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Abstract In this paper we describe an approach for integrating answer set pro-
gramming (ASP) and constraint programming, in which ASP is viewed as a
specification language for constraint satisfaction problems. ASP programs are
written in such a way that their answer sets encode the desired constraint satis-
faction problems; the solutions of those problems are then found using constraint
satisfaction techniques. Differently from other methods of integrating ASP and
constraint programming, our approach has the advantage of allowing the use of
off-the-shelf, unmodified ASP solvers and constraint solvers, and of global con-
straints, which substantially increases the practical applicability of the approach
to industrial-size problems.

1 Introduction

Answer Set Programming (ASP) [1,2,3] is a declarative programming paradigm with
roots in the research on non-monotonic logic and on the semantics of default negation
of Prolog.

In recent years, ASP has been applied successfully to solving complex problems (e.g.
[4,5]), and the underlying language has been extended in various directions to broaden
its applicability even further (e.g. [6,7]).

Particular interest has been recently devoted to the integration of ASP with Constraint
Logic Programming (CLP) (see [8,9] and the clingcon system1), aimed at combining
the ease of knowledge representation of ASP with the powerful support for numerical
computations of CLP. Such approaches are based on an extension of the ASP language,
and on the use of answer set and constraint solvers modified to work together. Although
the combination of ASP and CLP showed substantial performance improvements over
ASP alone, the restriction of using ad-hoc ASP and CLP solvers limits the practical
applicability of the approach. In fact, programmers can no longer select the solvers
that best fit their needs (most notably, SMODELS, DLV, SWI-Prolog and SICStus Pro-
log), as is instead commonly done in ASP. Another limit for the practical applicability
of the approach is the lack of specific support for global constraints. Without global
constraints, applications’ performance is often heavily impacted by the combinatorial

1 http://www.cs.uni-potsdam.de/clingcon/



explosion of the underlying search space, even for relatively small (compared to the
intended application domain) problem instances.

In this paper we describe an approach for integrating ASP and constraint program-
ming, in which ASP is viewed as a specification language for constraint satisfaction
problems. ASP programs are written in such a way that their answer sets encode the
desired constraint satisfaction problems; the solutions to those problems are found us-
ing constraint satisfaction techniques. Both the answer sets and the solutions to the
constraint problems can be computed with arbitrary off-the-shelf solvers, as long as a
(relatively simple) translation procedure is defined from the ASP encoding of the con-
straint problems to the input language of the constraint solver selected. Moreover, our
approach allows the use of the global constraints available in the selected constraint
solver. Compared to the other approaches to the integration of ASP and CLP, our tech-
nique allows programmers to exploit the full power of the state-of-the-art solvers when
tackling industrial-size problems.

The paper is organized as follows. We start by giving background notions of ASP and
constraint satisfaction. In Section 3, we describe our encoding of constraint satisfaction
problems in ASP and define its semantics. In Section 4 we explain how to compute
the solutions to the constraint problems encoded by the answer sets of ASP programs.
Section 5 compares our approach with existing research on integrating ASP and CLP.
In Section 6, we draw conclusions.

2 Background

The syntax and semantics of ASP are defined as follows. Let Σ be a signature contain-
ing constant, function and predicate symbols. Terms and atoms are formed as usual.
A literal is either an atom a or its strong (also called classical or epistemic) nega-
tion ¬a. The sets of atoms and literals formed from Σ are denoted by atoms(Σ) and
literals(Σ) respectively.

A rule is a statement of the form:2

h← l1, . . . , lm, not lm+1, . . . , not ln (1)

where h and li’s are literals and not is the so-called default negation. The intuitive
meaning of the rule is that a reasoner who believes {l1, . . . , lm} and has no rea-
son to believe {lm+1, . . . , ln}, has to believe h. We call h the head of the rule, and
{l1, . . . , lm, not lm+1, . . . , not ln} the body of the rule. Given a rule r, we denote its
head and body by head(r) and body(r) respectively.

A program is a pair 〈Σ,Π〉, where Σ is a signature and Π is a set of rules over Σ.
Often we denote programs by just the second element of the pair, and let the signature
be defined implicitly. In that case, the signature of Π is denoted by Σ(Π).

2 For simplicity we focus on non-disjunctive programs. Our results extend to disjunctive pro-
grams in a natural way.



A set A of literals is consistent if no two complementary literals, a and ¬a, belong to
A. A literal l is satisfied by a consistent set of literals A if l ∈ A. In this case, we write
A |= l. If l is not satisfied byA, we writeA 6|= l. A set {l1, . . . , lk} of literals is satisfied
by a set of literals A (A |= {l1, . . . , lk}) if each li is satisfied by A.

Programs not containing default negation are called definite. A consistent set of literals
A is closed under a definite program Π if, for every rule of the form (1) such that the
body of the rule is satisfied by A, the head belongs to A.

Definition 1. A consistent set of literals A is an answer set of definite program Π if
A is closed under all the rules of Π and A is set-theoretically minimal among the sets
closed under all the rules of Π .

The reduct of a program Π with respect to a set of literals A, denoted by ΠA, is the
program obtained from Π by deleting:

– Every rule, r, such that l ∈ A for some expression of the form not l from the body
for r;

– All expressions of the form not l from the bodies of the remaining rules.

We are now ready to define the notion of answer set of a program.

Definition 2. A consistent set of literals A is an answer set of program Π if it is an
answer set of the reduct ΠA.

To simplify the programming task, variables are often allowed to occur in ASP pro-
grams. A rule containing variables (called a non-ground rule) is then viewed as a short-
hand for the set of its ground instances, obtained by replacing the variables in it by all
the possible ground terms. Similarly, a non-ground program is viewed as a shorthand
for the program consisting of the ground instances of its rules.

Let us now turn our attention to Constraint Programming. In this paper we follow the
traditional definition of constraint satisfaction problem. The one that follows is adapted
from [10]. A Constraint Satisfaction Problem (CSP) is a triple 〈X,D,C〉, where X =
{x1, . . . , xn} is a set of variables, D = {D1, . . . , Dn} is a set of domains, such that
Di is the domain of variable xi (i.e. the set of possible values that the variable can be
assigned), and C is a set of constraints.3 Each constraint c ∈ C is a pair c = 〈σ, ρ〉
where σ is a list of variables and ρ is a subset of the Cartesian product of the domains
of such variables.

An assignment is a pair 〈xi, a〉, where a ∈ Di, whose intuitive meaning is that variable
xi is assigned value a. A compound assignment is a set of assignments to distinct vari-
ables from X . A complete assignment is a compound assignment to all the variables in
X .

3 Strictly speaking, the use of the same index i across sets X and D in the above definition of
the set of domains would require X and D to be ordered. However, as the definition of CSP is
insensitive to the particular ordering chosen, we follow the approach, common in the literature
on constraint satisfaction, of simply considering X and D sets and abusing notation slightly
in the definition of CSP.



A constraint 〈σ, ρ〉 specifies the acceptable assignments for the variables from σ. We
say that such assignments satisfy the constraint. A solution to a CSP 〈X,D,C〉 is a
complete assignment satisfying every constraint from C.

Constraints can be represented either extensionally, by specifying the pair 〈σ, ρ〉, or
intensionally, by specifying an expression involving variables, such as x < y. In this
paper we focus on constraints represented intensionally. A global constraint is a con-
straint that captures a relation between a non-fixed number of variables [11], such as
sum(x, y, z) < w and all different(x1, . . . , xk).

One should notice that the mapping of an intensional constraint specification into a
pair 〈σ, ρ〉 depends on the constraint domain. For example, the expression 1 ≤ x < 2
corresponds to the constraint 〈〈x〉, {〈1〉}〉 if the finite domain is considered, while it
corresponds to 〈〈x〉, {〈v〉 | v ∈ [1, 2)}〉 in a continuous domain. For this reason, and
in line with the CLP Schema [12,13], in this paper we assume that a CSP includes the
specification of the intended constraint domain.

3 Representing constraint problems in ASP

Our approach consists in writing ASP programs whose answer sets encode the desired
constraint satisfaction problems (CSPs). The solutions to the CSPs are then computed
using constraint satisfaction techniques.

CSPs are encoded in ASP using the following three types of statements.

– A constraint domain declaration is a statement of the form:

cspdomain(D)

where D is a constraint domain such as fd, q, or r. Informally, the statement states
that the CSP is over the specified constraint domain, thereby fixing an interpretation
for the intensionally specified constraints.

– A constraint variable declaration is a statement of the form:

cspvar(x, l, u)

where x is a ground term denoting a variable of the CSP (CSP variable or con-
straint variable for short), and l and u are numbers from the constraint domain. The
statement informally states that the domain of x is [l, u].4

– A constraint statement is a statement of the form:

required(γ)

where γ is an expression that intensionally represents a constraint on (some of)
the variables specified by the cspvar statements. Intuitively the statement says that

4 As an alternative, the domain of the variables could also be specified using constraints. We use
a separate statement for similarity with CLP languages.



the constraint intensionally represented by γ is required to be satisfied by any so-
lution to the CSP. For the purpose of specifying global constraints, we allow γ to
contain expressions of the form [δ/k]. If δ is a function symbol, the expression
intuitively denotes the sequence of all variables formed from function symbol δ
and with arity k, ordered lexicographically.5 For example, if given CSP variables
v(1), v(2), v(3), [v/1] denotes the sequence 〈v(1), v(2), v(3)〉. If δ is a relation
symbol and k ≥ 1, the expression intuitively denotes the sequence 〈e1, e2, . . . , en〉
where ei is the last element of the ith k-tuple satisfying relation δ, according to
the lexicographic ordering of such tuples. For example, given a relation r′ defined
by r′(a, 3), r′(b, 1), r′(c, 2) (that is, by tuples 〈a, 3〉, 〈b, 1〉, 〈c, 2〉), the expression
[r′/2] denotes the sequence 〈3, 1, 2〉.

Example 1. The following sets of statements encode simple CSPs:

A1 =
{cspdomain(fd),
cspvar(v(1), 1, 3), cspvar(v(2), 2, 5), cspvar(v(3), 1, 4),
required(v(1) + v(2) ≤ 4), required(v(2)− v(3) > 1),
required(sum([v/1]) ≥ 4)}

A2 =
{cspdomain(fd),
cspvar(start(j1), 1, 100), cspvar(start(j2), 25, 100),
cspvar(start(j3), 30, 80), cspvar(start(j4), 45, 150),
required(serialized([start/1], [duration/2]))}

In the rest of this paper, we consider signatures that contain:

– relations cspdomain, cspvar, required;
– constant symbols for the constraint domains FD, Q, andR
– suitable symbols for the variables, functions and relations used in the CSP;
– the numerical constants needed to encode the CSP.

Let A be a set of atoms formed from relations cspdomain, cspvar, and required. We
say that A is a well-formed CSP definition if:

– A contains exactly one constraint domain declaration;
– The same CSP variable does not occur in two or more constraint variable declara-

tions of A;
– Every CSP variable that occurs in a constraint statement from A also occurs in a

constraint variable declaration from A.

5 The choice of a particular order is due to the fact that global constraints that accept multiple
lists often expect the elements in the same position throughout the lists to be in a certain
relation. More sophisticated techniques for the specification of lists are possible, but, according
to our analysis of the use of global constraints in constraint satisfaction, this method should
work well in most cases.



Example 2. The following is not a well-formed CSP definition:

{cspdomain(fd), cspvar(x, 1, 2), required(x < y)}.

On the other hand, the sets of atoms from Example 1 are well-formed CSP definitions.

Let A be a well-formed CSP definition. The CSP defined by A is the triple 〈X,D,C〉
such that:

– X = {x1, x2, . . . , xk} is the set of all CSP variables from the constraint variable
declarations in A;

– D = {D1, D2, . . . , Dk} is the set of domains of the variables from X . The domain
Di of variable xi is given by arguments l and u of the constraint variable declaration
of xi in A, and consists of the segment between l and u in the constraint domain
specified by the constraint domain declaration from A.

– C is a set containing a constraint γ′ for each constraint statement required(γ) of
A. Constraint γ′ is obtained by:
1. Replacing the expressions of the form [f/k], where f is a function symbol, by

the list of variables from X formed by f and of arity k, ordered lexicographi-
cally;

2. Replacing the expressions of the form [r/k], where r is a relation symbol and
k ≥ 1, by the sequence 〈e1, . . . , en〉, where, for each i, r(t1, t2, . . . , tk−1, ei)
is the ith element of the sequence, ordered lexicographically, of atoms from A
formed by relation r;

3. Interpreting the resulting intensionally specified constraint w.r.t. the constraint
domain specified by the constraint domain declaration from A.

Example 3. Set A1 from Example 1 defines the CSP 〈X1, D1, C1〉:

– X1 = {v(1), v(2), v(3)}
– D1 = {{1, 2, 3}, {2, 3, 4, 5}, {1, 2, 3, 4}}

– C1 =

{

v(1) + v(2) ≤ 4, v(2)− v(3) > 1,
sum(v(1), v(2), v(3)) ≥ 4

}

Consider A2 from Example 1 and

I = {duration(j1, 20), duration(j2, 10),
duration(j3, 50), duration(j4, 60)}.

Set A2 ∪ I defines the CSP 〈X2, D2, C2〉:

– X2 = {start(j1), start(j2), start(j3), start(j4)}
– D2 = {{1, 2, . . . , 100}, {25, . . . , 100}, . . .}
– C2 =
{serialized([start(j1), start(j2), start(j3), start(j4)],

[20, 10, 50, 60])}



Let A be a set of literals. We say that A contains a well-formed CSP definition if the
set of atoms from A formed by relations cspdomain, cspvar, and required is a well-
formed CSP definition. We also say that a CSP is defined by a set of literals A if it is
defined by the well-formed CSP definition contained in A. Notice that, if a set A of
literals does not contain a well-formed CSP definition, A does not define any CSP. For
simplicity, in the rest of the discussion we omit the term “well-formed” and simply talk
about CSP definitions.

Definition 3. A pair 〈A,α〉 is an extended answer set of program Π iff A is an answer
set of Π and α is a solution to the CSP defined by A.

Example 4. Consider set A1 from Example 1. An extended answer set of A1 is:

〈A1, {(v(1), 1), (v(2), 3), (v(3), 1)}〉.

Example 5. Consider the program:

P1 =















































index(1). index(2). index(3). index(4).

cspdomain(fd).

cspvar(v(I), 1, 10)← index(I).

required(v(I1)− v(I2) ≥ 3)←
index(I1), index(I2),
I2 = I1 + 1.

An extended answer set of P1 is:

〈{index(1), . . . , index(4), cspdomain(fd),
cspvar(v(1), 1, 10), . . . , cspvar(v(4), 1, 10),
required(v(1)− v(2) ≥ 3), . . . ,
required(v(3)− v(4) ≥ 3)},
{(v(1), 10), (v(2), 7), (v(3), 4), (v(4), 1)}〉

Example 6. Consider the riddle:
“There are either 2 or 3 brothers in the Smith family. There is a 3 year difference
between one brother and the next (in order of age). The age of the eldest brother is
twice the age of the youngest. The youngest is at least 6 years old.”

A program, P2, that finds the solutions to the riddle is:

% There are either 2 or 3 brothers in the Smith family.
num brothers(2)← not num brothers(3).
num brothers(3)← not num brothers(2).

index(1).index(2).index(3).

is brother(B)←
index(B), index(N),
num brothers(N),
B ≤ N.

eldest brother(1).



youngest brother(B)←
index(B),
num brothers(B).

cspdomain(fd).

cspvar(age(B), 1, 80)← index(B), is brother(B).

% 3 year difference between one brother and the next.
required(age(B1)− age(B2) = 3))←

index(B1), index(B2),
is brother(B1), is brother(B2),
B2 = B1 + 1.

% The eldest brother is twice as old as the youngest.
required(age(BE) = age(BY ) ∗ 2)←

index(BE), index(BY ),
eldest brother(BE),
youngest brother(BY ).

% The youngest is at least 6 years old.
required(age(BY ) ≥ 6)←

index(BY ),
youngest brother(BY ).

An extended answer set of P2 is:

〈{num brothers(3),
cspvar(age(1), 1, 80), . . . , cspvar(age(3), 1, 80), . . .},
{(age(1), 12), (age(2), 9), (age(3), 6)}〉,

which states that there are 3 brothers, of age 12, 9, and 6 respectively. Notice that there
is no extended answer set containing num brothers(2).

4 Computing Extended Answer Sets

To compute the extended answer sets of a program, we combine the use of answer set
solvers and constraint solvers. The algorithm is as follows:

Algorithm Alg1
Input: program Π
Output: the set of extended answer sets of Π

1. E := ∅
2. Let A be the set of answer sets of Π containing a CSP definition.
3. For each A ∈ A:

(a) Select a constraint solver solveD for the constraint domain D specified by the
constraint domain declaration from A.

(b) Translate the CSP definition from A into an encoding χDA suitable for solveD.



(c) Let S = {α1, . . . , αk} be the set of solutions returned by solveD(χDA).
(d) For each α ∈ S, E := E ∪ 〈A,α〉.

4. Return E .

As can be seen from step (3b), the algorithm relies on the correctness of the translation
from the CSP definition to the encoding for the constraint solver. More precisely:

Definition 4. A translation algorithm Trans from CSP definitions to encodings suit-
able for a constraint solver solve is correct if α is a solution to the CSP defined by A
iff α is one of the answers returned by solve(Trans(A)).

The following theorems deal with the soundness and completeness of Alg1. Their
proofs are not difficult, and are omitted to save space.

Theorem 1. Let Π be a program and Trans be a translation algorithm as above. If
〈A,α〉 ∈ Alg1(Π) and Trans is correct, then 〈A,α〉 is an extended answer set of Π .

Theorem 2. Let Π be a program and Trans be a translation algorithm as above. If
〈A,α〉 is an extended answer set of Π , Trans is correct, and the solver selected for A
at step (3a) of the algorithm is complete for χDA , then 〈A,α〉 ∈ Alg1(Π).

A convenient way to compute the solutions of the CSPs at step (3c) is to use the con-
straint solvers embedded in CLP systems. Therefore, we describe an algorithm to trans-
late from a CSP definition to a CLP program. The translation algorithm assumes that the
constraint variables that occur in the CSP definition being translated are legal ground
terms for the CLP system, or that a suitable mapping to legal terms has implicitly taken
place, and that the CLP system can handle all the constraint domains of interest. The
algorithm is based on the CLP Schema [12,13].

Algorithm ψ
Input: a CSP definition A
Output: a CLP program P

1. P := ∅
2. ν := ∅ { CLP variables for the encoding of the CSP }
3. θ := ∅ { body of the top-level clause of P }
4. Retrieve atom cspdomain(D) from A.
5. Add to P a directive:6

: − use module(library(cs))

where cs is a suitable constraint solver for constraint domain D (e.g. clpfd, clpr).
6. For each cspvar(x, l, u) ∈ A:

(a) ν := ν ∪ {Vx}, where Vx is a fresh CLP variable.
(b) θ := θ ∪ {Vx ≥ l, Vx ≤ u}.

7. For each required(γ1) ∈ A:
(a) Obtain γ2 from γ1 by replacing every expression of the form [f/k] in γ1,

where f is a function symbol, with the list of all the CSP variables of the form
f(t1, t2, . . . , tk) declared in A, ordered lexicographically.

6 We use the syntax of SICStus [14]. The translation for other CLP systems is similar.



(b) Obtain γ3 from γ2 by replacing every expression of the form [r/k] in γ2, where
r is a relation symbol and k ≥ 1, by the list [e1, . . . , en], where, for each i,
r(t1, t2, . . . , tk−1, ei) is the ith element of the list, ordered lexicographically,
of atoms from A formed by r.

(c) Obtain γ4 from γ3 by replacing every occurrence of a CSP variable x in γ3 by
the corresponding Vx from ν.

(d) θ := θ ∪ {γ4}.
8. θ := θ ∪ {labeling(ν)}.7

9. λ := {(x, Vx) |x ∈ ν}.
10. P := P ∪ {solve(λ) : − θ}.
11. Return P .

Example 7. Consider the CSP definition

A3 =







cspdomain(fd).
cspvar(x, 1, 5). cspvar(y, 1, 5).
required(x < y).

Its translation into CLP is:

ψ(A3) =







































: − use module(library(clpfd)).

solve([(x, Vx), (y, Vy)]) : −
Vx ≥ 1, Vx ≤ 5,
Vy ≥ 1, Vy ≤ 5,
Vx < Vy,
labeling([Vx, Vy]).

Example 8. The CSP definition

A4 =















cspdomain(fd).
cspvar(var(a), 1, 5). cspvar(var(b), 2, 8).
duration(var(a), 4). duration(var(b), 2).
required(serialized([var/1], [duration/2])).

is translated by ψ into:

ψ(A4) =







































: − use module(library(clpfd)).

solve([(var(a), Vx), (var(b), Vy)]) : −
Vx ≥ 1, Vx ≤ 5,
Vy ≥ 2, Vy ≤ 8,
serialized([Vx, Vy], [4, 2]),
labeling([Vx, Vy]).

The following theorem ensures the correctness of the translation.

7 To simplify the notation, we allow sets to occur in CLP programs, although, strictly speaking,
they would have to be encoded as Prolog lists.



Theorem 3. The translation algorithm ψ is correct.

Proof. (Sketch)
According to Definition 4, we have to prove that, if A is a CSP definition, then α is
a solution to the CSP defined by A iff there exists a derivation from goal solve(S) in
ψ(A) that succeeds with substitution S|α.

Left-to-right. Let α be a solution to the CSP defined by A and let us prove that there
exists a derivation from goal solve(S) in ψ(A) that succeeds with substitution S|α.
Because the value assigned by α to each variable x is by definition within the domain
of the variable, the conditions added to the body of the clause for solve in step (6b)
are satisfied. Also, by definition α satisfies every constraint from the CSP defined by A.
Hence, it is not difficult to see that the conditions added to the body of the clause in step
(7d) are satisfied. Because all the conditions are satisfied by α, the call to predicate
labeling is bound to succeed, and the derivation is indeed successful.

Right-to-left. Now let α be such that goal solve(S) in ψ(A) succeeds with substitution
S|α, and let us prove that α is a solution to the CSP defined by A. First of all, notice
that, if goal solve(S) succeeds with substitution S|α, then all the conditions in the body
of the clause for solve must be satisfied. Since the call to labeling succeeds, all the Vx

variables are instantiated in α. Hence, α is a compound assignment, and moreover it
is a complete assignment by construction. Because the conditions added by step (6b)
are all satisfied, all the variables are guaranteed to have values within the respective
domains as specified in A. Finally, because the conditions added by step (7d) are all
satisfied, it is not difficult to conclude that the constraints from A are satisfied by α.
Hence, α is a solution to the CSP defined by A.

Q.E.D.

5 Related Work

The clingcon system8 integrates the answer set solver Clingo and the constraint solver
Gecode. The system thus differs significantly from ours in that programmers cannot
arbitrarily select the most suitable ASP and constraint solvers for the task at hand. As
the system is very recent, too little documentation is currently available about the system
for a thorough analysis.

The approach proposed by Mellarkod, Gelfond and Zhang [15,9] is based on an ex-
tension, AC(C), of the syntax and semantics of ASP and CR-Prolog allowing the use
of CSP-style constraints in the body of the rules. The assignment of values to the con-
straint variables is denoted by means of special atoms occurring in the body of the rules.
Such atoms are treated as abducibles, and their truth determined by solving a suitable
CSP. For example, an AC(C) program solving the same problem as the CSP defined in

8 http://www.cs.uni-potsdam.de/clingcon/



Example 5 is:
val(1). val(2). . . . val(10).
#csort(val).

index(1). index(2). index(3). index(4).
var(v(I))← index(I).
#mixed has value(var, val).

← V 1− V 2 < 3,

has value(v(I1), V 1), has value(v(I2), V 2),
index(I1), index(I2), I2 = I1 + 1.

Because constraint-related atoms (e.g. V 1−V 2 < 3 above) are allowed to occur in the
body of the rules, in a sense this approach allows feeding the results of solving CSPs
back into the ASP computation, allowing for further inference. For example in [9] the
authors show an ASP program containing the rules:

acceptable time(T )← 10 ≤ T ≤ 20.

acceptable time(T )← 100 ≤ T ≤ 120.

¬occurs(A, S)← at(S, T ), not acceptable time(T ).

where the application of (one of the ground instances of) the last rule depends on the
solutions to the constraints in the first two rules.

In practice, though, many problems can be solved by first generating a partial answer
using (non-extended) ASP, and then completing the answer by solving a CSP. It is
remarkable that most of the examples of use of AC(C) from [9] are structured in this
way.

Problems that combine planning and scheduling are particularly good candidates for
this approach. In Example 2 from [9] the authors solve such a problem by dividing the
program in a planning and a scheduling part. The planning part is written with the usual
ASP planning techniques, while the scheduling part introduces the assignment of (wall-
clock) times to the steps of the plan and imposes suitable constraints. The problem can
be easily solved using our approach by replacing the scheduling part from [9] with the
following rules:

cspdomain(fd).

cspvar(at(S), 0, 1440).

required(at(S0) ≤ at(S1))←
next(S1, S0).

required(at(S)− at(0) ≤ 60)←
goal(S).

required(at(S0)− at(S1) ≤ −20)←
next(S1, S0),
occurs(go to(john, home), S0),
holds(at loc(john, office), S0).



In fact, there is a whole subclass ofAC(C) programs that can be automatically translated
into “equivalent” ASP programs encoding suitable CSPs, as we show next.

Let us consider the class of AC0 programs without consistency restoring rules (from
now on simply called AC0 programs). We will show that these programs can be trans-
lated into ASP programs whose extended answer sets correspond to the answer sets of
the original programs.

We start by defining a translation from AC0 programs to ASP programs. For sim-
plicity, we assume that all mixed predicates in Π have a single constraint parame-
ter (extending to multiple constraint parameters is not difficult). Given a mixed atom
m(t1, t2, . . . , tk−1, tk) where ti’s are terms, we call functional representation of the
mixed atom the expression m(t1, t2, . . . , tk−1). For example, the functional represen-
tation of at(S0, T0) is at(S0).

Let Π be an AC0 program. The ASP-translation, Π ′, of Π is obtained from Π by:

– Adding a fact cspdomain(D), where D is an appropriate constraint domain.
– Replacing each declaration #mixed m(p1, p2, . . . , pk−1, pk) by a rule:

cspvar(m(X1, X2, . . . , Xk−1), l, u)←
p1(X1), p2(X2), . . . , pk−1(Xk−1).

where l and u are the lower and upper bounds of constraint sort pk and Xi’s are
variables.9

– Replacing each denial in the middle part of Π of the form:

← Γ, c (2)

where c is the constraint literal, by a rule required(¬c′)← Γ ′, where c′ is obtained
by replacing every variable in c by the functional representation of the correspond-
ing mixed atom and Γ ′ is the set of regular literals from Γ . Notice that ¬c′ can
be typically simplified by replacing the comparison symbol in c′ appropriately. For
example, the denial, d1:

← goal(S), at(0, T1), at(S, T2), T2− T1 > 60

is replaced by the rule:

required(at(S)− at(0) ≤ 60)← goal(S).

In the rest of the discussion, the expression c(d) will denote the constraint, c, from
the body of a denial d of the form (2). For example, given denial d1 above, c(d1) is
T2− T1 > 60.

Notice that the semantics ofAC0, differently from that of ASP programs, is defined for
possibly non-ground programs. In fact, because of the intended use of constraint atoms,

9 The bounds can be easily extracted from the definition of sort pk in Π . If the domain does not
consist of a single interval, extra constraints can be added to the CSP definition, but we will
assume a single interval for simplicity.



one would typically expect variables to be used for the constraint parameters of mixed
literals and the corresponding arguments in the constraints. Therefore, we assume that
in Π variables are used for the constraint parameters of mixed predicates.

We say that a partial-ground rule is a rule where the only variables occur as constraint
parameters of the mixed predicates and as arguments of the constraint atoms. The par-
tial grounding of a rule r is obtained by grounding all the variables of r, except those
that occur as constraint parameters of mixed predicates. The set of partial-ground rules
obtained this way is denoted by pground(r).

We say that a ground denial d of the form (2) is constraint-blocked w.r.t. set of ground
literals A if Γ is satisfied by A. The following is an important property of constraint-
blocked ground denials.

Proposition 1. Let Π be an AC0 program. For every answer set A of Π and every
ground mixed-part denial d, if d is constraint-blocked w.r.t. A, then its constraint c(d)
is not satisfied.

We say that a partial-ground denial d of the form (2) is constraint-blocked w.r.t. A if
some ground instance of d is constraint-blocked w.r.t. A.

Theorem 4. Every AC0 program Π can be translated into an ASP program whose
extended answer sets are in one-to-one correspondence with the answer sets of Π .

Proof. Because of space restrictions, we omit the complete proof. However, we believe
that it is useful to show the mapping that the proof is based upon.

Let Π be an AC0 program and Π ′ be its translation, as described above. We define a
mapping µΠ from a set A of literals from the signature of Π into a pair 〈A′, α〉, where
A′ is a set of literals and α is an association of values to CSP variables. The mapping
is defined as follows:

– For each ground mixed atom m(t1, t2, . . . , tk−1, tk) from A, α maps the CSP vari-
able denoted by m(t1, t2, . . . , tk−1) to value tk.

– A′ ⊇ (A \mixed(Π)).
– A′ includes an atom cspdomain(D), whereD is an appropriate constraint domain.
– For every ground mixed atom m(t1, . . . , tk−1, tk) ∈ A, A′ includes an atom
cspvar(m(t1, . . . , tk−1), l, u) where l and u are the lower and upper bounds of
the constraint sort of the last argument of predicate m.

– For every denial d from the middle part of Π and every partial-grounding d∗ of d
that is constraint-blocked w.r.t. A, A′ includes the atom required(¬c′), where c′ is
obtained from the constraint atom c of d∗ by replacing every variable in c by the
functional representation of the corresponding mixed atom from body(d∗).

6 Conclusions

In this paper we have shown how ASP and constraint satisfaction can be integrated
by viewing ASP as a specification language for constraint satisfaction problems. This
approach allows a useful integration of the two paradigms without the need to extend



the language of ASP, without the need for ad-hoc solvers, and with support for global
constraints. The last two features seem particularly appealing for the development of
industrial-size applications. The paper also contains results showing that an important
subclass of AC(C) programs can be automatically rewritten using our method.

Although space restrictions prevented us from discussing it here, our experiments have
also shown that our technique produces programs that are significantly more compact
and easy to understand than similar programs written in CLP alone, but with comparable
performance. We plan to discuss this further in an extended paper.
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