, r1).

← not q.

which has a unique answer set X3 = {q, prefer(r2, r1)}. The partial evaluation
eU3

(P3 \ bU3
(P3), X3) is:

[r2] s
+
← not t.

← not s.

whose unique answer set is Y3 = {s}. If condition (4) is dropped from Definition 4,
then U3 is a splitting set for P3. However, the splitting set theorem does not hold, as P3

is inconsistent while X3 ∪ Y3 is consistent.
Let us now give a few examples of the use of the Splitting Set Theorem to finding

the answer sets of CR-Prolog programs. Consider program P4:

[r1] q
+
← not a.

[r2] p
+
← not t.

a OR b.

s← not b.

← not q, b.

c OR d.

u← z, not p.

z ← not u.

and the set U4 = {q, a, b, s}. It is not difficult to check the conditions and verify that U4

is a splitting set for P4. In particular, observe that U4 includes the r1-relevant literals,
and does not include the r2-relevant literals. bU4

(P4) is:

[r1] q
+
← not a.

a OR b.

s← not b.

← not q, b.

Because P4 contains a single cr-rule, from the semantics of CR-Prolog it follows
that its answer sets are those of reg(bU4

(P4)), if the program is consistent, and
those of reg(bU4

(P4)) ∪ θ({r1}) otherwise. reg(bU4
(P4)) has a unique answer set,

X4 = {a, s}, which is, then, also the answer set of bU4
(P4). The partial evaluation

eU4
(P4 \ bU4

(P4), X4) is:

[r2] p
+
← not t.

c OR d.

u← z, not p.

z ← not u.

Again, the program contains a single cr-rule. This time, reg(eU4
(P4 \ bU4

(P4), X4)) is
inconsistent. reg(eU4

(P4\bU4
(P4), X4))∪θ({r2}), on the other hand, has an answer set

Y4 = {p, c, z}, which is, then, also an answer set of eU4
(P4 \ bU4

(P4), X4). Therefore,
an answer set of P4 is

X4 ∪ Y4 = {a, s, p, c, z}.

Now the following modification of P4, P5:

[r1] q
+
← not a.

[r2] p
+
← not t.

a OR b.

s← not b.

← not q, b.

c OR d← v.

¬c← not v.

u← z, not p.

z ← not u.

v ← not w.

The goal of this modification is to show how rules, whose literals are not relevant to any
cr-rule, can be split. Let U5 be {q, a, b, s, v, w}. Notice that U5 is a splitting set for P5

even though v ∈ U5 and P5 contains the rule c OR d ← v. In fact, v is not relevant to
any cr-rule from P5, and thus c and d are not required to belong to U5. bU5

(P5) is:

[r1] q
+
← not a.

a OR b.

s← not b.

← not q, b.

v ← not w.

which has an answer set X5 = {a, s, v}. eU5
(P5 \ bU5

(P5), X5) is:

[r2] p
+
← not t.

c OR d.

¬c← ⊥.

u← z, not p.

z ← not u.

which has an answer set Y5 = {p, c, z}. Hence, an answer set of P5 is

X5 ∪ Y5 = {a, s, v, p, c, z}.

5 Related Work and Conclusions

Several papers have addressed the notion of splitting set and stated various versions
of splitting set theorems throughout the years. Notable examples are [11], with the

original formulation of the Splitting Set Theorem for A-Prolog, [14], with a Splitting
Set Theorem for default theories, and [15] with a Splitting Set Theorem for epistemic
specifications.

In this paper we have defined a notion of splitting set for CR-Prolog programs, and
stated the corresponding Splitting Set Theorem. We hope that the availability of this
theoretical result will further stimulate the study and use of CR-Prolog, by making it
easier to prove the properties of the programs written in this language. As the reader
may have noticed, to hold for CR-Prolog programs (that include at least one cr-rule),
the Splitting Set Theorem requires substantially stronger conditions than the Splitting
Set Theorem for A-Prolog. We hope that future research will allow weakening the con-
ditions of the theorem given here, but we suspect that the need for stronger conditions
is strictly tied to the nature of cr-rules.

6 Proofs

Proof of Lemma 1. To be a view of a program, a pair 〈S,R〉 must satisfy all of the
requirements of Definition 1. Let us begin from item (1) of the definition. We must
show that S is an answer set of reg(Π) ∪ θ(R) if and only if:

– X is an answer set of reg(bU (Π)) ∪ θ(bU (R));
– Y is an answer set of reg(eU (Π \ bU (Π), X)) ∪ θ(R \ bU (R)).

From Theorem 1, S is an answer set of reg(Π) ∪ θ(R) iff:

– X is an answer set of

bU (reg(Π) ∪ θ(R)) =

bU (reg(Π)) ∪ bU (θ(R)) =

bU (reg(Π)) ∪ θ(bU (R)) =

reg(bU (Π)) ∪ θ(bU (R)).

– Y is an answer set of

eU ((reg(Π) ∪ θ(R)) \ bU (reg(Π) ∪ θ(R)), X) =

eU ((reg(Π) ∪ θ(R)) \ (reg(bU (Π)) ∪ θ(bU (R))), X) =

eU ((reg(Π) \ reg(bU (Π))) ∪ (θ(R) \ θ(bU (R))), X) =

eU (reg(Π \ bU (Π)) ∪ θ(R \ bU (R)), X) =

eU (reg(Π \ bU (Π)), X) ∪ eU (θ(R \ bU (R)), X) =

reg(eU (Π \ bU (Π), X)) ∪ θ(eU (R \ bU (R), X)) =

reg(eU (Π \ bU (Π), X)) ∪ θ(R \ bU (R)),

where the last transformation follows from Observation 4.
– S = X ∪ Y is consistent.

This completes the proof for item (1) of the definition of view, and furthermore con-
cludes that S = X ∪ Y is consistent. Let us now consider item (2) of the definition of
view. We must show that

∀r1, r2 ∈ R, if S |= prefer∗(r1, r2), then {r1, r2} 6⊆ R

iff
∀r1, r2 ∈ bU (R), if X |= prefer∗(r1, r2), then {r1, r2} 6⊆ bU (R), and
∀r1, r2 ∈ R \ bU (R), if Y |= prefer∗(r1, r2), then {r1, r2} 6⊆ R \ bU (R).

Left-to-right. The statement follows from the fact that X ⊆ S, Y ⊆ S, and bU (R) ⊆ R.

Right-to-left. Proceeding by contradiction, suppose that, for some r1, r2 ∈ R, S |=
prefer∗(r1, r2), but {r1, r2} ⊆ R. By definition of preference set, r2 ∈ π(r1). Let l

be some literal from head(r1). Obviously, either l ∈ U or l 6∈ U .

Suppose l ∈ U . By the definition of splitting set, prefer(ri, rj) ∈ U for every ri, rj ∈
{r1} ∪ π(r1). Moreover, for every r′ ∈ π(r1) and every l′ ∈ head(r′), l′ belongs to U .
But r2 ∈ π(r1). Hence, X |= prefer∗(r1, r2) and {r1, r2} ⊆ bU (R). Contradiction.

Now suppose l 6∈ U . With reasoning similar to the previous case, we can conclude that
prefer(ri, rj) ∈ U for every ri, rj ∈ {r1} ∪ π(r1). Moreover, for every r′ ∈ π(r1)
and every l′ ∈ head(r′), l′ belongs to U . Because r2 ∈ π(r1), Y |= prefer∗(r1, r2)
and {r1, r2} ⊆ R \ bU (R). Contradiction.

This completes the proof for item (2) of the definition of view. Let us now consider item
(3). We must prove that

∀r ∈ R, body(ρ(r,Π)) is satisfied by S

iff
∀r ∈ bU (R), body(ρ(r, bU (Π))) is satisfied by X , and

∀r ∈ R \ bU (R), body(ρ(r, eU (Π \ bU (Π), X))) is satisfied by Y.

Left-to-right. The claim follows from the following observations: (i) for every r ∈ R,
either r ∈ bU (R) or r ∈ R \ bU (R); (ii) body(ρ(r, eU (Π \ bU (Π), X))) is satisfied by
Y iff body(ρ(r,Π)) is satisfied by X ∪ Y = S.

Right-to-left. Again, observe that, for every r ∈ R, either r ∈ bU (R) or r ∈ R \ bU (R).

Suppose r ∈ bU (R). Because X ⊆ S, body(ρ(r, bU (Π))) is satisfied by S. Because
bU (Π) ⊆ Π , ρ(r, bU (Π)) = ρ(r,Π).

Suppose r ∈ R \ bU (R). The notion of partial evaluation is defined in such a way that,
if body(ρ(r, eU (Π \ bU (Π), X))) is satisfied by Y , then body(ρ(r,Π)) is satisfied by
X ∪ Y = S.

Proof of Lemma 2. From Lemma 1, it follows that 〈S,R〉 is a view of Π iff (i)
〈X, bU (R)〉 is a view of bU (Π), (ii) 〈Y,R \ bU (R)〉 is a view of eU (Π \ bU (Π), X),
and (iii) S = X ∪ Y is consistent. Therefore, we only need to prove that:

no view of Π dominates 〈S,R〉 (3)

if and only if
no view of bU (Π) dominates 〈X, bU (R)〉, and (4)

no view of eU (Π \ bU (Π), X) dominates 〈Y,R \ bU (R)〉. (5)

Left-to-right. Let us prove that (3) implies (4). By contradiction, suppose that:

there exists a view V ′X = 〈X ′, R′

X〉 of bU (Π) dominates VX = 〈X, bU (R)〉. (6)

Let (X ′

D, X ′

I) be the partition of X ′ such that X ′

D is the set of the literals from X ′

that are relevant to the cr-rules in bU (R) ∪ R′

X . Let (XD, XU) be a similar partition
of X . From Definition 4, it is not difficult to see that 〈XI ∪ X ′

D, R′

X〉 is a view of
bU (Π). Moreover, given R′ = (R \ bU (R)) ∪ R′

X , 〈Y,R′ \ bU (R′)〉 is a view of
eU (Π \bU (Π), XI ∪X ′

D). By Lemma 1, 〈X ′∪Y,R′〉 is a view of Π . From hypothesis
(6), it follows that there exist r ∈ bU (R) ⊆ R and r′ ∈ bU (R′) ⊆ R′ such that
(X ∩X ′) |= prefer∗(r′, r). But then 〈X ′ ∪ Y,R′〉 dominates 〈S,R〉. Contradiction.

Let us prove that (3) implies (5). By contradiction, suppose that there exists a view
V ′Y = 〈Y ′, R′

Y 〉 of eU (Π \ bU (Π), X) that dominates VY = 〈Y,R \ bU (R)〉. That is,

there exist r ∈ R \ bU (R), r′ ∈ R′

Y such that (Y ∩ Y ′) |= prefer∗(r′, r). (7)

Let R′ be R′

Y ∪ bU (R). By Lemma 1, 〈X ∪Y ′, R′〉 is a view of Π . From (7), it follows
that there exist r ∈ R, r′ ∈ R′ such that (Y ∩ Y ′) |= prefer∗(r′, r). Therefore,
〈X ∪ Y ′, R′〉 dominates 〈S,R〉. Contradiction.

Next, from (4) and (5), we prove (3). By contradiction, suppose that there exists a view
V ′ = 〈S′, R′〉 of Π that dominates V = 〈S,R〉. That is, there exist r ∈ R, r′ ∈ R′ such
that (S∩S′) |= prefer∗(r′, r). There are two cases: head(r′) ⊆ U and head(r′) ⊆ U .

Case 1: head(r′) ⊆ U . From Lemma 1 it follows that 〈S ∩ U, bU (R)〉 is a view of
bU (Π). Similarly, 〈S′ ∩ U, bU (R′)〉 is a view of bU (Π). Because head(r′) ⊆ U , from
the definition of splitting set it follows that: (i) head(r) ⊆ U ; (ii) because (S ∩ S ′) |=
prefer∗(r′, r), (S ∩S′∩U) |= prefer∗(r′, r) also holds. Therefore, 〈S ′∩U, bU (R′)〉
dominates 〈S ∩ U, bU (R)〉. Contradiction.

Case 2: head(r′) ⊆ U . From Lemma 1 it follows that 〈S \ U,R \ bU (R)〉 is
a view of eU (Π \ bU (Π), S ∩ U). Similarly, 〈S′ \ U,R′ \ bU (R′)〉 is a view of
eU (Π \ bU (Π), S′ ∩ U). Because head(r′) ⊆ U , from the definition of splitting
set it follows that: (i) head(r) ⊆ U ; (ii) because (S ∩ S ′) |= prefer∗(r′, r),
(S \ U) ∩ (S′ \ U) |= prefer∗(r′, r) also holds.

Consider now set Q′ ⊆ S′ \ U , consisting of all of the literals of S ′ \ U that are
relevant to the cr-rules of R ∪ R′ \ bU (R ∪ R′). Also, let Q ⊆ S \ U be the set of all
of the literals of S \ U that are relevant to the cr-rules of R ∪ R′ \ bU (R ∪ R′), and
Q = S \ U \Q. That is, Q is the set of literals from S \ U that are not relevant to any
cr-rule of R ∪R′ \ bU (R ∪R′).

From Definition 4, it is not difficult to conclude that 〈Q∪Q′, R′ \ bU (R′)〉 is a view of
eU (Π \ bU (Π), S∩U). Furthermore, (S \U)∩ (Q∪Q′) |= prefer∗(r′, r). Therefore,
〈Q ∪Q′, R′ \ bU (R′)〉 dominates 〈S \ U,R \ bU (R)〉. Contradiction.

Proof of Theorem 2. From the definition of answer set and Lemma 2, it follows that
there exists a set R of (names of) cr-rules from Π such that 〈S,R〉 is a candidate answer
set of Π if and only if:

– 〈X, bU (R)〉 is a candidate answer set of bU (Π);
– 〈Y,R \ bU (R)〉 is a candidate answer set of eU (Π \ bU (Π), X);
– S = X ∪ Y is consistent.

Therefore, we only need to prove that:

for every candidate answer set 〈S ′, R′〉 of Π , R′ 6⊂ R (8)

if and only if

for every candidate answer set 〈S ′

X , R′

X〉 of bU (Π), R′

X 6⊂ bU (R), and (9)

for every candidate answer set 〈S ′

Y , R′

Y 〉 of eU (Π \ bU (Π), X),
R′

Y 6⊂ R \ bU (R).
(10)

Let us prove that (8) implies (9). By contradiction, suppose that, for every candidate
answer set 〈S′, R′〉 of Π , R′ 6⊂ R, but that there exists a candidate answer set 〈X ′, R′

X〉
of bU (Π) such that R′

X ⊂ bU (R). Let (X ′

D, X ′

I) be the partition of X ′ such that X ′

D

is the set of the literals from X ′ that are relevant to the cr-rules in R′

X ∪ bU (R). Let
(XD, XU) be a similar partition of X and X∼ = XI ∪ X ′

D. From Definition 4, it is
not difficult to prove that 〈X∼, R′

X〉 is a candidate answer set of bU (Π). Furthermore,
eU (Π \ bU (Π), X) = eU (Π \ bU (Π), X∼). Hence, 〈Y,R \ bU (R)〉 is a candidate
answer set of eU (Π \ bU (Π), X∼).

Notice that R\bU (R) = (R′

X ∪ (R\bU (R)))\bU (R′

X), and that bU (R′

X) = bU (R′

X ∪
(R \ bU (R))). Therefore, 〈Y,R \ bU (R)〉 = 〈Y, (R′

X ∪ (R \ bU (R))) \ bU (R′

X ∪ (R \
bU (R)))〉, which allows us to conclude that 〈Y, (R′

X ∪ (R \ bU (R))) \ bU (R′

X ∪ (R \
bU (R)))〉 is a candidate answer set of eU (Π \ bU (Π), X∼). By Lemma 2, 〈X∼ ∪
Y,R′

X ∪ (R \ bU (R))〉 is a candidate answer set of Π . Because R′

X ⊂ bU (R) by
hypothesis, R′

X ∪ (R \ bU (R)) ⊂ R, which contradicts the assumption that, for every
candidate answer set 〈S′, R′〉 of Π , R′ 6⊂ R.

Let us now prove that (8) implies (10). By contradiction, suppose that, for every can-
didate answer set 〈S′, R′〉 of Π , R′ 6⊂ R, but that there exists a candidate answer set
〈Y ′, R′

Y 〉 of eU (Π \bU (Π), X) such that R′

Y ⊂ R\bU (R). Because R′

Y ⊂ R\bU (R),
from Lemma 2 we conclude that 〈X ∪ Y ′, bU (R) ∪ R′

Y 〉 is a candidate answer set of
Π , and that bU (R)∪R′

Y ⊂ R. But the hypothesis was that, for every candidate answer
set 〈S′, R′〉 of Π , R′ 6⊂ R. Contradiction.

Let us now prove that (9) and (10) imply (8). By contradiction, suppose that, for every
candidate answer set 〈S′

X , R′

X〉 of bU (Π), R′

X 6⊂ bU (R), and, for every candidate
answer set 〈S′

Y , R′

Y 〉 of eU (Π \ bU (Π), X), R′

Y 6⊂ R \ bU (R), but that there exists a
candidate answer set 〈S′, R′〉 of Π such that R′ ⊂ R. By Lemma 2, (i) 〈S′∩U, bU (R′)〉
is a candidate answer set of bU (Π), and 〈S′ \U,R′ \ bU (R′)〉 is a candidate answer set

of eU (Π \ bU (Π), S′ ∩ U). Notice that, because R′ ⊂ R, either bU (R′) ⊂ bU (R) or
R′ \ bU (R′) ⊂ R \ bU (R).

Case 1: bU (R′) ⊂ bU (R). It follows that 〈S′ ∩ U, bU (R′)〉 is a candidate answer set of
bU (Π) such that bU (R′) ⊂ bU (R). Contradiction.

Case 2: R′ \ bU (R′) ⊂ R \ bU (R). Let X ′ = S′ ∩ U , and (X ′

I , X
′

D) be the par-
tition of X ′ such that X ′

D consists of all of the literals of X that are relevant to the
cr-rules in bU (R′) ∪ bU (R). Let (XI , XD) be a similar partition of X . From Defini-
tion 4, it is not difficult to prove that 〈S ′ \ U,R′ \ bU (R′)〉 is a candidate answer set of
eU (Π \bU (Π), XI∪X ′

D). Moreover, eU (Π \bU (Π), XI∪X ′

D) = eU (Π \bU (Π), X).
Therefore, 〈S′ \ U,R′ \ bU (R′)〉 is a candidate answer set of eU (Π \ bU (Π), X), and
R′\bU (R′) ⊂ R\bU (R). This violates the assumption that, for every candidate answer
set 〈S′

Y , R′

Y 〉 of eU (Π \ bU (Π), X), R′

Y 6⊂ R \ bU (R). Contradiction.

References

1. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceed-
ings of ICLP-88. (1988) 1070–1080

2. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Computing (1991) 365–385

3. Marek, V.W., Truszczynski, M.: Stable models and an alternative logic programming
paradigm. In: The Logic Programming Paradigm: a 25-Year Perspective. Springer Verlag,
Berlin (1999) 375–398

4. Gelfond, M.: Representing Knowledge in A-Prolog. In Kakas, A.C., Sadri, F., eds.: Compu-
tational Logic: Logic Programming and Beyond, Essays in Honour of Robert A. Kowalski,
Part II. Volume 2408., Springer Verlag, Berlin (2002) 413–451

5. Baral, C.: Knowledge Representation, Reasoning, and Declarative Problem Solving. Cam-
bridge University Press (Jan 2003)

6. Balduccini, M., Gelfond, M.: Logic Programs with Consistency-Restoring Rules. In Doherty,
P., McCarthy, J., Williams, M.A., eds.: International Symposium on Logical Formalization
of Commonsense Reasoning. AAAI 2003 Spring Symposium Series (Mar 2003) 9–18

7. Balduccini, M.: USA-Smart: Improving the Quality of Plans in Answer Set Planning. In:
PADL’04. Lecture Notes in Artificial Intelligence (LNCS) (Jun 2004)

8. Baral, C., Gelfond, M., Rushton, N.: Probabilistic reasoning with answer sets. Journal of
Theory and Practice of Logic Programming (TPLP) (2005)

9. Balduccini, M., Gelfond, M., Nogueira, M.: Answer Set Based Design of Knowledge Sys-
tems. Annals of Mathematics and Artificial Intelligence (2006)

10. Son, T.C., Sakama, C.: Negotiation Using Logic Programming with Consistency Restoring
Rules. In: 2009 International Joint Conferences on Artificial Intelligence (IJCAI). (2009)

11. Lifschitz, V., Turner, H.: Splitting a logic program. In: Proceedings of the 11th International
Conference on Logic Programming (ICLP94). (1994) 23–38

12. Balduccini, M., Mellarkod, V.S.: CR-Prolog with Ordered Disjunction. In: International
Workshop on Non-Monotonic Reasoning, NMR2004. (Jun 2004)

13. Balduccini, M.: CR-MODELS: An Inference Engine for CR-Prolog. In: LPNMR 2007.
(May 2007) 18–30

14. Turner, H.: Splitting a Default Theory. In: Proceedings of AAAI-96. (1996) 645–651
15. Watson, R.: A Splitting Set Theorem for Epistemic Specifications. In: Proceedings of the

8th International Workshop on Non-Monotonic Reasoning (NMR’2000). (Apr 2000)

