
Learning Action Descriptions with A-Prolog: Action Language C

Marcello Balduccini
Computer Science Department

Texas Tech University
Lubbock, TX 79409 USA

marcello.balduccini@ttu.edu

Abstract

This paper demonstrates how A-Prolog can be used to solve
the problem of non-monotonic inductive learning in the
context of the learning of the behavior of dynamic domains.
Non-monotonic inductive learning is an extension of
traditional inductive learning, characterized by the use of
default negation in the background knowledge and/or in the
clauses being learned. The importance of non-monotonic
inductive learning lies in the fact that it allows to learn
theories containing defaults and ultimately to help automate
the complex task of compiling commonsense knowledge
bases.

Introduction
To formalize commonsense knowledge, one needs suitable
languages, whose definition has proven to be extremely
difficult, and is still to a large extent an open problem.
Research on the existing formalisms has also shown that,
even when a suitable language is available, the task of
compiling the commonsense knowledge about a particular
domain is far from trivial. A possible way to simplify this
task consists in the adoption of learning techniques, and in
particular in the use of inductive learning.1

However, as argued in (Sakama 2005), there is a contrast
between the nature of inductive learning problems, which
assume incompleteness of information, and the languages
used in inductive logic programming (ILP), which are not
sufficiently expressive to deal with various forms of
incomplete and commonsensical knowledge.

From a knowledge representation standpoint, various
types of incomplete and commonsense knowledge can be
represented by means ofdefaults (statements describing
what is typically true, as opposed toalwaystrue). Default
negation, when combined with a suitable semantics for
logic programs, has been successfully used to encode
sophisticated forms of defaults, in particular together with
classical negation (see e.g. (Gelfond 2002)). Defaults also

Copyright c© 2007, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

1Although our work is also related to update/revision of knowl-
edge bases, we view it to be closer to inductive learning because of
the stress on the generality of the learned laws. We plan to discuss
the link with update/revision techniques in an extended version of
this paper.

make it possible to writeelaboration tolerantprograms (a
program is elaboration tolerant when small modifications in
the specification yield small modifications in the program).
Unfortunately, traditional ILP methods cannot be applied
directly to logic programs with default negation, which
poses substantial limits on the use of ILP to learn
commonsense knowledge.

Some authors have attempted to overcome the problem
by defining reductions of normal programs to negation-free
programs, allowing to apply ILP methods (e.g. (Otero 2003;
2005)). Other authors have instead developed techniques
that do not rely on the traditional methods (Otero 2001;
Sakama 2005). The latter techniques are often referred
to as non-monotonic ILP (NMILP) (Sakama 2001;
2005).

The aim of this paper is to show that
A-Prolog (Gelfond & Lifschitz 1988;
1991), a powerful formalism for knowledge representation
and reasoning, can be used (besides planning and
diagnosis) for non-monotonic inductive learning tasks, and,
ultimately, to learn commonsense knowledge. Differently
from others,our approach allows not only the addition of
new laws, but also the modification of existing ones. To
demonstrate A-Prolog’s ability to deal with normal and
extended logic programs, we focus on the task of learning
action descriptions in action languageC (Giunchiglia &
Lifschitz 1998). In fact, the translation ofC to logic
programming makes a heavily use of default and classical
negation. For this reason, it is unlikely that a reduction to
monotonic methods can be used. Moreover, the fact that
learning an action description typically requires generating
laws that matchseveralsample transitions, does not allow a
direct application of NMILP approaches such as (Sakama
2005). Finally, our approach to building learning modules
has the added value of beingentirely declarative.

The paper is organized as follows. We begin with an
introduction on A-Prolog. Next, we describe the two
main parts of our approach: the encoding of the action
description and the A-Prolog learning module. Finally, we
compare with other NMILP approaches and draw
conclusions. Examples that were not included in this
paper because of space restrictions are available at
www.ucl.ac.uk/commonsense07/papers/notes/ .

A-Prolog
A-Prolog is a knowledge representation language that
allows the formalization of various forms of commonsense
knowledge and reasoning. The language is one of the
products of the research aimed at defining a formal
semantics for logic programs containing default negation
(Gelfond & Lifschitz 1988), and was later extended to
allow also classical negation (Gelfond & Lifschitz 1991).

A (regular) ruler of A-Prolog is a statement of the form:

h← l1, l2, . . . lm, not lm+1, not lm+2, . . . , not ln. (1)

where h and li’s are literals and “not” is the default
negation symbol. The informal meaning of the statement,
in terms of the set of beliefs of an agent complying with it,
is “if you believe l1, . . . , lm and have no reason to believe
lm+1, . . . , ln, then you must believeh.” We call h thehead
of the rule (head(r)) andl1, . . . , not ln thebody(body(r)).

The semantics of A-Prolog programs is defined first for
programs not containing default negation (definite
programs). LetΠ be a definite program, andS a consistent
set of literals. We say thatS is closed under a rulew if
head(w) ∈ S wheneverbody(w) ⊆ S. If S is the
set-theoretically minimal set of literals closed under the
rules ofΠ, thenS is theanswer set ofΠ.

If Π is an arbitrary program, we first reduce it to a definite
program. Thereduct of an A-Prolog programΠ with respect
to a set of literalsS is denoted byΠS and obtained fromΠ
by deleting each rule,r, such thatneg(r) \ S 6= ∅, and by
removing all expressions of the form notl from the bodies
of the remaining rules. A consistent setS of literals is an
answer set of a programΠ if it is an answer set ofΠS .

To allow a more compact representation of some types
of knowledge, we introduce the following abbreviation. A
choice macrois a statement of the form:

{p1(~X), . . . , pn(~X)} ← Γ. (2)

where ~X is a (possibly empty) list of terms, andp1, . . . , pn

do not occur inΓ. The statement informally says that any
~X can have any propertypi, and stands for the set of rules
{pi(~X) ← not ¬pi(~X), Γ. , ¬pi(~X) ← not pi(~X), Γ.},
wherei ranges over1 . . . n.

The choice macro is inspired to (Niemela & Simons
2000). Its use allows to keep a compact representation of
knowledge, later in the paper, without committing to a
particular extension of A-Prolog and to its corresponding
inference engine.

Step 1: Encoding the Action Description
Our approach is based on two components: the definition of
an encoding of the action description suitable for A-Prolog
based learning, and the specification of the A-Prolog learn-
ing module. In this section we define the encoding.

In this paper, the signature of an action language consists
of sets of constant, variable, fluent, and action symbols.
Fluents(used to represent relevant properties of the domain
whose truth value changes over time) are expressions of the
form f(t1, . . . , tn) wheref is a fluent symbol andti’s are
constants or variables. Similarly,elementary actionsare

expressions of the forme(t1, . . . , tn), wheree is an action
symbol. A fluent or action isground if all of its arguments
are constants, and isnon-groundotherwise. Fluents and
their negations (i.e.¬f , wheref is a fluent) are called
fluent literals(or simply literals, whenever no confusion is
possible). Sets of elementary actions (intended for
concurrent execution) are calledcompound actions. The
term actions denotes both elementary and compound
actions.

Recall that adefinite action descriptionof languageC
consists ofstatic lawsof the form

causedr if l1, . . . , ln (3)

anddynamic lawsof the form

causedr if l1, . . . , ln afterp1, . . . , pm (4)

wherer (thehead) is a literal or⊥, li’s (theif-preconditions)
are literals, andpi’s (the after-preconditions) are literals or
elementary actions (the definition, with a somewhat different
terminology, can be found in (Lifschitz & Turner 1999)).

A translation fromC to logic programming can be found
in (Lifschitz & Turner 1999). That is a case of “direct”
translation, where each law is mapped into one rule. For
example, a static law of the form (3) is encoded by:

h(r, T)← not h(l1, T), . . . , not h(ln, T). (5)

(By l we denote the literal complementary tol.) In some
cases, it is more convenient to use an “indirect” encoding,
where laws are encoded by collections of facts, together with
a general schema, describing the semantics of the law. A
possible fact-based encoding of the law above is:

s law(s1). head(s1, r).
if(s1, 〈l1, . . . , ln〉). (6)

and the semantics is encoded by a rule:

h(H, T)← s law(W), head(W, H),
all if h(W, T).

(7)

where all if h(W,T) intuitively means that all the
preconditions following the “if” keyword hold.2 Notice that
we view the above facts containing tuples as macros. For
instance, factif(s1, 〈l1, . . . , ln〉) above stands for the
collection of factsif(s1, 1, l1), . . . , if(s1, n, ln). We also
assume the existence of suitable relationslen andnth that
allow to retrieve respectively the length and each element of
the tuple. In the example above,len(if(s1), n) holds, as
well asnth(if(s1), 1, l1), nth(if(s1), 2, l2), etc.

It is worth stressing thatthe explicit use of default
negation in the specification of the semantics of the laws of
C makes it difficult to adapt the traditional ILP techniques
to the language.We will come back to this issue later.

Notice the importance of the role of the law’s name (spec-
ified by s law(s1) in (6)) when encoding laws that contain
variables. For example, a law stating that objectO is wet
when it is in water, can be encoded by facts:

s law(s2(O)). head(s2(O), wet(O)).
if(s2(O), 〈inWater(O)〉). (8)

2The formal definition of these and other auxiliary relations is
omitted to save space.

Fact-based encodings are particularly convenient for
A-Prolog based learning. Intuitively, once the semantics of
an action language has been described with general
schemas such as (7), it is possible to reduce the task of
learning to that of finding collections of facts such as (8). If
the laws are not allowed to contain variables, then the goal
can be simply accomplished in A-Prolog by using choice
macros. For example, the generation of the precondition list
of a law can be roughly3 obtained by means of a rule:

{if(W,N, L)} ← s law(W). (9)

whereN andL range respectively over the positions in the
precondition list and the (ground) fluent literals. From a
knowledge representation standpoint, the intuitive meaning
of the rule is that any fluent literalL can occur in any
position of the precondition list of lawW .

When variables are allowed, unfortunately, (9) may yield
unintended results. Consider static laws2(O) above, and let
O takes on valueso1 ando2. Intuitively, we consider the law
as a single statement. However, recall that in A-Prolog non-
ground rules are semantically equivalent to the set of their
ground instances. Hence, rule (9) actsseparatelyon each
ground instantiation of laws2(O) (such as instances2(o1),
whose effect iswet(o1)). It is not difficult to see that this
may cause the addition of some preconditionp to one ground
instance of the law, but not to another. To deal with laws
containing variables, the encoding must be extended. The
key step consists in defining ground names for non-ground
literals and actions, as follows.

Let ι = l(t1, . . . , tk) be a fluent literal, and
V = 〈X1, . . . , Xj〉 be a tuple of variables such that all
the variables fromι are in V . For every variableti,
the expressionV ↓ ti denotes the indexp in V such
that Xp = ti. For example,〈X,Y, Z〉 ↓ Y = 2. The
groundification ofl(t1, . . . , tk) w.r.t. V is the expression
l(g1, . . . , gk), wheregi is ν(V ↓ ti) (ν does not belong to
the signature ofAD) if ti is a variable, andgi = ti
otherwise. We denote the groundification of a literall w.r.t.
V by lV . For example, givenV = 〈X, Y, Z〉 and
l = p(a, Z, b, c, Y), lV is p(a, ν(3), b, c, ν(2)). In a similar
way we define the groundification of an elementary action.
When we need to distinguish between literals (or actions),
and their groundifications, we will call the formerregular
literals (resp., actions) and the lattergroundified literals
(resp., actions). Given a laww(X1, . . . , Xj), we call the
tuple 〈X1, . . . , Xj〉 the variable-list of the law, andw the
prefix of the law. We denote the variable-list ofw by wV
and its prefix bywP . Clearly, for eachl anda occurring in
some laww, their groundifications w.r.t.wV are defined.
We denote them respectively bylw andaw. Given a laww,
the association between a literall and its groundification
w.r.t. wV is encoded by fact4 gr(l, λ(wV), lw) (similarly
for actions). For example, the association between
wet(O) and wet(ν(1)) w.r.t. s2(O) is represented as
gr(wet(O), λ(O), wet(ν(1))).

3Some constraints are also needed to suitably restrict the gener-
ation.

4Relationgr can also be defined more compactly.

The encoding of a static laww is then:

s law(wP). head(wP , rw).
vlist(wP , λ(wV)). if(wP , 〈lw1 , lw2 , . . . , lwn 〉).

The semantics of static laws becomes:
h(H, T)← s law(W), vlist(W, V L),

head(W, Hg), gr(H, V L, Hg),
all if h(W, V L, T).

(10)

Notice that the conclusion of the rule is still a regular literal.
This makes it possible to use the new encoding to replace
directly the original one. The encoding of the law from (8)
is:

s law(s2). head(s2, wet(ν(1))).
vlist(s2, λ(O)). if(s2, 〈inWater(ν(1))〉). (11)

Groundified literals and actions are mapped to their regu-
lar counterparts, when needed, by means of relationgr. For
example, the definition ofall if h(W,T) is:

all if h(W, V L, T)← all if from(W, V L, T, 1).

all if from(W, V L, T, N + 1)← len(if(W), N).

all if from(W, V L, T, N)← nth(if(W), N, Lg),
gr(L, V L, Lg), not h(L, T),
all if from(W, V L, T, N + 1).

Intuitively, all if from(W,V L, T,N) means that all the
if-preconditions ofW (w.r.t. variable listV L) with indexN
or greater hold at stepT .

A dynamic laww of the form (4) is encoded by:

d law(wP). head(wP , rw). vlist(wP , λ(wV)).
if(wP , 〈lw1 , . . . , lwn 〉). after(wP , 〈pw

1 , . . . , pw
m〉).

and the semantics is defined by:

h(H, T + 1)← d law(W), vlist(W, V L),
head(W, Hg), gr(H, V L, Hg),
all if h(W, V L, T), all after h(W, V L, T).

The set of rules5 defining the semantics ofC is denoted by
Sem(C). An action descriptionAD consists of the union of
Sem(C) and the sets of atoms encoding the laws.6

In reasoning about dynamic domains, an important role is
played by the observation of the domain’s behavior. Here,
we use observations to encode the examples for the learning
task. Observations are encoded by statements of the form
obs(l, t), meaning that literall was observed to hold at step
t, andhpd(a, t), meaning that actiona happened att. The
history of the domain up to stepcT is denoted byHcT and
consists of a collection of statementsobs(l, t) andhpd(a, t),
where0 ≤ t ≤ cT for the former and0 ≤ t < cT for the
latter. A domain description is a pairDD = 〈AD, HcT 〉.
Given such a domain descriptionDD, by programDD we
mean the programAD ∪HcT ∪Πr, whereΠr is:

Πr

{
h(L, 0)← obs(L, 0).
o(A, T)← hpd(A, T).
← h(L, T), obs(L, T).

5A few rules were omitted to save space.
6Although not required by our approach, to simplify the pre-

sentation we assume completeness of knowledge about the initial
situation and the actions performed.

Intuitively, the use ofΠr ensures that the possible evolutions
of the domain identified by the answer sets ofDD match
the the historyHcT (see (Balduccini & Gelfond 2003a) for
more details). In the next section we discuss how we use the
history to detect the need for learning, and how the (possibly
empty) action description is modified to match the examples
provided.

Step 2: Modifying the Action Description
When given a history, we expect a rational agent capable of
learning to perform two steps: (1) check if the history can
be explained by the action description, and (2) modify the
action description accordingly if the history cannot be
explained. Notice that we talk aboutmodifyingthe action
description, rather than learning an action description. That
is because our approach is also capable ofincremental
learning of action descriptions: by default, the existing laws
can be modified, as well as new laws created.7

Central to the reasoning required to check if the
history can be explained by the action description is
the notion of symptom. Given a domain description
DD = 〈AD, HcT 〉, HcT is said to be asymptomif
(program)DD is inconsistent (that it, it has no answer
sets). It can be shown that the history is explained by the
action description iffHcT is a symptom.

Next, we define what it means to modify an action
description. We provide an implementation-independent
definition that can be used to verify properties, such as
soundness and completeness, of the A-Prolog learning
module described later.

A modification of an action descriptionAD is a
collection of modification statementsof the form:
d law(ω), s law(ω), vlist(ω, λ(X1, . . . , Xk)),
head(ω, hg), if(ω, η, lg), after(ω, η, ag), where ω is a
constant,Xi’s are variables,η is a positive integer,lg is a
groundified literal, and ag is a groundified action.
Intuitively, a modificationM is valid w.r.t. AD if AD
together with theM describe valid dynamic laws and state
constraints. More precisely,M is valid if:

• For everyd law(ω) ∈M, we haves law(ω) 6∈ AD∪M
andvlist(ω, Λ) ∈ AD ∪ M for someΛ. Similarly for
s law(ω).

• head(ω, hg) ∈ M iff either d law(ω) or s law(ω) is in
M.

• For everyif(ω, η, lg) ∈M, eitherd law(ω) or s law(ω)
is in AD ∪M.

• after(ω, η, ag) ∈M impliesd law(ω) ∈ AD ∪M.

• For everyif(ω, η, lg) ∈M andvlist(ω, Λ) ∈ AD ∪M,
lg is a valid groundification w.r.t.Λ.8 Similarly for ag
from after(ω, η, ag).

7Although it is not difficult to force our learning module to act
in a non-incremental fashion, or to only modify certain laws, we
will not go into details in this paper.

8That is, the arguments of theν(N) terms must be valid indexes
for the tuple defined byΛ.

• For everyω, the indexesηi from all the statements of the
form if(ω, ηi, lg) from AD ∪M must form a complete
sequence of integers starting from1.9 Similarly for
after(ω, ηi, ag).

• For everyif(ω, η, lg) ∈M andlg′ 6= lg, it must hold that
if(ω, η, lg′) 6∈ AD ∪M. Similarly for after(ω, η, ag).

According to the definition, given an empty action
description, {d law(ω), vlist(ω, λ(X1, . . . , Xk))}
is not valid modifications, but {d law(ω),
vlist(ω, λ(X1, . . . , Xk)), head(ω, hg)} is.

The learning task is reduced to finding a valid modifica-
tion that explains the symptom. More precisely:

Definition 1 For everyDD = 〈AD, HcT 〉, an inductive
correction ofAD for symptomHcT is a valid modification
M such thatDD ∪M is consistent.

Recall that, if HcT is a symptom, thenDD itself is
inconsistent. To better understand the definition, consider
an action description containing (11) and laws stating that
the literals formed byinWater and wet are inertial (see
(Lifschitz & Turner 1999)). LetHcT = {obs(¬wet(o1), 0),
obs(¬inWater(o1), 0), hpd(putInWater(o1), 0),
obs(wet(o1), 1)}. It is easy to check thatHcT is a
symptom. In fact,obs(¬wet(o1), 0) and the first rule ofΠr

imply h(¬wet(o1), 0). Becausewet(O) is an inertial
fluent, h(¬wet(o1), 1) also holds. This conclusion and
obs(wet(o1), 1) satisfy the body of the constraint from
Πr, making DD inconsistent. Now considerM1 =
{d law(d1), vlist(d1, λ(O)), head(d1, inWater(ν(1))),
after(d1, 〈putInWater(ν(1))〉)}. It is not difficult to see
thatM1 is an inductive correction. In fact, fromHcT and
Πr we obtaino(putInWater(o1), 0). This allows to apply
d1 and concludeh(wet(o1), 1). Hence, the body of the
constraint inΠr is false, andDD ∪M1 is consistent.

Next, we show how inductive corrections can be
computed using A-Prolog. LetΠps be a set of rules of the
form available(w) and avail vlist(w, λ(X1, . . . , Xwj)).
We callΠps theprefix store. Intuitively, the purpose ofΠps

is to provide fresh symbols and suitable variable lists for
the definition of new laws. Thelearning moduleL consists
of the following rules:

1. {if(W, N, Lg)}.
2. ← if(W, N, Lg1), if(W, N, Lg2), Lg1 6= Lg2.
3. ← has if(W, N), N > 1, not has if(W, N − 1).
4. ← if(W, N, Lg), not valid gr(W, N, Lg).

5. {d law(W), s law(W)} ← available(W).
6. ← d law(W), s law(W).

7. {head(W, Hg)} ← newly defined(W).
8. ← newly defined(W), not has head(W).
9. ← head(W, Hg1), head(W, Hg2).

10. ← head(W, Hg), not valid gr(W, N, Hg).

9For example, ifηi is 2 andηj from someprec(ω, ηj , lg
′) is 4,

there must be someprec(ω, ηk, lg′′) such thatηk = 3.

11. {after(W, N, Ag)} ← d law(W).
12. ← after(W, N, Ag1), after(W, N, Ag2), Ag1 6= Ag2.
13. ← has after(W, N), N > 1, not has after(W, N − 1).
14. ← after(W, N, Ag), not valid gr(W, N, Ag).

15. vlist(W, V L)← newly defined(W), avail vlist(W, V L).

whereW ranges over law prefixes,N ranges over positive
integers, Ag (possibly indexed) denotes a groundified
action or literal, andLg (possibly indexed) andHg denote
groundified literals.L can be viewed as composed of two
modules: rules (1), (5), (7), (11), and (15) roughly generate
modifications, while the rest ofL guarantees that the
modification encoded by each answer set is valid. The
process of finding inductive corrections is completed by
Πr, which ensures that every answer set explains the
observations.

Let us now look atL is more detail. Rule (1) intuitively
says that anyLg may be specified asN th if-precondition of
W . Rule (2) guarantees that only one groundified literal is
selected for each position in the if-precondition list. Rule
(3) guarantees that there are no “holes” in the assignment of
the indexes: relationhas if(W,N) (definition omitted)
holds ifW has an if-precondition with indexN , and can be
trivially defined fromif(W,N, Lg). Rule (4) states thatLg
must be a valid groundified literal forW . For example,
lit(ν(1)) is a valid groundified literal ford2(N), but
lit(ν(3)) is not. Relationvalid gr(W,N,X) (definition
omitted) is defined to hold if there exists a literal or action
of which X is the groundification w.r.t.W , and can be
easily defined from relationgr. Rule (5) intuitively says
that any available constant may be used as prefix of a new
dynamic law or state constraint. Rule (6) ensures that the
same constant is not used as prefix of both a dynamic law
and a state constraint. Rule (7) says that anyHg may be
head (i.e. the effect) of a newly defined lawW : relation
newly defined(W) (definition omitted) is true if both
available(W) (defined in Πps) and one ofd law(W),
s law(W) hold. Rules (8)-(10) ensure that every newly
defined law has exactly one headHg, and thatHg is a valid
groundified literal for W . Relation has head(W)
(definition omitted) is defined similarly tohas if(W,N)
above. Rule (11) intuitively says that anyAg may be
specified asN th after-precondition of a dynamic lawW .
Rules (12)-(14) state that only one after-precondition is
associated with each index, that there are no “holes” in the
assignments of indexes (has after(W,N) is defined
similarly to has if(W,N) above), and that everyAg is a
valid groundified action or literal forW . Finally, rule (15)
says the variable-list of each newly defined law is taken
from the prefix store,Πps. Notice thatthe learning module
is substantially independent of the semantics of the
language. L only depends on the predicates used for the
fact-based encoding, and it is not difficult to see that the
changes required to support languages other thanC are
conceptually simple.

Intuitively, the computation of the inductive corrections of
a domain descriptionDD is reduced to finding the answer
sets of the programDD ∪ L:

Theorem 1 (Soundness and Completeness)For every
DD = 〈AD,HcT 〉, there exists a prefix storeΠps such that
the inductive corrections ofAD for HcT and the answer
sets ofDD ∪Πps ∪ L are in one-to-one correspondence.

Proof. (Sketch)Left-to-right. Let M be an inductive
correction of AD. Using the Splitting Set Lemma, split
Π = DD ∪ Πps ∪ L in Πps, Πd, consisting of all the rules
and facts used to encode laws ofAL+ (including e.g.
rule (1) of L), Πs, consisting of all the other rules
with a non-empty head fromΠ, and Πc, consisting of
the constraints ofΠ. It is not difficult to show from
Definition 1 thatM is contained in some answer setA of
Πps ∪ Πd ∪ Πs. The reasoning can also be extended to
show thatA satisfies the constraints ofΠc ∩ DD. Finally,
from the definition of valid modification, we conclude that
A also satisfiesΠc \DD.
Right-to-left.LetA be an answer set ofΠ andM be the set
of modification statements fromA. By Definition 1 we need
to show thatΠ′ = DD ∪ M is consistent. Let us splitΠ
as above andΠ′ into Π′d, Π′s, andΠ′c, following the same
technique used forΠ. LetA′ ⊆ A be an answer set ofΠps∪
Πd (existence follows from the Splitting Set Lemma). It can
be shown thatA′ \ Πps is an answer set ofΠ′d. Notice now
thatΠ′s∪Π′c = Πs∪Πc: from the Splitting Set Lemma (and
the fact thatΠ is consistent) it follows thatΠ′ is consistent.

¤
An inductive correction can be obtained from the
corresponding answer setA of DD ∪ Πps ∪ L by
extracting the modification statements fromA.

It is not difficult to convince oneself thatM1 from the
previous example can be generated byDD ∪ Πps ∪ L. In
fact, givenΠps = {available(d1), avail vlist(d1, λ(O))},
the choice macros ofL can obviously generateM1. By
inspection of the constraints ofL, it is possible to see that
M1 defeats all of their bodies. Finally, with the same
reasoning used in the previous example, we can conclude
that the body of constraint inΠr is also never satisfied.

Related Work
To the best of our knowledge, ours is the first work investi-
gating the use of A-Prolog to implement learning modules.
It is also the first attempt at defining adeclarative solution
to the problem of learning normal logic programs.

Various attempts have been made at characterizing
learning of normal logic programs, some of them
based on the answer set semantics. Because of space
restrictions, we will focus on the ones that are most
relevant to our research. In (Otero 2003; 2005;
Otero & Varela 2006), the authors describe an interesting
method to simplify learning problems based on an action
language similar toAL (Balduccini & Gelfond 2003a), so
that the traditional ILP approaches are applicable.
Differently from our approach, this technique targets a
particular action language, as the required manipulations of
the examples depend on the semantics of the language.
Because of the use of default negation in the translation of
C, it is unclear whether a reduction to traditional ILP
approaches may exist. Differently from (Otero & Varela

2006), our inductive corrections are by no means limited to
planning (for example, they can be applied for diagnostic
reasoning as defined in (Balduccini & Gelfond 2003a)).
Interestingly, according to preliminary experimental results,
the performance of a simple implementation of our
approach for languageAL appears to be reasonably close
to that of Iaction (Otero & Varela 2006): for the experiment
with 5 narratives of4 blocks and6 actions described in that
paper, the solution is found using our approach in14 sec on
a Pentium 4, 3.2GHz with 1.5 GB RAM running cmodels
3.59 (Lierler & Maratea 2004), which is fairly comparable
to the time of36 sec taken by Iaction on a somewhat slower
machine (Pentium 4, 2.4GHz).

In (Sakama 2005), a method for learning normal logic
programs is presented, which does not rely on traditional
ILP approaches. The main differences with our approach
are: (1) The target predicate of positive examples is not
allowed to occur in the background knowledge. Hence, the
method cannot be applied directly when an observation
about a literalf is given, and some law forf already exists;
(2) If multiple examples are given, a solution may be
returned that correctly covers only the last example, even
when a solution covering all of them exists; (3) At most one
rule can be learned for each example (it can be seen fromL
that there is no limit to the number of laws that can be
learned with our approach).

In (Otero 2001), a logical characterization of the general
problem of induction of normal logic programs is given,
based on the answer set semantics. The work does not seem
to be affected by the limitations of (Sakama 2005), but a
thorough comparison is difficult because (Otero 2001) does
not contain a complete definition of an algorithm.

Differently from all of the approaches above, the
declarative nature of our technique makes it relatively
simple to introduce various minimization criteria on the
solutions. For example, set-theoretically minimal inductive
corrections can be found by replacing the choice macros in
L by cr-rules of CR-Prolog (Balduccini & Gelfond 2003b)
as follows:

rule 1: if(W, N, Lg)
+← .

rule 5: d law(W) OR s law(W)
+← available(W).

rule 7: head(W, Hg)
+← newly defined(W).

rule 11: after(W, N, Ag)
+← d law(W).

Other types of minimization can be similarly obtained using
CR-Prolog or other extensions of A-Prolog.

Acknowledgments
This work was supported in part by NASA contract NASA-
NNG05GP48G and ATEE/DTO contract ASU-06-C-0143.

References
Balduccini, M., and Gelfond, M. 2003a. Diagnostic rea-
soning with A-Prolog.Journal of Theory and Practice of
Logic Programming (TPLP)3(4–5):425–461.

Balduccini, M., and Gelfond, M. 2003b. Logic Programs
with Consistency-Restoring Rules. In Doherty, P.; Mc-

Carthy, J.; and Williams, M.-A., eds.,International Sympo-
sium on Logical Formalization of Commonsense Reason-
ing, AAAI 2003 Spring Symposium Series, 9–18.
Gelfond, M., and Lifschitz, V. 1988. The stable model
semantics for logic programming. InProceedings of ICLP-
88, 1070–1080.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases.New Generation
Computing365–385.
Gelfond, M. 2002. Representing Knowledge in A-
Prolog. In Kakas, A. C., and Sadri, F., eds.,Computational
Logic: Logic Programming and Beyond, Essays in Hon-
our of Robert A. Kowalski, Part II, volume 2408, 413–451.
Springer Verlag, Berlin.
Giunchiglia, E., and Lifschitz, V. 1998. An Action Lan-
guage Based on Causal Explanation: Preliminary Report.
In Proceedings of the 15th National Conference of Artifi-
cial Intelligence (AAAI’98).
Lierler, Y., and Maratea, M. 2004. Cmodels-2: SAT-based
Answer Sets Solver Enhanced to Non-tight Programs. In
Proceedings of LPNMR-7.
Lifschitz, V., and Turner, H. 1999. Representing tran-
sition systems by logic programs. InProceedings of the
5th International Conference on Logic Programming and
Non-monotonic Reasoning (LPNMR-99), number 1730 in
Lecture Notes in Artificial Intelligence (LNCS), 92–106.
Springer Verlag, Berlin.
Niemela, I., and Simons, P. 2000.Extending the Smodels
System with Cardinality and Weight Constraints. Logic-
Based Artificial Intelligence. Kluwer Academic Publish-
ers. 491–521.
Otero, R., and Varela, M. 2006. Iaction, a System for
Learning Action Descriptions for Planning. InProceedings
of the 16th International Conference on Inductive Logic
Programming, ILP 06.
Otero, R. 2001. Induction of Stable Models. InProceed-
ings of 11th Int. Conference on Inductive Logic Program-
ming, ILP-01, number 2157 in Lecture Notes in Artificial
Intelligence (LNCS), 193–205.
Otero, R. 2003. Induction of the effects of actions by
monotonic methods. InProceedings of the 13th Interna-
tional Conference on Inductive Logic Programming, ILP
03, number 2835 in Lecture Notes in Artificial Intelligence
(LNCS), 299–310.
Otero, R. 2005. Induction of the indirect effects of actions
by monotonic methods. InProceedings of the 15th Inter-
national Conference on Inductive Logic Programming, ILP
05, number 3625 in Lecture Notes in Artificial Intelligence
(LNCS), 279–294.
Sakama, C. 2001. Nonmonotonic inductive logic program-
ming. In Proceedings of the 6th International Conference
on Logic Programming and Nonmonotonic Reasoning, 62–
80.
Sakama, C. 2005. Induction from answer sets in non-
monotonic logic programs.ACM Transactions on Com-
putational Logic6(2):203–231.

