
CR-MODELS : An Inference Engine for CR-Prolog

Marcello Balduccini

Computer Science Department
Texas Tech University

Lubbock, TX 79409 USA
marcello.balduccini@ttu.edu

Abstract CR-Prolog is an extension of the knowledge representation language
A-Prolog. The extension is built around the introduction ofconsistency-restoring
rules (cr-rules for short), and allows an elegant formalization of events or ex-
ceptions that are unlikely, unusual, or undesired. The flexibility of the language
has been extensively demonstrated in the literature, with examples that include
planning and diagnostic reasoning.
In this paper we present the design of an inference engine for CR-Prolog that is
efficient enough to allow the practical use of the language for medium-size appli-
cations. The capabilities of the inference engine have been successfully demon-
strated with experiments on an application independently developed for use by
NASA.

1 Introduction

In recent years, A-Prolog – a knowledge representation language based on the answer
set semantics [8] – was shown to be a useful tool for knowledge representation and
reasoning (e.g. [7,5]). The language is expressive and has a well understood method-
ology of representing defaults, causal properties of actions and fluents, various types
of incompleteness, etc. Over time, several extensions of A-Prolog have been proposed,
aimed at improving event further the expressive power of the language.

One of these extensions, called CR-Prolog [3], is built around the introduction of
consistency-restoring rules(cr-rules for short). The intuitive idea behind cr-rules is that
they are normally not applied, even when their body is satisfied. They are only applied
if the regular program (i.e. the program consisting only of conventional A-Prolog rules)
is inconsistent. The language also allows the specification of a partial preference order
on cr-rules, intuitively regulating the application of cr-rules.

One of the most immediate uses of cr-rules is an elegant encoding of events or
exceptions that are unlikely, unusual, or undesired (and preferences can be used to for-
malize the relative likelihood of these events and exceptions).

The flexibility of CR-Prolog has been extensively demonstrated in the literature
[3,1,6,4], with examples including planning and diagnostic reasoning. For example, in
[3], cr-rules have been used to model exogenous actions that may occur, unobserved,
and cause malfunctioning in a physical system. In [1,4], cr-rules have been applied to
the task finding high quality plans. The technique consists in encoding requirements
that high quality plans must satisfy, and using cr-rules to formalize exceptions to the
requirements, that should be considered only as a last resort.

Most of the uses of CR-Prolog in the literature are not strongly concerned with
computation time, and use relatively simple prototypes of CR-Prolog inference engines.
However, to allow the use of CR-Prolog for practical applications, an efficient inference
engine is needed. In this paper, we present the design of an inference engine for CR-
Prolog that is efficient enough to allow the practical use of CR-Prolog for medium-size
applications. The paper is organized as follows. In the next section, we introduce the
syntax and semantics of CR-Prolog. Section 3 contains the description of the algorithm
of the inference engine. Finally, in Section 4 we talk about related work and draw con-
clusions.

2 CR-Prolog

Like A-Prolog, CR-Prolog is a knowledge representation language that allows the for-
malization of commonsense knowledge and reasoning. The consistency-restoring rules
introduced in CR-Prolog allow the encoding of statements that should be used “as rarely
as possible, and only if strictly necessary to obtain a consistent set of conclusions,” with
preferences intuitively determining which statements should be given precedence. The
language has been shown to allow the elegant formalization of various sophisticated
reasoning tasks that are problematic to encode in A-Prolog.

The syntax of CR-Prolog is determined by a typed signatureΣ consisting of types,
typed object constants, and typed function and predicate symbols. We assume that the
signature contains symbols for integers and for the standard functions and relations of
arithmetic. Terms are built as in first-order languages.

By simple arithmetic termsof Σ we mean its integer constants. Bycomplex arith-
metic termsof Σ we mean terms built from legal combinations of arithmetic functions
and simple arithmetic terms (e.g.3+ 2 ·5 is a complex arithmetic term, but3+ · 2 5
is not). Atoms are expressions of the formp(t1, . . . , tn), wherep is a predicate symbol
with arity n andt ’s are terms of suitable types. Atoms formed by arithmetic relations
are calledarithmetic atoms. Atoms formed by non-arithmetic relations are calledplain
atoms. We allow arithmetic terms and atoms to be written in notations other than pre-
fix notation, according to the way they are traditionally written in arithmetic (e.g. we
write 3 = 1+ 2 instead of= (3,+(1,2))). Literals are atoms and negated atoms, i.e.
expressions of the form¬p(t1, . . . , tn). Literalsp(t1, . . . , tn) and¬p(t1, . . . , tn) are called
complementary. By l we denote the literal complementary tol . The syntax of the state-
ments of CR-Prolog is defined as follows.

Definition 1. A regular ruleρ is a statement of the form:

r : h1 OR h2 OR . . . OR hk← l1, l2, . . . lm,not lm+1,not lm+2, . . . ,not ln. (1)

wherer is a term that uniquely denotesρ (called name of the rule),l1, . . . , lm are literals,
andhi ’s andlm+1, . . . , ln are plain literals. We callh1 OR h2 OR . . . OR hk theheadof
the rule (head(r)); l1, l2, . . . lm,not lm+1,not lm+2, . . . ,not ln is its body (body(r)), and
pos(r), neg(r) denote, respectively,{l1, . . . , lm} and{lm+1, . . . , ln}.
The informal reading of the rule (in terms of the reasoning of a rational agent about its
own beliefs) is the same used in A-Prolog: “if you believel1, . . . , lm and have no reason

to believelm+1, . . . , ln, then believe one ofh1, . . . ,hk.” The connective “not” is called
default negation. To simplify the presentation, we allow the rule name to be omitted
whenever possible.

A rule such thatk = 0 is calledconstraint, and is considered a shorthand of:

f alse← not f alse, l1, l2, . . . lm,not lm+1,not lm+2, . . . ,not ln.

Definition 2. A consistency-restoring rule(or cr-rule) is a statement of the form:

r : h1 OR h2 OR . . . OR hk
+← l1, l2, . . . lm,not lm+1,not lm+2, . . . ,not ln. (2)

wherer, hi ’s andl i ’s are as before.

The intuitive reading of a cr-rule is “if you believel1, . . . , lm and have no reason to be-
lieve lm+1, . . . , ln, then youmay possiblybelieve one ofh1, . . . ,hk.” The implicit assump-
tion is that this possibility is used as little as possible, and only to restore consistency
of the agent’s beliefs.

Definition 3. A CR-Prolog programis a pair 〈Σ ,Π〉, whereΣ is a typed signature and
Π is a set of regular rules and cr-rules.

In this paper we often denote programs of CR-Prolog by their second element. The
corresponding signature is denoted byΣ(Π). We also extend the basic operations on
sets to programs in a natural way, so that, for example,Π1∪Π2 is the program whose
signature and set of rules are the unions of the respective components ofΠ1 andΠ2.

The terms, atoms and literals of a programΠ are denoted respectively
by terms(Π), atoms(Π) and literals(Π). Given a set of relations{p1, . . . , pm},
atoms({p1, . . . , pm},Π) denotes the set of atoms from the signature ofΠ formed by
everypi . literals({p1, . . . , pm},Π) is defined in a similar way. To simplify notation, we
allow the use ofatoms(p,Π) as an abbreviation ofatoms({p},Π) (and similarly for
literals).

Given a CR-Prolog program,Π , theregular partof Π is the set of its regular rules,
and is denoted byreg(Π). The set of cr-rules ofΠ is denoted bycr(Π).
Example 1.

{
r1 : p

+← not r. r2 : q
+← not r.

s. ← not p,not q.

The regular part of the program (consisting of the last two rules) is inconsistent. Con-
sistency can be restored by applying eitherr1 or r2, or both. Since cr-rules should be
applied as little as possible, the last case is not considered. Hence, the agent is forced to
believe either{s, p} or {s,q}.1
When different cr-rules are applicable, it is possible to specify preferences on which
one should be applied by means of atoms of the formpre f er(r1, r2), wherer1, r2 are
names of cr-rules. The atom informally says “do not consider solutions obtained using
r2 unless no solution can be found usingr1.” The next example shows the effect of the
introduction of preferences in the program from Example 1.

1 The examples in this section are only aimed at illustrating the features of the language, and not
its usefulness. Please refer to e.g. [3,1] for more comprehensive examples.

Example 2.

r1 : p
+← not r. r2 : q

+← not r.
s. pre f er(r1, r2).
← not p,not q.

The preference prevents the agent from applyingr2 unless no solution can be found
using r1. We have seen already thatr1 is sufficient to restore consistency. Hence, the
agent has only one set of beliefs,{s, p, pre f er(r1, r2)}
Notice that our reading of the preference atompre f er(r1, r2) rules out solutions in
whichr1 andr2 are applied simultaneously, as the use ofr2 is allowed only if no solution
is obtained by applyingr1.

As usual, we assume that rules containing variables are shorthands for the sets of
their ground instances

Now we define the semantics of CR-Prolog. In the following discussion,Π denotes
an arbitrary CR-Prolog program. Also, for everyR′ ⊆ cr(Π), θ(R′) denotes the set of

regular rules obtained fromR′ by replacing every connective
+← with ←. Notice that

the regular part of any CR-Prolog program is an A-Prolog program. We will begin by
introducing some terminology.

An atom is innormal formif it is an arithmetic atom or if it is a plain atom and its
arguments are either non-arithmetic terms or simple arithmetic terms. Notice that liter-
als that are not in normal form can be mapped into literals in normal form by applying
the standard rules of arithmetic. For example,p(4+ 1) is mapped intop(5). For this
reason, in the following definition of the semantics of CR-Prolog, we assume that all
literals are in normal form.

A literal l is satisfiedby a consistent set of plain literalsS(denoted byS|= l) if: (1) l
is an arithmetic literal and is true according to the standard arithmetic interpretation; or
(2) l is a plain literal andl ∈ S. If l is not satisfied byS, we writeS 6|= l . An expression
not l , wherel is a plain literal, is satisfied byS if S 6|= l . A set of literals and literals
under default negation (notl) is satisfied byS if each element of the set is satisfied by
S. A rule is satisfied byS if either its head is satisfied or its body is not satisfied.

Next, we introduce the transitive closure of relationpre f er. To simplify the presen-
tation, we use, whenever possible, the same term to denote both a rule and its name. For
example, given rulesr1, r2 ∈ cr(Π), the fact thatr1 is preferred tor2 will be expressed
by a statementpre f er(r1, r2). Notice that this is made possible by the fact that rules are
uniquely identified by their names.

Definition 4. For every set of literals,S, from the signature ofΠ , and everyr1,r2 from
cr(Π), pre fS(r1, r2) is true iff (1) pre f er(r1, r2)∈S, or (2) there existsr3 ∈ cr(Π) such
that pre f er(r1, r3) ∈ Sandpre fS(r3, r2).

To see how the definition works, consider the following example.

Example 3.GivenS= {pre f er(r1, r2), pre f er(r2, r3),a,q, p} andcr(Π) consisting of
cr-rulesr1, r2, r3:

– pre fS(r1, r2) holds (becausepre f er(r1, r2) ∈ S).

– pre fS(r2, r3) holds (becausepre f er(r2, r3) ∈ S).
– pre fS(r1, r3) holds (becausepre f er(r1, r2) ∈ Sandpre fS(r2, r3) holds).

The semantics of CR-Prolog is given in three steps. Intuitively, in the first step
we look for combinations of cr-rules that restore consistency. Preferences are not con-
sidered, with the exception that solutions deriving from the simultaneous use of two
cr-rules between which a preference exists are discarded.

Definition 5. Let S⊆ literals(Π) andR⊆ cr(Π). V = 〈S,R〉 is aviewof Π if:

1. S is an answer set ofreg(Π)∪θ(R), and
2. for everyr1, r2, if pre fS(r1, r2), then{r1, r2} 6⊆ R, and
3. for everyr in R, body(r) is satisfied byS.

We denote the elements ofV by V S andV R respectively. The cr-rules inV R are said
to beapplied.

Example 4.Consider the program,P1:

r1 : t
+← . r2 : p

+← q.

r3 : s
+← . r4 : q

+← .
← not t,not p,not s. pre f er(r1, r3).

The regular part of the program is inconsistent. According to Definition 5,V1 =
〈{t, pre f er(r1, r3)},{r1}〉 is a view ofP1. In fact: (1)V S

1 is an answer set ofreg(P1)∪
θ(V R

1); (2) {r1, r3} 6⊆V R
1 ; and (3) the body ofr1 is trivially satisfied. On the other hand,

Vx = 〈{t,s, pre f er(r1, r3)},{r1, r3}〉 is not a view ofP1, because it does not satisfy con-
dition (2) of the definition. In fact,pre fV S

1
(r1, r3) holds but{r1, r3} ⊆ V R

1 . Similarly,

Vy = 〈{t, pre f er(r1, r3)},{r1, r2}〉 is not a view ofP1. In this case, condition (3) of the
definition is not satisfied, as the body ofr2 does not hold inV S

1 . It is not difficult to show
that the views ofP1 are (from now on, we omit preference atoms, whenever possible, to
save space):

V1 = 〈{t},{r1}〉 V2 = 〈{t,q},{r1, r4}〉
V3 = 〈{s},{r3}〉 V4 = 〈{s,q},{r3, r4}〉
V5 = 〈{p,q},{r2, r4}〉 V6 = 〈{s, p,q},{r2, r3, r4}〉
V7 = 〈{t, p,q},{r1, r2, r4}〉

The second step in the definition of the answer sets ofΠ consists in selecting the
best views with respect to the preferences specified. Particular attention must be paid to
the case when preferences are dynamic. The intuition is that we consider only prefer-
ences on which there is agreement in the views under consideration.

Definition 6. For every pair of views ofΠ , V1 andV2, V1 dominatesV2 if there exist
r1 ∈ V R

1 , r2 ∈ V R
2 such thatpre f(V S

1 ∩V S
2)(r1, r2).

Example 5.Let us consider the views of programP1 from Example 4. ViewV1 dom-
inatesV3: in fact, V S

1 ∩V S
3 = {pre f er(r1, r3)} and pre f{pre f er(r1,r3)}(r1, r3) obviously

holds. On the other hand,V1 does not dominateV5, as neitherpre f{pre f er(r1,r3)}(r1, r2)
nor pre f{pre f er(r1,r3)}(r1, r4) hold.

Definition 7. A view, V , is a candidate answer set ofΠ if, for every viewV ′ of Π , V ′
does not dominateV .

Example 6.According to the conclusions from Example 4,V3 is
not a candidate answer ofP1, as it is dominated byV1. Conversely, it is not
difficult to see thatV1 is not dominated by any other view, and is therefore a
candidate answer set. Overall, the candidate answer sets ofP1 are:
V1 = 〈{t},{r1}〉 V2 = 〈{t,q},{r1, r4}〉 V5 = 〈{p,q},{r2, r4}〉 V7 = 〈{t, p,q},{r1, r2, r4}〉 .

Finally, we select the candidate answer sets that are obtained by applying a minimal
set (w.r.t. set-theoretic inclusion) of cr-rules.

Definition 8. A set of literals,S, is ananswer setof Π if:

1. there existsR⊆ cr(Π) such that〈S,R〉 is a candidate answer set ofΠ , and
2. for every candidate answer set〈S′,R′〉 of Π , R′ 6⊂ R.

Example 7.ConsiderV1 andV2 from the list of the candidate answer sets ofP1 from
Example 6. SinceV R

1 ⊆ V R
2 , V2 is not an answer set ofP1. According to Definition 8,

the answer sets ofP1 are: V1 = 〈{t},{r1}〉 V5 = 〈{p,q},{r2, r4}〉 .

It is worth pointing out how the above definitions deal with cyclic preferences. For sim-
plicity, let us focus on static preferences. Letr be a cr-rule that occurs in the preference
cycle. It is not difficult to see that, for any viewV , pre f(V S∩V S)(r, r) holds. This pre-
vents any view wherer is used from being a candidate answer set. Hence, the cr-rules
involved in preference cycle cannot be used to restore consistency.

3 The CRMODELS Algorithm

The algorithm for computing the answer sets of CR-Prolog programs is based on a
generate-and-test approach. We begin our description ofCRMODELSby presenting the
algorithm at a high level of abstraction. Next, we increase the level of detail in various
steps, until we have a complete specification ofCRMODELS.

At a high level of abstraction, one answer set of a CR-Prolog programΠ can be
computed as show below (Figure 1). Notice that, in the algorithm,⊥ is used to indicate
the absence of a solution. The algorithm begins by looking for a viewV such that
|V R| = 0. If one is found,CRMODELS1 checks thatV is a candidate answer set ofΠ
(line 5). Notice that, because|V R| = 0, the condition of Definition 6 is never satisfied
(as there is nor ∈ V R). Hence, if a view if found fori = 0, that view is a candidate
answer set, which causes the test at line5 to succeed. Such a candidate answer set is
also minimal w.r.t. set-theoretic inclusion onV R, which implies thatV S is an answer
set ofΠ according to Definition 8. Hence, the algorithm returnsV S and terminates.

Now let us consider what happens if no view is found fori = 0. According to line4,
V is set to⊥, which causes the test on line5 to fail. Because the termination condition
of the inner loop (line8) is true, the loop terminates,i is incremented and, assuming
Π contains at least one cr-rule, execution goes back to line4, where a viewV with

Algorithm: CRMODELS 1
input: Π : CR-Prolog program
output: one answer set ofΠ
var i: number of cr-rules to be applied
1. i := 0 { first we look for an answer set ofreg(Π) }
2. while (i ≤ |cr(Π)|) do { outer loop }
3. repeat { inner loop }
4. generate new viewV of Π s.t. |V R|= i; if none is found,V :=⊥
5. i f V is candidate answer set ofΠ then{ test fails ifV =⊥ }
6. returnV S { answer set found}
7. end i f
8. until V =⊥
9. i := i +1 { consider views obtained with a larger number of cr-rules}
10. done
11. return⊥ { signal that no answer set was found}

Figure 1. Algorithm CRMODELS1

|V R| = 1 is computed. It is important to notice2 that, because of the iteration over
increasing values ofi in the outer loop (lines2–10), the first candidate answer set found
by the algorithm is always guaranteed to be set-theoretically minimal (with respect to
the set of cr-rules used). Hence, according to Definition 8,V S is an answer set ofΠ .
That explains why the return statement at line6 is executed without further testing. If
no candidate answer set is found fori = 1, the iterations of the outer loop continue for
increasing values ofi until either a candidate answer set is found or the condition on
line 2 becomes false (i.e. all possible combinations of cr-rules have been considered).
In this case, the algorithm returns⊥.

In our approach, both the generation and the test steps (lines4 and 5 in Figure
1) are reduced to the computation of answer sets ofA-Prolog programs. To allow a
compact representation of the A-Prolog programs involved in these steps, we introduce
the followingmacros.

– A macro-rule of the form:{p(X)}. informally says that anyX can have propertyp,
and stands for the rules:p(X)← not ¬p(X). ¬p(X)← not p(X).

– A macro-rule of the form:← not i{p(X)} j. informally states that only betweeni
and j X ’s can have propertyp and is expanded as follows. Lett denote the car-
dinality of the ground atoms of the formp(X) and∆(m) denote the collection of
inequalities:Xk 6= Xh for everyk, h such that1≤ k ≤ m,1≤ h≤ m,k 6= h. The
macro-rule stands for:

← p(X1), p(X2), . . . , p(Xj), p(Xj+1),∆(j +1).
← not p(X1),not p(X2), . . . ,not p(Xj−i),∆(j− i).

We call the former achoice macroand the latter acardinality macro. These macros
allow for compact programs without committing to a particular extension of A-Prolog
(and to its inference engine). Moreover, the structure of the macros is simple enough

2 A refinement of this statement is proven in [2].

to allow their translation, at the time of the implementation of the algorithm, to more
efficient expressions, specific of the inference engine used.

Central to the execution of steps5 and 6 of the algorithm is the notion ofhard
reduct. The hard reduct of a CR-Prolog programΠ , denoted byhr(Π), mapsΠ into
an A-Prolog program. The importance ofhr(Π) is in the fact thatthere is a one-to-one
correspondence between the views ofΠ and the answer sets ofhr(Π) [2].

The signature ofhr(Π) is obtained from the signature ofΠ by the addition of
predicate symbolsappl, is pre f erred, bodytrue, o appl, o is pre f erred, dominates.
For simplicity we assume that none of those predicate names occurs in the signature of
Π . We also assume that the signature ofΠ already contains the predicate namepre f er.
In the description of the hard reduct that follows, variableR, possibly indexed, ranges
over the names of cr-rules.

Definition 9 (Hard Reduct of Π). LetΠ be a CR-Prolog program. The hard reduct of
Π , hr(Π), consists of:

1. Every regular rule fromΠ .
2. For every cr-rule r ∈ cr(Π) with head h1 OR . . . OR hk

and body l1, . . . lm,not lm+1, . . . ,not ln, two rules:
h1 OR . . . OR hk ← l1, . . . lm,not lm+1, . . . ,not ln,appl(r). and
bodytrue(r)← l1, . . . lm,not lm+1, . . . ,not ln.

3. The generator rule, (intuitively allowing the application of arbitrary sets of cr-
rules):{ appl(R)}.

4. A constraint prohibiting the application of a cr-rule when its the body is not satis-
fied (intuitively corresponding to condition (3) of Definition 5):

← not bodytrue(R),appl(R).

5. Rules defining the transitive closure of relationpre f er:

is pre f erred(R1,R2)← pre f er(R1,R2).
is pre f erred(R1,R2)← pre f er(R1,R3), is pre f erred(R3,R2).

6. A rule prohibiting the application of cr-rulesr1 andr2 if r1 is preferred tor2 (intu-
itively corresponding to condition (2) of Definition 5):

← appl(R1),appl(R2), is pre f erred(R1,R2).

Example 8.Let us compute the hard reduct of the following program,P2:
{

r1 : p
+← not q. r2 : s

+← .
r3 :← not p,not s. r4 : pre f er(r1, r2).

According to item (1) above,hr(P2) contains the regular rulesr3 andr4. For cr-ruler1,
hr(P2) contains{p← not q,appl(r1). bodytrue(r1)← not q.}. Forr2, hr(P2) contains
{s← appl(r2). bodytrue(r2).}. Items (3 – 6) result in the addition of the rules:

{appl(R)}. ← not bodytrue(R),appl(R).
is pre f erred(R1,R2)← pre f er(R1,R2). ← appl(R1),appl(R2), is pre f erred(R1,R2).
is pre f erred(R1,R2)← pre f er(R1,R3), is pre f erred(R3,R2).

The answer sets ofhr(P2) are:

{p,appl(r1),bodytrue(r1),bodytrue(r2), pre f er(r1, r2), is pre f erred(r1, r2)}
{s,appl(r2),bodytrue(r1),bodytrue(r2), pre f er(r1, r2), is pre f erred(r1, r2)}

corresponding to the viewsV1 = 〈{p, pre f er(r1, r2)},{r1}〉,V2 = 〈{s, pre f er(r1, r2)},{r2}〉.

In the generation step of the algorithm (line4 from Figure 1), we find a viewV of Π
such thatV R has a specified cardinalityi (the task of finding anewview satisfying the
condition will be addressed later). The task is reduced to that of computing an answer
set ofhr(Π) containing exactlyi occurrences of atoms of the formappl(R). In turn,
this is reduced to finding an answer set of thei-generator ofΠ , γi(Π), defined below.

Definition 10 (i-Generator of Π). Let Π be a CR-Prolog program, andi a non-
negative integer such thati ≤ |cr(Π)|. Thei-generator ofΠ is the program:hr(Π) ∪
{ ← not i{appl(R)}i. }.

It is not difficult to show thatγi(Π) has the following properties [2]: (1)M is an answer
set ofγ0(Π) iff M ∩ Σ(Π) is an answer set ofreg(Π); (2) Every answer set ofγi(Π)
is an answer set ofhr(Π); (3) Every answer setM of γi(Π) contains exactlyi atoms of
the formappl(R).

Example 9.Consider programP2 from Example 8. Thei-generators forP2 for various
values ofi and the corresponding answer sets are as follows:

– γ0(P2) = hr(P2) ∪ { ← not 0{appl(R)}0 }.
The program has no answer sets, since the constraint prevents any cr-rules from
being applied and the regular part ofP2 is inconsistent.

– γ1(P2) = hr(P2) ∪ { ← not 1{appl(R)}1 }.
The program allows the application of1 cr-rule at a time. Its answer sets are:

{p,appl(r1),bodytrue(r1),bodytrue(r2), pre f er(r1, r2), is pre f erred(r1, r2)}
{s,appl(r2),bodytrue(r1),bodytrue(r2), pre f er(r1, r2), is pre f erred(r1, r2)}

– γ2(P2) = hr(P2) ∪ { ← not 2{appl(R)}2 }.
The program is inconsistent. In fact, of the only two cr-rules inP2, one is preferred
to the other, and the constraint added tohr(P2) by item (6) of Definition 9 prevents
the application of two cr-rules if one of them is preferred to the other.

Intuitively, the task of generating anewview at each execution of line4 of the algorithm
can be accomplished, withγi(Π), by keeping track of the answer sets ofγi(Π) found
so far and by adding suitable constraints to prevent them from being generated again.
More precisely, for each answer setM that has already been found, we need a constraint
{← λ (M),ν(M).} whereλ (M) is the list of the literals that occur inM andν(M) is a
list not l1,not l2, . . . ,not lk containing all the literals from the signature ofhr(Π) that
do not belong toM. Let U be the set of the constraints for all the answer sets that
have already been found. It is not difficult to see that the answer sets of the program:
γi(Π) ∪U correspond exactly to the “new” answer sets ofγi(Π).

The test step of the algorithm (line5 from Figure 1) checks whether a viewV
found during the generation step is a candidate answer set ofΠ . Let M be the answer
set corresponding toV . The test is reduced to checking whether a suitable A-Prolog
program is consistent. The A-Prolog program is called thetesterfor M w.r.t Π , and is
defined below.

Definition 11 (Tester for M w.r.t. Π , τ(M,Π)). Let Π be a CR-Prolog program and
M be an answer set corresponding to a viewV of Π . Thetesterfor M w.r.t.Π , τ(M,Π),
contains:

1. The hard reduct ofΠ .
2. For each atomappl(r) ∈M, a rule: o appl(r).
3. For each atomis pre f erred(r1, r2) ∈M, a rule: o is pre f erred(r1, r2).
4. The rules:

dominates← appl(R1),o appl(R2),
is pre f erred(R1,R2),o is pre f erred(R1,R2).

← not dominates.

Intuitively, relationso appl and o is pre f erred are used to store information about
which cr-rules have been applied to obtainM and which preferences hold in the model.
The first rule of item (4) above embodies the conditions of Definition 6, while the
constraint enforces Definition 7.

The following is a list of important properties ofτ(M,Π) [2]: (1) If M does not
contain any atom formed byappl, τ(M,Π) is inconsistent; (2) Every answer set of
τ(M,Π) contains an answer set ofhr(Π) (they differ only by the atoms formed by
relationso appl, o is pre f erred, anddominates); (3) M′ is an answer set ofτ(M,Π)
iff the view corresponding toM′ dominates the view encoded byM; (4) τ(M,Π) is
inconsistent iff there exists no view ofΠ that dominates the view,V , encoded byM
(i.e.V is a candidate answer set according to Definition 7).

Example 10.Consider programP2 from Example 8 and the answer set,M, of γi(Π):

{s,appl(r2),bodytrue(r1),bodytrue(r2), pre f er(r1, r2), is pre f erred(r1, r2)}.

The tester forM w.r.t. P2, τ(M,P2) consists ofhr(P2) together with (the constraint from
item (4) of Definition 11 has been grounded for sake of clarity):

{
o appl(r2). o is pre f erred(r1, r2).
dominates← appl(r1),appl(r2), is pre f erred(r1, r2),o is pre f erred(r1, r2).
← not dominates.

It is not difficult to show that τ(M,P2) has a unique answer set:
{p,appl(r1),bodytrue(r1),bodytrue(r2), pre f er(r1, r2), is pre f erred(r1, r2),
o appl(r2),o is pre f erred(r1, r2),dominates}. In fact, viewV1 = 〈{s},{r2}〉 is no a
candidate answer set, as it is dominated byV2 = 〈{p},{r1}〉. On the other hand,
τ(M′,P2), whereM′ is the answer set encodingV2 is inconsistent, implying thatV2 is a
candidate answer set.

We can now describe the completeCRMODELS algorithm. We need the following
terminology. Given an A-Prolog programΠ , the set of the answer sets ofΠ is denoted
by α∗(Π). We also define an operatorα1(Π), which non-deterministically returns one
of the answer sets ofΠ , or⊥ is Π is inconsistent. Recall that, given a set of literalsM
from the signature ofhr(Π), λ (M) denotes the list (as opposed to the set) of the literals
that occur inM andν(M) is the list notl1,not l2, . . . ,not lk containing all the literals
from the signature ofhr(Π) that do not belong toM.

Algorithm CRMODELS is shown in Figure 2 below. Notice that, differently from
CRMODELS1, CRMODELScomputes all the answer sets of the program. The answer sets
of the program are stored in the setA . The algorithm works as follows. At the time

Algorithm: CRMODELS

input: Π : CR-Prolog program
output: the answer sets ofΠ
var i: number of cr-rules to be applied

M: a set of literals or⊥
A : a set of answer sets ofΠ
C,C′: sets of constraints

1. C := /0; A := /0
2. i := 0 { first we look for an answer set ofreg(Π) }
3. while (i ≤ |cr(Π)|) do { outer loop }
4. C′ := /0
5. repeat { inner loop }
6. i f γi(Π) ∪C is inconsistentthen
7. M :=⊥
8. else
9. M := α1(γi(Π) ∪C)
10. i f τ(M,Π) is inconsistentthen { answer set found}
11. A := A ∪ {M∩Σ(Π) }
12. C′ := C′ ∪ { ← λ (M∩atoms(appl,hr(Π))). }
13. end i f
14. C := C ∪ { ← λ (M),ν(M). }
15. end i f
16. until M =⊥
17. C := C ∪C′
18. i := i +1 { consider views obtained with a larger number of cr-rules}
19. done
20. returnA

Figure 2. Algorithm CRMODELS

of the first execution of line6, the consistency ofγ0(Π) is checked (C is /0). From the
properties of thei-generator, it follows thatγ0(Π) is consistent iffreg(Π) is consistent.
If the test succeeds,M is set to one of the answer sets ofγ0(Π) and the consistency of
τ(M,Π) is tested. Since no cr-rules were used to generateM (i is 0), τ(M,Π) must be
inconsistent according to the properties ofτ(M,Π). Hence, the restriction ofM to Σ(Π)
is added to the set of answer sets ofΠ , A . Notice that the set returned corresponds to
an answer set ofreg(Π), as expected. If insteadγ0(Π) is inconsistent,M is set to⊥, the
inner loop terminates and a new iteration of the outer loop is performed. When line6
is executed again,γ1(Π) is checked for consistency. If the program is inconsistent, the

algorithm proceeds to checkγ2(Π), etc. On the other hand, ifγ1(Π) is consistent, one
of its answer sets is assigned toM and consistency ofτ(M,Π) is tested. If the program
is inconsistent, it follows thatM encodes a candidate answer set (as well as an answer
set, as explained at the beginning of Section 3) and its restriction toΣ(Π) is returned.
Finally, if insteadτ(M,Π) is found to be consistent, the algorithm needs to prevent
future computations of the answer sets ofγ1(Π)∪C (lines6 and9) from consideringM
again. This is accomplished on line14by adding a suitable constraint to setC.

As the algorithm computes all the answer sets of the program,CRMODELSneeds to
ensure that the set of cr-rules applied at each generation step is minimal. SetC′ has a
key role in this. As can be seen from line12, every time an answer set ofΠ is found, we
add toC′ a constraint whose body contains the atoms of the formappl(R) that occur in
the answer set. The idea is to useC′ to prevent any strict superset of the corresponding
cr-rules from being applied in the future generation steps (lines6 and 9). However,
particular attention must be paid to the wayC′ is used, because each constraint inC′
can prevent the generation step from usinganysuperset of the corresponding cr-rules —
not only the strict supersets. This would affect the computation when multiple answer
sets exist for a fixed choice of cr-rules. Therefore, the use of the constraints added to
C′ during one iteration of the outer loop is delayed until the beginning of the following
iteration, when the cardinality of the sets of cr-rules considered is increased by1. This
ensures that only the strict supersets of the constraints inC′ are considered at all times.

Let us stress that the implementation correctly deals with preference cycles, dis-
cussed at the end of Section 2: for any cr-ruler from a preference cycle and anyM such
that appl(r) ∈ M, there always exists an answer set ofτ(M,Π) (it containsM itself,
together with appropriate definitions ofo appl ando is pre f erred). Hence, cr-rules
from preference cycles cannot be used by the implementation to restore consistency.

The following theorems guarantee termination, soundness, and completeness ofCR-
MODELS. The proofs cannot be shown because of space restrictions, but can be found,
together with the description of the implementation of the algorithm, in [2].

Theorem 1. CRMODELS(Π) terminates for any CR-Prolog programΠ .

Theorem 2. For every CR-Prolog programΠ , if J ∈ CRMODELS(Π), thenJ is an an-
swer set ofΠ .

Theorem 3. For every CR-Prolog programΠ , if J is an answer set ofΠ , thenJ ∈
CRMODELS(Π).

4 Related Work and Conclusions

There are no previous published results on the design and implementation of an infer-
ence engine for CR-Prolog. However, this paper builds on years of research on the topic,
which resulted in various prototypes. Here we extend previous work by L. Kolvekar [9],
where the first description of theCRMODELS algorithm was given. The algorithm and
theoretical results presented here are a substantial simplification of the ones from [9].

In this paper we have described our design of an inference engine for CR-Prolog.
The inference engine is aimed at allowing practical applications of CR-Prolog that re-
quire the efficient computation of the answer sets of medium-size programs.

The efficiency ofCRMODELShas been demonstrated experimentally on2000plan-
ning problems by using a modified version of the experiment from [10]. The modifica-
tion consisted in replacing the A-Prolog planning module from [10] with a CR-Prolog
based module capable of finding plans that satisfy (if at all possible)3 sets of non-
trivial requirements, aimed at improving plan quality. The planning module has been
tested both with and without preferences on the sets of requirements. The experiments
have been successful (refer to [4] for a more detailed discussion of experiments and
results): the average time to find a plan was about200seconds, against an average time
of 10 seconds for the original A-Prolog planner3, with an increase of about one order
of magnitude in spite of the substantially more complex reasoning task (the quality of
plans increased, depending on the parameters used to measure it, between19% and
96%). Moreover, the average time obtained with the CR-Prolog planner was substan-
tially lower than the limit for practical use by NASA, which is20minutes.

The proofs of the theorems in this paper and a discussion on the implementation of
CRMODELS can be found in [2]. An implementation of the algorithm is available for
download fromhttp://www.krlab.cs.ttu.edu/Software/.

The author would like to thank Michael Gelfond for his help. This research was
partially supported, over time, by United Space Alliance contract NAS9-20000, NASA
contract NASA-NNG05GP48G, and ATEE/DTO contract ASU-06-C-0143.

References

1. Marcello Balduccini. USA-Smart: Improving the Quality of Plans in Answer Set Planning.
In PADL’04, Lecture Notes in Artificial Intelligence (LNCS), Jun 2004.

2. Marcello Balduccini. Computing Answer Sets of CR-Prolog Programs. Technical report,
Texas Tech University, 2006. http://krlab.cs.ttu.edu/∼marcy/bib.php.

3. Marcello Balduccini and Michael Gelfond. Logic Programs with Consistency-Restoring
Rules. In Patrick Doherty, John McCarthy, and Mary-Anne Williams, editors,International
Symposium on Logical Formalization of Commonsense Reasoning, AAAI 2003 Spring Sym-
posium Series, pages 9–18, Mar 2003.

4. Marcello Balduccini, Michael Gelfond, and Monica Nogueira. Answer Set Based Design of
Knowledge Systems.Annals of Mathematics and Artificial Intelligence, 2006.

5. Chitta Baral. Knowledge Representation, Reasoning, and Declarative Problem Solving.
Cambridge University Press, Jan 2003.

6. Chitta Baral, Michael Gelfond, and Nelson Rushton. Probabilistic reasoning with answer
sets.Journal of Theory and Practice of Logic Programming (TPLP), 2005. (submitted).

7. Michael Gelfond. Representing Knowledge in A-Prolog. In Antonis C. Kakas and Fariba
Sadri, editors,Computational Logic: Logic Programming and Beyond, Essays in Honour of
Robert A. Kowalski, Part II, volume 2408, pages 413–451. Springer Verlag, Berlin, 2002.

8. Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunc-
tive databases.New Generation Computing, pages 365–385, 1991.

9. Loveleen Kolvekar. Developing an Inference Engine for CR-Prolog with Preferences. Mas-
ter’s thesis, Texas Tech University, Dec 2004.

10. Monica Nogueira.Building Knowledge Systems in A-Prolog. PhD thesis, University of Texas
at El Paso, May 2003.

3 All the experiments were run on the same computer.

