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Abstract

CR-Prolog is an extension of the knowledge representation language A-Prolog.
The extension is built around the introduction ofconsistency-restoring rules(cr-
rules for short), and allows an elegant formalization of events or exceptions that
are unlikely, unusual, or undesired. The flexibility of the language has been ex-
tensively demonstrated in the literature, with examples that include planning and
diagnostic reasoning.

In this paper we present the design and implementation of an inference engine
for CR-Prolog that is efficient enough to allow the practical use of the language
for medium-size applications. The capabilities of the inference engine have been
successfully demonstrated with experiments on an application independently de-
veloped for use by NASA.

1 Introduction

In recent years, A-Prolog – a knowledge representation language based on the answer
set semantics [17] – was shown to be a useful tool for knowledge representation and
reasoning (e.g. [24, 15, 7]). The language is expressive and has a well understood
methodology of representing defaults, causal properties of actions and fluents, various
types of incompleteness, etc. Over time, several extensions of A-Prolog have been
proposed [12, 22, 15, 13, 4, 11, 9], aimed at improving event further the expressive
power of the language.

One of these extensions, called CR-Prolog [4, 6], is built around the introduction of
consistency-restoring rules(cr-rules for short). The intuitive idea behind cr-rules is
that they are normally not applied, even when their body is satisfied. They are only
applied if the regular program (i.e. the program consisting only of conventional A-
Prolog rules) is inconsistent. The language also allows the specification of a partial
preference order on cr-rules, intuitively regulating the application of cr-rules.
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One of the most immediate uses of cr-rules is an elegant encoding of events or excep-
tions that are unlikely, unusual, or undesired (and preferences can be used to formalize
the relative likelihood of these events and exceptions).

The flexibility of CR-Prolog has been extensively demonstrated in the literature [4, 1,
9, 2, 16, 5], with examples including planning and diagnostic reasoning. For example,
in [4], cr-rules have been used to model exogenous actions that may occur, unobserved,
and cause malfunctioning in a physical system. In [1, 5], cr-rules have been applied to
the task finding high quality plans. The technique consists in encoding requirements
that high quality plans must satisfy, and using cr-rules to formalize exceptions to the
requirements, that should be considered only as a last resort. In [16], cr-rules are used
to model interruptions of sequences of actions that an agent intends to perform.

Most of the uses of CR-Prolog in the literature are not strongly concerned with com-
putation time, and use relatively simple prototypes of CR-Prolog inference engines.
However, to allow the use of CR-Prolog for practical applications, an efficient infer-
ence engine is needed.

In this paper, we present the design and implementation of an inference engine for CR-
Prolog that is efficient enough to allow the practical use of CR-Prolog for medium-size
applications. The paper is organized as follows. In the next section, we introduce the
syntax and semantics of CR-Prolog. Section 3 contains a description of the algorithm
of the inference engine, whose soundness and completeness are proven in Section 4.
In Section 5, we discuss interesting implementation issues. Finally, in Sections 6 and
7 we talk about related work draw conclusions.

2 CR-Prolog

Like A-Prolog, CR-Prolog is a knowledge representation language that allows the
formalization of commonsense knowledge and reasoning. The consistency-restoring
rules introduced in CR-Prolog allow the encoding of statements that should be used
“as rarely as possible, and only if strictly necessary to obtain a consistent set of con-
clusions,” with preferences intuitively determining which statements should be given
precedence. The language has been shown to allow the elegant formalization of various
sophisticated reasoning tasksthat are problematic to encode in A-Prolog.

The syntax of CR-Prolog is determined by a typed signatureΣ consisting of types,
typed object constants, and typed function and predicate symbols. We assume that the
signature contains symbols for integers and for the standard functions and relations of
arithmetic. Terms are built as in first-order languages.

By simple arithmetic termsof Σ we mean its integer constants. Bycomplex arithmetic
termsof Σ we mean terms built from legal combinations of arithmetic functions and
simple arithmetic terms (e.g.3+2·5 is a complex arithmetic term, but3+ · 2 5is not).

Atoms are expressions of the formp(t1, . . . , tn), wherep is a predicate symbol with
arity n andt ’s are terms of suitable types. Atoms formed by arithmetic relations are
called arithmetic atoms. Atoms formed by non-arithmetic relations are calledplain
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atoms. We allow arithmetic terms and atoms to be written in notations other than
prefix notation, according to the way they are traditionally written in arithmetic (e.g.
we write3 = 1+2 instead of= (3,+(1,2))).

Literals are atoms and negated atoms, i.e. expressions of the form¬p(t1, . . . , tn). Lit-
eralsp(t1, . . . , tn) and¬p(t1, . . . , tn) are calledcomplementary. By l we denote the
literal complementary tol .

The syntax of the statements of CR-Prolog is defined as follows.

Definition 2.1 A regular ruleρ is a statement of the form:

r : h1 OR h2 OR . . . OR hk ← l1, l2, . . . lm ,not lm+1,not lm+2, . . . ,not ln · (1)

wherer is a term that uniquely denotesρ (called name of the rule),l1, . . . , lm are
literals, andhi ’s and lm+1, . . . , ln are plain literals. We callh1 OR h2 OR . . . OR hk

the headof the rule (head(r)); l1, l2, . . . lm ,not lm+1,not lm+2, . . . ,not ln is its body
(body(r)), andpos(r), neg(r) denote, respectively,{l1, . . . , lm} and{lm+1, . . . , ln}.

The informal reading of the rule (in terms of the reasoning of a rational agent about its
own beliefs) is the same used in A-Prolog: “if you believel1, . . . , lm and have no reason
to believelm+1, . . . , ln , then believe one ofh1, . . . ,hk .” The connective “not” is called
default negation. To simplify the presentation, we allow the rule name to be omitted
whenever possible.

A rule such thatk = 0 is calledconstraint, and is considered a shorthand of:

false← not false, l1, l2, . . . lm ,not lm+1,not lm+2, . . . ,not ln ·

Definition 2.2 A consistency-restoring rule(or cr-rule) is a statement of the form:

r : h1 OR h2 OR . . . OR hk
+← l1, l2, . . . lm ,not lm+1,not lm+2, . . . ,not ln · (2)

wherer , hi ’s and li ’s are as before.

The intuitive reading of a cr-rule is “if you believel1, . . . , lm and have no reason to
believelm+1, . . . , ln , then youmay possiblybelieve one ofh1, . . . ,hk .” The implicit
assumption is that this possibility is used as little as possible, and only to restore con-
sistency of the agent’s beliefs.

Definition 2.3 A CR-Prolog programis a pair〈Σ,Π〉, whereΣ is a typed signature and
Π is a set of regular rules and cr-rules.

In this paper we often denote programs of CR-Prolog by their second element. The
corresponding signature is denoted byΣ(Π). We also extend the basic operations on
sets to programs in a natural way, so that, for example,Π1∪Π2 is the program whose
signature and set of rules are the unions of the respective components ofΠ1 andΠ2.

The terms, atoms and literals of a programΠ are denoted respectively by
terms(Π), atoms(Π) and literals(Π). Given a set of relations{p1, . . . ,pm},
atoms({p1, . . . ,pm},Π) denotes the set of atoms from the signature ofΠ formed by
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everypi . literals({p1, . . . ,pm},Π) is defined in a similar way. To simplify notation,
we allow the use ofatoms(p,Π) as an abbreviation ofatoms({p},Π) (and similarly
for literals).

Given a CR-Prolog program,Π, theregular partof Π is the set of its regular rules, and
is denoted byreg(Π). The set of cr-rules ofΠ is denoted bycr(Π).

Example 2.1 Consider the following program:
{

r1 : p OR q +← not r ·
s·

The regular part of the program, consisting of facts, is consistent. Hence, the is no
reason to apply the cr-rule, and the agent is only forced to believes.

Example 2.2 Now consider the program:




r1 : p OR q +← not r ·
s·
← not p,not q ·

This time, the regular part of the program is inconsistent. The cr-rule can be applied
to restore consistency, and the agent is forced to believe either{s,p} or {s,q}.
It is also possible to have cases when different cr-rules can be applied, like in the
following example.

Example 2.3



r1 : p +← not r ·
r2 : q +← not r ·
s·
← not p,not q ·

Again, the regular part of the program is inconsistent. Consistency can be restored
by applying eitherr1 or r2, or both. Since cr-rules should be applied as little as possi-
ble, the last case is not considered. Hence, the agent is forced to believe either{s,p}
or {s,q}.
When different cr-rules are applicable, it is possible to specify preferences on which
one should be applied by means of atoms of the form

prefer(r1,r2),

wherer1, r2 are names of cr-rules. The atom informally says “do not consider solutions
obtained usingr2 unless no solution can be found usingr1.” The next example shows
the effect of the introduction of preferences in the program from Example 2.3.

Example 2.4



r1 : p +← not r ·
r2 : q +← not r ·
prefer(r1,r2)·
s·
← not p,not q ·
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The preference prevents the agent from applyingr2 unless no solution can be found
usingr1. We have seen already thatr1 is sufficient to restore consistency. Hence, the
agent has only one set of beliefs,{s,p,prefer(r1,r2)}

Notice that our reading of the preference atomprefer(r1,r2) rules out solutions in
which r1 and r2 are applied simultaneously, as the use ofr2 is allowed only if no
solution is obtained by applyingr1.

It is important to observe that the definition of the syntax of CR-Prolog does not allow
the use of variables. As usual, we assume that programs containing variables (denoted
by capital letters) are shorthands for the sets of their ground instantiations, obtained by
substituting the variables with all the terms of appropriate type from the signature of the
program. The approach is justified for the so called closed domains, i.e. domains sat-
isfying the domain closure assumption [25] that all objects in the domain of discourse
have names in the language of the program. An (A-Prolog oriented) investigation of
open domains can be found in [8, 18].

In the rest of this section, we define the semantics of CR-Prolog. In the following
discussion,Π denotes an arbitrary CR-Prolog program. Also, for everyR′ ⊆ cr(Π),
θ(R′) denotes the set of regular rules obtained fromR′ by replacing every connective
+← with ←. Notice that the regular part of any CR-Prolog program is an A-Prolog

program. We will begin by introducing some terminology.

An atom is innormal form if it is an arithmetic atom or if it is a plain atom and
its arguments are either non-arithmetic terms or simple arithmetic terms. Notice that
literals that are not in normal form can be mapped into literals in normal form by
applying the standard rules of arithmetic. For example,p(4+1) is mapped intop(5).
For this reason, in the following definition of the semantics of CR-Prolog, we assume
that all literals are in normal form.

A literal l is satisfiedby a consistent set of plain literalsS (denoted byS |= l ) if:

• l is an arithmetic literal and is true according to the standard arithmetic interpre-
tation;

• l is a plain literal andl ∈ S .

If l is not satisfied byS , we writeS 6|= l . An expression notl , wherel is a plain literal,
is satisfied byS if S 6|= l . A set of literals and literals under default negation (notl )
is satisfied byS if each element of the set is satisfied byS . A rule is satisfied byS if
either its head is satisfied or its body is not satisfied.

Next, we introduce the transitive closure of relationprefer . To simplify the presenta-
tion, we use, whenever possible, the same term to denote both a rule and its name. For
example, given rulesr1,r2 ∈ cr(Π), the fact thatr1 is preferred tor2 will be expressed
by a statementprefer(r1,r2). Notice that this is made possible by the fact that rules
are uniquely identified by their names.
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Definition 2.4 For every set of literals,S , from the signature ofΠ, and everyr1,r2

from cr(Π), prefS (r1,r2) is true iff

prefer(r1,r2) ∈ S , or

there existsr3 ∈ cr(Π) such thatprefer(r1,r3) ∈ S andprefS (r3,r2)·

To see how the definition works, consider the following example.

Example 2.5 GivenS = {prefer(r1,r2),prefer(r2,r3),a,q ,p} andcr(Π) consisting
of cr-rulesr1,r2,r3:

• prefS (r1,r2) holds (becauseprefer(r1,r2) ∈ S ).

• prefS (r2,r3) holds (becauseprefer(r2,r3) ∈ S ).

• prefS (r1,r3) holds (becauseprefer(r1,r2) ∈ S andprefS (r2,r3) holds).

The semantics of CR-Prolog is given in three steps. Intuitively, in the first step we look
for combinations of cr-rules that restore consistency. Preferences are not considered,
with the exception that solutions deriving from the simultaneous use of two cr-rules
between which a preference exists are discarded.

Definition 2.5 Let S ⊆ literals(Π) andR ⊆ cr(Π). V = 〈S ,R〉 is aview of Π if:

1. S is an answer set ofreg(Π)∪θ(R), and

2. for everyr1, r2, if prefS (r1,r2), then{r1,r2} 6⊆ R, and

3. for everyr in R, body(r) is satisfied byS .

We denote the elements ofV by V S andV R respectively. The cr-rules inV R are said
to beapplied.

Example 2.6 Consider the program,P1:




r1 : t +← ·
r2 : p +← q ·
r3 : s +← ·
r4 : q +← ·

← not t ,not p,not s·

prefer(r1,r3)·
First of all, notice that the regular part of the program is inconsistent. Hence, cr-rules
are applied. According to Definition 2.5,

V1 = 〈{t ,prefer(r1,r3)},{r1}〉

6



is a view ofP1. In fact: (1)V S
1 is an answer set ofreg(P1)∪θ(V R

1 ); (2) {r1,r3} 6⊆
V R

1 ; and (3) the body ofr1 is trivially satisfied. On the other hand,

Vx = 〈{t ,s,prefer(r1,r3)},{r1,r3}〉
is not a view ofP1, because it does not satisfy condition (2) of the definition. In fact,
prefV S

1
(r1,r3) holds but{r1,r3} ⊆ V R

1 . Similarly,

Vy = 〈{t ,prefer(r1,r3)},{r1,r2}〉
is not a view ofP1. In this case, condition (3) of the definition is not satisfied, as the
body ofr2 does not hold inV S

1 . It is not difficult to show that the views ofP1 are (from
now on, we omit preference atoms, whenever possible, to save space):

V1 = 〈{t},{r1}〉 V2 = 〈{t ,q},{r1,r4}〉
V3 = 〈{s},{r3}〉 V4 = 〈{s,q},{r3,r4}〉
V5 = 〈{p,q},{r2,r4}〉 V6 = 〈{s,p,q},{r2,r3,r4}〉
V7 = 〈{t ,p,q},{r1,r2,r4}〉

The second step in the definition of the answer sets ofΠ consists in selecting the best
views with respect to the preferences specified. Particular attention must be paid to the
case when preferences are dynamic. The intuition is that we consider only preferences
on which there is agreement in the views under consideration.

Definition 2.6 For every pair of views ofΠ, V1 andV2, V1 dominatesV2 if there exist
r1 ∈ V R

1 , r2 ∈ V R
2 such thatpref(V S

1 ∩V S
2 )(r1,r2).

Example 2.7 Let us consider the views of programP1 from Example 2.6. View
V1 dominatesV3: in fact, V S

1 ∩V S
3 = {prefer(r1,r3)} and pref{prefer(r1,r3)}(r1,r3)

obviously holds. On the other hand,V1 does not dominateV5, as neither
pref{prefer(r1,r3)}(r1,r2) nor pref{prefer(r1,r3)}(r1,r4) hold.

Definition 2.7 A view, V , is a candidate answer set ofΠ if, for every viewV ′ of Π,

V ′ does not dominateV .

Example 2.8 According to the conclusions from Example 2.6,V3 is not a candidate
answer ofP1, as it is dominated byV1. Conversely, it is not difficult to see thatV1 is
not dominated by any other view, and is therefore a candidate answer set. Overall, the
candidate answer sets ofP1 are:

V1 = 〈{t},{r1}〉 V2 = 〈{t ,q},{r1,r4}〉 V5 = 〈{p,q},{r2,r4}〉

Finally, we select the candidate answer sets that are obtained by applying a minimal set
(w.r.t. set-theoretic inclusion) of cr-rules.

Definition 2.8 A set of literals,S , is ananswer setof Π if:

1. there existsR ⊆ cr(Π) such that〈S ,R〉 is a candidate answer set ofΠ, and
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2. for every candidate answer set〈S ′,R′〉 of Π, R′ 6⊂ R.

Example 2.9 ConsiderV1 andV2 from the list of the candidate answer sets ofP1 from
Example 2.8. SinceV R

1 ⊆ V R
2 , V2 is not an answer set ofP1. According to Definition

2.8, the answer sets ofP1 are:

V1 = 〈{t},{r1}〉 V5 = 〈{p,q},{r2,r4}〉

3 The CRMODELS Algorithm

The algorithm for computing the answer sets of CR-Prolog programs is based on a
generate-and-test approach. We begin our description ofCRMODELSby presenting the
algorithm at a high level of abstraction. Next, we increase the level of detail in various
steps, until we have a complete specification ofCRMODELS.

At a high level of abstraction, one answer set of a CR-Prolog programΠ can be com-
puted as show below (Figure 1). Notice that, in the algorithm,⊥ is used to indicate the
absence of a solution.

Algorithm: CRMODELS 1

input: Π: CR-Prolog program
output: one answer set ofΠ

var i : number of cr-rules to be applied

1. i := 0 { first we look for an answer set ofreg(Π) }
2. while (i ≤ |cr(Π)|) do { outer loop }
3. repeat { inner loop }
4. generate new viewV of Π s.t. |V R|= i ; if none is found,V :=⊥
5. if V is candidate answer set ofΠ then { test fails ifV =⊥ }
6. return V S { answer set found}
7. end if
8. until V =⊥
9. i := i +1 { consider views obtained with a larger number of cr-rules}
10. done
11. return ⊥ { signal that no answer set was found}

Figure 1: AlgorithmCRMODELS1

The algorithm begins by looking for a viewV such that|V R| = 0. If one is found,
CRMODELS1 checks thatV is a candidate answer set ofΠ (line 5). Notice that, because
|V R| = 0, the condition of Definition 2.6 is never satisfied (as there is nor ∈ V R).
Hence, if a view if found fori = 0, that view is a candidate answer set, which causes

8



the test at line5 to succeed. Such a candidate answer set is also minimal w.r.t. set-
theoretic inclusion onV R, which implies thatV S is an answer set ofΠ according to
Definition 2.8. Hence, the algorithm returnsV S and terminates.

Now let us consider what happens if no view is found fori = 0. According to line
4, V is set to⊥, which causes the test on line5 to fail. Because the termination
condition of the inner loop (line8) is true, the loop terminates,i is incremented and,
assumingΠ contains at least one cr-rule, execution goes back to line4, where a view
V with |V R| = 1 is computed. It is important to notice1 that, because of the iteration
over increasing values ofi in the outer loop (lines2–10), the first candidate answer
set found by the algorithm is always guaranteed to be set-theoretically minimal (with
respect to the set of cr-rules used). Hence, according to Definition 2.8,V S is an answer
set ofΠ. That explains why the return statement at line6 is executed without further
testing. If no candidate answer set is found fori = 1, the iterations of the outer loop
continue for increasing values ofi until either a candidate answer set is found or the
condition on line2 becomes false (i.e. all possible combinations of cr-rules have been
considered). In this case, the algorithm returns⊥.

In our approach, both the generation and the test steps (lines4 and5 in Figure 1) are
reduced to the computation of answer sets ofA-Prolog programs. To allow a com-
pact representation of the A-Prolog programs involved in these steps, we introduce the
following macros.

• A macro-rule of the form:

{p(X )}· (3)

informally says that anyX can have propertyp, and stands for the rules:

p(X )← not ¬p(X )·
¬p(X )← not p(X )·

• A macro-rule of the form:

← not i{p(X )}j · (4)

informally states that only betweeni andj X ’s can have propertyp and is ex-
panded as follows. Lett denote the cardinality of the ground atoms of the form
p(X ) and∆(m) denote the collection of inequalities:

Xk 6= Xh ∀ k ,h s.t.1≤ k ≤m,1≤ h ≤m,k 6= h·

The macro-rule stands for:

← p(X1),p(X2), . . . ,p(Xj ),p(Xj+1),∆(j +1)·
← not p(X1),not p(X2), . . . ,not p(Xj−i),∆(j − i)·

1A refinement of this statement will be proven later in the paper.
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Adopting a terminology similar to [22], we call (3) achoice macroand (4) acardi-
nality macro. The use of these macros allows us to keep a compact description of the
programs, later in the paper, without committing to a particular extension of A-Prolog
(and to its inference engine). Moreover, the structure of the macros is simple enough to
allow their translation, at the time of the implementation of the algorithm, to more effi-
cient expressions, such as choice rules and cardinality constraints [26, 22], statements
about sets from the language of A-Prolog with sets [15], or statements about aggregates
from the language ofDLV [13].

Central to both steps is the notion ofhard reductof a CR-Prolog program, which we
introduce next.

3.1 The Hard Reduct

The hard reduct of a CR-Prolog programΠ, denoted byhr(Π), mapsΠ into an A-
Prolog program. The importance ofhr(Π) is in the fact thatthere is a one-to-one
correspondence between the views ofΠ and the answer sets ofhr(Π), as shown by
Lemmas 9 and 10 later in this paper.

The signature ofhr(Π) is obtained from the signature ofΠ by the addition of predicate
symbolsappl , is preferred , bodytrue, o appl , o is preferred , dominates. For sim-
plicity we assume that none of those predicate names occurs in the signature ofΠ. We
also assume that the signature ofΠ already contains the predicate nameprefer . In the
description of the hard reduct that follows, variableR, possibly indexed, ranges over
the names of cr-rules.

Definition 3.1 (Hard Reduct of Π) Let Π be a CR-Prolog program. The hard reduct
of Π, hr(Π), consists of:

1. Every regular rule fromΠ.

2. For every cr-rule r ∈ cr(Π) with head h1 OR . . . OR hk and body
l1, . . . lm ,not lm+1, . . . ,not ln , two rules:

h1 OR . . . OR hk ← l1, . . . lm ,not lm+1, . . . ,not ln ,appl(r)· (5)

and

bodytrue(r)← l1, . . . lm ,not lm+1, . . . ,not ln · (6)

3. Thegenerator rule, intuitively allowing the application of arbitrary sets of cr-
rules:

{appl(R)}·

4. A constraint prohibiting the application of a cr-rule when its the body is not
satisfied (intuitively corresponding to condition (3) of Definition 2.5):

← not bodytrue(R),appl(R)·
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5. Rules defining the transitive closure of relationprefer :

is preferred(R1,R2)← prefer(R1,R2)·
is preferred(R1,R2)← prefer(R1,R3), is preferred(R3,R2)·

6. A rule prohibiting the application of cr-rulesr1 and r2 if r1 is preferred tor2

(intuitively corresponding to condition (2) of Definition 2.5):

← appl(R1),appl(R2), is preferred(R1,R2)·

Example 3.1 Let us compute the hard reduct of the following program,P2:




r1 : p +← not q ·
r2 : s +← ·

r3 :← not p,not s·

r4 : prefer(r1,r2)·
According to item (1) above,hr(P2) contains the regular rulesr3 andr4. For cr-rule
r1, hr(P2) contains:

{
p← not q ,appl(r1)·
bodytrue(r1)← not q ·

For r2, hr(P2) contains:
{

s ← appl(r2)·
bodytrue(r2)·

Items (3 – 6) result in the addition of the rules:




{appl(R)}·
← not bodytrue(R),appl(R)·

is preferred(R1,R2)← prefer(R1,R2)·
is preferred(R1,R2)← prefer(R1,R3), is preferred(R3,R2)·

← appl(R1),appl(R2), is preferred(R1,R2)·

The answer sets ofhr(P2) are:

{p,appl(r1),bodytrue(r1),bodytrue(r2),prefer(r1,r2), is preferred(r1,r2)}
{s,appl(r2),bodytrue(r1),bodytrue(r2),prefer(r1,r2), is preferred(r1,r2)}

which correspond to the views:

V1 = 〈{p,prefer(r1,r2)},{r1}〉 V2 = 〈{s,prefer(r1,r2)},{r2}〉
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3.2 The Generation Step

In the generation step of the algorithm (line4 from Figure 1), we find a viewV of Π
such thatV R has a specified cardinalityi (the task of finding anewview satisfying the
condition will be addressed later). The task is reduced to that of computing an answer
set ofhr(Π) containing exactlyi occurrences of atoms of the formappl(R). In turn,
this is reduced to finding an answer set of thei -generator ofΠ, γi(Π), defined below.

Definition 3.2 (i -Generator of Π) Let Π be a CR-Prolog program, andi a non-
negative integer such thati ≤ |cr(Π)|. Thei -generator ofΠ is the program:

hr(Π) ∪ { ← not i{appl(R)}i }·
It is not difficult to show thatγi(Π) has the following properties (for more details, see
Section 4):

• M is an answer set ofγ0(Π) iff M ∩ Σ(Π) is an answer set ofreg(Π).

• Every answer set ofγi(Π) is an answer set ofhr(Π).

• Every answer setM of γi(Π) contains exactlyi atoms of the formappl(R).

Example 3.2 Consider programP2 from Example 3.1. Thei -generators forP2 for
various values ofi and the corresponding answer sets are as follows:

• γ0(P2) = hr(P2) ∪ { ← not 0{appl(R)}0 }.

The program has no answer sets, since the constraint prevents any cr-rules from
being applied and the regular part ofP2 is inconsistent.

• γ1(P2) = hr(P2) ∪ { ← not 1{appl(R)}1 }.

The program allows the application of1 cr-rule at a time. Its answer sets are:

{p,appl(r1),bodytrue(r1),bodytrue(r2),prefer(r1,r2), is preferred(r1,r2)}
{s,appl(r2),bodytrue(r1),bodytrue(r2),prefer(r1,r2), is preferred(r1,r2)}

• γ2(P2) := hr(P2) ∪ { ← not 2{appl(R)}2 }.

The program is inconsistent. In fact, of the only two cr-rules inP2, one is pre-
ferred to the other, and the constraint added tohr(P2) by item (6) of Definition
3.1 prevents the application of two cr-rules if one of them is preferred to the
other.

Intuitively, the task of generating anew view at each execution of line4 of the algo-
rithm can be accomplished, withγi(Π), by keeping track of the answer sets ofγi(Π)
found so far and by adding suitable constraints to prevent them from being generated
again. More precisely, for each answer setM that has already been found, we need a
constraint:

← λ (M ),ν(M )·
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where λ (M ) is the list of the literals that occur inM and ν(M ) is a list
not l1,not l2, . . . ,not lk containing all the literals from the signature ofhr(Π) that do
not belong toM . Let U be the set of the constraints for all the answer sets that have
already been found. It is not difficult to see that the answer sets of the program:

γi(Π) ∪ U

correspond exactly to the “new” answer sets ofγi(Π).

3.3 The Test Step

The test step of the algorithm (line5 from Figure 1) checks whether a viewV found
during the generation step is a candidate answer set ofΠ. LetM be the answer set cor-
responding toV . The test is reduced to checking whether a suitable A-Prolog program
is consistent. The A-Prolog program is called thetesterfor M w.r.t Π, and is defined
below.

Definition 3.3 (Tester for M w.r.t. Π, τ(M ,Π)) Let Π be a CR-Prolog program and
M be an answer set corresponding to a viewV of Π. The testerfor M w.r.t. Π,
τ(M ,Π), contains:

1. The hard reduct ofΠ.

2. For each atomappl(r) ∈M , a rule:

o appl(r)·

3. For each atomis preferred(r1,r2) ∈M , a rule:

o is preferred(r1,r2)·

4. The rules:

dominates ← appl(R1),o appl(R2),
is preferred(R1,R2),o is preferred(R1,R2)·

← not dominates·

Intuitively, relationso appl ando is preferred are used to store information about
which cr-rules have been applied to obtainM and which preferences hold in the model.
The first rule of item (4) above embodies the conditions of Definition 2.6, while the
constraint enforces Definition 2.7.

The following is a list of important properties ofτ(M ,Π) (see Section 4):

• If M does not contain any atom formed byappl , τ(M ,Π) is inconsistent.

• Every answer set ofτ(M ,Π) contains an answer set ofhr(Π) (they differ only
by the atoms formed by relationso appl , o is preferred , anddominates).
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• M ′ is an answer set ofτ(M ,Π) iff the view corresponding toM ′ dominates the
view encoded byM .

• τ(M ,Π) is inconsistent iff there exists no view ofΠ that dominates the view,V ,
encoded byM (i.e. V is a candidate answer set according to Definition 2.7).

Example 3.3 Consider programP2 from Example 3.1 and the answer set,M , of
γi(Π):

{s,appl(r2),bodytrue(r1),bodytrue(r2),prefer(r1,r2), is preferred(r1,r2)}·
The tester forM w.r.t. P2, τ(M ,P2) consists ofhr(P2) together with (the constraint
from item (4) of Definition 3.3 has been grounded for sake of clarity):





o appl(r2)·
o is preferred(r1,r2)·

dominates ← appl(r1),appl(r2), is preferred(r1,r2),o is preferred(r1,r2)·
← not dominates·

It is not difficult to show thatτ(M ,P2) has a unique answer set:

{p,appl(r1),bodytrue(r1),bodytrue(r2),prefer(r1,r2), is preferred(r1,r2),
o appl(r2),o is preferred(r1,r2),dominates}

In fact, viewV1 = 〈{s},{r2}〉 is no a candidate answer set, as it is dominated by
V2 = 〈{p},{r1}〉. On the other hand,τ(M ′,P2), whereM ′ is the answer set encoding
V2 is inconsistent, implying thatV2 is a candidate answer set.

3.4 The Algorithm

In this section we describe the completeCRMODELSalgorithm. We begin by describing
CRMODELS2, a detailed version ofCRMODELS1. First of all, let us introduce some
terminology.

Given an A-Prolog programΠ, the set of the answer sets ofΠ is denoted byα∗(Π). We
also define an operatorα1(Π), which returns non-deterministically one of the answer
sets ofΠ, or⊥ is Π is inconsistent.

Recall from Section 3.2 that, given a set of literalsM from the signature ofhr(Π),
λ (M ) denotes the list (as opposed to the set) of the literals that occur inM andν(M )
is the list notl1,not l2, . . . ,not lk containing all the literals from the signature ofhr(Π)
that do not belong toM .

Algorithm CRMODELS2 is shown in Figure 2 below.
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Algorithm: CRMODELS 2

input: Π: CR-Prolog program
output: the answer sets ofΠ

var:
i : number of cr-rules to be applied
M : a set of literals or⊥
C : a set of constraints

1. C := /0
2. i := 0 { first we look for an answer set ofreg(Π) }
3. while (i ≤ |cr(Π)|) do { outer loop }
4. repeat { inner loop }
5. if γi(Π) ∪ C is inconsistentthen
6. M :=⊥
7. else
8. M := α1(γi(Π) ∪ C )
9. if τ(M ,Π) is inconsistentthen
10. return M ∩Σ(Π) { answer set found}
11. end if
12. C := C ∪ { ← λ (M ),ν(M )· }
13. end if
14. until M =⊥
15. i := i +1 { consider views obtained with a larger number of cr-rules}
16. done
17. return ⊥ { signal that no answer set was found}

Figure 2: AlgorithmCRMODELS2

The algorithm works as follows. At the time of the first execution of line5, the consis-
tency ofγ0(Π) is checked (C is /0). From the properties of thei -generator (see Section
3.2), it follows thatγ0(Π) is consistent iffreg(Π) is consistent. If the test succeeds,M
is set to one of the answer sets ofγ0(Π) and the consistency ofτ(M ,Π) is tested. Since
no cr-rules were used to generateM (i is 0), τ(M ,Π) must be inconsistent according
to the properties ofτ(M ,Π) from Section 3.3. Hence, the restriction ofM to Σ(Π) is
returned and the algorithm terminates. Notice that the set returned corresponds to an
answer set ofreg(Π), as expected.

If insteadγ0(Π) is inconsistent,M is set to⊥, the inner loop terminates and a new iter-
ation of the outer loop is performed. When line5 is executed again,γ1(Π) is checked
for consistency. If the program is inconsistent, the algorithm proceeds to checkγ2(Π),
etc. On the other hand, ifγ1(Π) is consistent, one of its answer sets is assigned toM
and consistency ofτ(M ,Π) is tested. If the program is inconsistent, it follows thatM
encodes a candidate answer set (as well as an answer set, as explained at the beginning
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of Section 3) and its restriction toΣ(Π) is returned.

Finally, if insteadτ(M ,Π) is found to be consistent, the algorithm needs to prevent
future computations of the answer sets ofγ1(Π)∪C (lines5 and8) from considering
M again. This is accomplished on line12by adding a suitable constraint to setC .

We are now ready to present theCRMODELSalgorithm. Differently fromCRMODELS1

Algorithm: CRMODELS

input: Π: CR-Prolog program
output: the answer sets ofΠ

var:
i : number of cr-rules to be applied
M : a set of literals or⊥
A : a set of answer sets ofΠ
C ,C ′: sets of constraints

1. C := /0; A := /0
2. i := 0 { first we look for an answer set ofreg(Π) }
3. while (i ≤ |cr(Π)|) do { outer loop }
4. C ′ := /0
5. repeat { inner loop }
6. if γi(Π) ∪ C is inconsistentthen
7. M :=⊥
8. else
9. M := α1(γi(Π) ∪ C )
10. if τ(M ,Π) is inconsistentthen { answer set found}
11. A := A ∪ {M ∩Σ(Π) }
12. C ′ := C ′ ∪ { ← λ (M ∩atoms(appl ,hr(Π)))· }
13. end if
14. C := C ∪ { ← λ (M ),ν(M )· }
15. end if
16. until M =⊥
17. C := C ∪ C ′
18. i := i +1 { consider views obtained with a larger number of cr-rules}
19. done
20. return A

Figure 3: AlgorithmCRMODELS2

andCRMODELS2, CRMODELScomputesall the answer sets of the program. Informally
speaking, to do this we need to store additional information to ensure that the set of cr-
rules applied at each generation step is minimal. The complete algorithm is shown in
Figure 3.
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With respect toCRMODELS2, CRMODELS uses two new data-structures. SetA con-
tains the answer sets ofΠ found. SetC ′ has a key role in guaranteeing the minimality
of the candidate answer sets identified at step10. As can be seen from line12, ev-
ery time an answer set ofΠ is found, we add toC ′ a constraint whose body contains
the atoms of the formappl(R) that occur in the answer set. The idea is to useC ′
to prevent any strict superset of the corresponding cr-rules from being applied in the
future generation steps (lines6 and9). However, particular attention must be paid to
the wayC ′ is used, because each constraint inC ′ can prevent the generation step from
usingany superset of the corresponding cr-rules —not only the strict supersets. This
would affect the computation when multiple answer sets exist for a fixed choice of cr-
rules (see Example 3.4 later). Therefore, the use of the constraints added toC ′ during
one iteration of the outer loop is delayed until the beginning of the following iteration,
when the cardinality of the sets of cr-rules considered is increased by1. This ensures
that only the strict supersets of the constraints inC ′ are considered at all times.

Example 3.4 To better understand the issue, consider what would happen, for in-
stance, if we were to replace line14of the algorithm in Figure 3 with:

14. C := C ∪ C ′ ∪ { ← λ (M ),ν(M )· }
and used the resulting algorithm,CRMODELS↓, to compute the answer sets of the pro-
gram:

P3 =





p← not q ,r ·
q ← not p,r ·

← not p,not q ·

r1 : r +← ·
Since the regular part ofP3 is inconsistent, the first iteration of the outer loop incre-
mentsi , and does not alter the other data-structures. At the next execution of line6, the
test succeeds (as the application ofr1 makes the program consistent). Let us suppose
that at line9 M is set to:

{p,appl(r1),bodytrue(r1)}·
SinceP3 does not contain any preference statements, the test on line10 succeeds, and
the following constraint,c1, is added toC ′:

← appl(r1)·
Because of the change to line14, the constraint is immediately added toC . Next, a
new iteration of the inner loop is performed (becauseM 6= ⊥). It is not difficult to
see that this timeγi(P3)∪C is inconsistent: in fact, applyingr1 is the only way to
restore consistency ofreg(P3), but doing so is prevented by constraintc1. Therefore,
the algorithm terminates returning{p,appl(r1),bodytrue(r1)} as the unique answer
set ofP3. The algorithm is of course incomplete, since, according to the semantics of
CR-Prolog,P3 has asecondanswer set:

{q ,appl(r1),bodytrue(r1)}·
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4 Properties of theCRMODELS Algorithm

In this section we prove various properties ofCRMODELSfor arbitrary finite CR-Prolog
programs, including the algorithm’s termination, soundness, and completeness.

To begin, we summarize some useful properties of A-Prolog programs. All of them
are direct applications of the Splitting Set Lemma [20, 28]. Several variants of these
properties are present in the literature, e.g. in [10, 3, 14].

Lemma 1 (Choice Elimination) For every A-Prolog programΠ, relation p not oc-
curring in the head of any rule ofΠ, and choice macroΠc of the form{p(X )}, M is
an answer set ofΠ∪Πc iff M is an answer set ofΠ∪ (M ∩ literals(p,Π)).

Let literals¬(p,Π) denote the negative literals from the signature ofΠ formed by rela-
tion p (e.g.¬p(t)). The following holds.

Lemma 2 (Positive Choice Elimination) Let Π, p, and Πc be as in Proposition 1
and M be a set of literals such thatM ∩ literals¬(p,Π) = /0. If no literals from
literals¬(p,Π) occur in the rules ofΠ, thenM ∪{¬p(x ) |p(x ) 6∈ M } is an answer
set ofΠ∪Πc iff M is an answer set ofΠ∪ (M ∩atoms(p,Π)).

Lemma 3 (Constraint Elimination) For every A-Prolog programΠ and set of con-
straintsΠk in the signature ofΠ, M is an answer set ofΠ∪Πk iff M is an answer set
of Π satisfying the constraints inΠk .

Notice that the above Lemma holds also for cardinality macros.

Lemma 4 (Definition Elimination) Let Π be an A-Prolog program,Q be a set of
literals not occurring in the head or in the negative part of the body of any rule ofΠ,
andΠd be a set of rules of the form:

q ← Γ·
whereq ∈ Q and no element ofQ occurs in the bodies of the rules ofΠd . Let Π′ be
obtained fromΠ by replacing every rule of the form

l0← l1, . . . ,q , . . . , lm ,not lm+1, . . . ,not ln ·
with a rule:

l0← l1, . . . ,Γ, . . . , lm ,not lm+1, . . . ,not ln ·
Then,M is an answer set ofΠ∪Πd iff M \Q is an answer set ofΠ′.

The following lemma is useful in connecting relationpref from Definition 2.4 and
relationis preferred from the hard reduct (Definition 3.1).

Lemma 5 For every CR-Prolog programΠ, answer setM of hr(Π), and cr-rulesr1,
r2 from Π,

prefS(M ,Π)(r1,r2) iff is preferred(r1,r2) ∈M ·
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Now we prove the termination of theCRMODELSalgorithm.

Lemma 6 For every CR-Prolog programΠ and integer0≤ j ≤ |cr(Π)|, if variable i
has valuej , then the inner loop ofCRMODELS(Π) performs at most|α∗(γi(Π))|+ 1
iterations.

Proof.We will prove the claim by showing that, at the end of iteration|α∗(γi(Π))|+1
of the inner loop, the termination condition on line16 is true.

Given a set of constraintsK = {c1,c2, . . . ,cm}, let pos(K ) denote
{pos(c1), . . . ,pos(cm)}. Let alsoC k denote the value of variableC at the beginning
of thek th iteration of the inner loop.

It is not difficult to show that an invariant of the inner loop is:

α∗(γi(Π)∪C k ) = α∗(γi(Π))\pos(C k )· (7)

which implies:

|α∗(γi(Π)∪C k )|= |α∗(γi(Π))|− |pos(C k )|· (8)

From the fact that|pos(C k )|= |C k |, (8) becomes:

|α∗(γi(Π)∪C k )|= |α∗(γi(Π))|− |C k |· (9)

Letn = |α∗(γi(Π))| and assume that, fori = j , the inner loop didn’t terminate before
then +1th iteration. From (9), it we obtain:

|α∗(γi(Π)∪C n+1)|= n−|C n+1|· (10)

Since a new element is added to variableC during each iteration of the inner loop, it
follows that|C n+1| ≥ n. In other words, for some non-negative integerh:

|C n+1|= n +k · (11)

From (10) and (11), we obtain:

|α∗(γi(Π)∪C n+1)|= n−n−k · (12)

Sincek is a non-negative integer, (12) implies:

α∗(γi(Π)∪C n+1) = /0· (13)

From 13 and the definition of operatorα1:

α1(γi(Π)∪C n+1) is inconsistent· (14)

Hence, the condition of theif statement on line6 is satisfied andM is assigned value
⊥, thus making the termination condition of the inner loop true.

3
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Lemma 7 For every CR-Prolog programΠ, the inner loop ofCRMODELS(Π) termi-
nates in exactly|cr(Π)|+1 iterations.

Proof. From Lemma 6, it follows that the inner loop terminates for any iteration of
the outer loop. Since the value of variablei in the algorithm increases by1 after
each termination of the inner loop, the termination condition of the outer loop (line3)
becomes false in exactly|cr(Π)|+1 iterations.

3

Theorem 1 (Termination of CRMODELS(Π)) CRMODELS(Π) terminates for any
CR-Prolog programΠ.

Proof.From Lemma 7, the outer loop terminates. When that happens,CRMODELS(Π)
returns the collection of sets of literals found and terminates.

3

To prove soundness and completeness, we introduce the following terminology and
lemmas. Given a ground termr , ρ(r ,Π) denotes the cr-rule fromΠ whose name isr .
Also,

S (M ,Π) = M ∩ literals(Π), and

R(M ,Π) = {ρ(r ,Π) | appl(r) ∈M }·

Lemma 8 For every CR-Prolog programΠ, if M is an answer set ofγi(Π), then
|R(M ,Π)|= i .

Proof.By Lemma 3,M satisfies the cardinality macro (see Definition 3.2):

K =
{ ← not i{appl(R)}i · (15)

Hence, the body ofK is not be satisfied byM . By definition of the cardinality macros,
M does not satisfy the body ofK if |M ∩atoms(appl ,Π)|= i . From the definition of
R(M ,Π), it follows that|R(M ,Π)|= i .

3

Lemma 9 For every CR-Prolog programΠ and integer0≤ i ≤ |cr(Π)|, if M is an
answer set ofγi(Π), then〈S (M ,Π),R(M ,Π)〉 is a view ofΠ.

Proof.We need to prove that〈S (M ,Π),R(M ,Π)〉 satisfies the conditions of Definition
2.5. Let us start by proving that item (1) holds, i.e. that

S (M ,Π) is an answer set ofreg(Π)∪θ(R(M ,Π))· (16)

LetT1 = atoms(bodytrue,hr(Π)), K1 the set of rules:




bodytrue(r)← l1, . . . ,not ln ·
← bodytrue(R),appl(R)·

← not i{appl(R)}i ·
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from Definitions 3.1 and 3.2. From the hypothesis thatM ∈ α∗(γi(Π)), and Lemmas 4
and 3, it follows that, ifM ∈ α∗(γi(Π)), then

(M \T1) ∈ α∗(γi(Π)\K1)· (17)

Let nowT2 = T1 andK−2 be obtained fromK1 by the addition of the rule

{appl(R)}·
from Definition 3.1 andK+

2 = M ∩atoms(appl ,hr(Π)). From (17) and Lemma 1, it
follows that:

(M \T2) ∈ α∗(γi(Π)\K−2 ∪K+
2 )· (18)

Next, letT3 = T2∪atoms(is preferred ,hr(Π)), K+
3 = K+

2 , andK−3 beK−2 together
with rules (again, from Definition 3.1):





is preferred(R1,R2)← prefer(R1,R2)·
is preferred(R1,R2)← prefer(R1,R3), is preferred(R3,R2)·

← appl(R1),appl(R2), is preferred(R1,R2)·
From (18) and Lemmas 4 and 3, it follows that:

(M \T3) ∈ α∗(γi(Π)\K−3 ∪K+
3 )· (19)

Finally, let T4 beT3∪atoms(appl ,hr(Π)). From (19) and Lemma 4,

(M \T4) ∈ α∗(reg(Π)∪θ(R(M ,Π)))· (20)

SinceM \T4 = S (M ,Π), (16) is proven.

Next, we prove that〈S (M ,Π),R(M ,Π)〉 satisfies condition (2) of Definition 2.5. More
precisely, we need to show that:

∀r1,r2 prefS(M ,Π)(r1,r2)→{ρ(r1,Π),ρ(r2,Π)} 6⊆ R(M ,Π)· (21)

Let us begin by proving that:

∀r1,r2 is preferred(r1,r2) ∈M →{ρ(r1,Π),ρ(r2,Π)} 6⊆M · (22)

Consider the constraint from Definition 3.1:

← appl(R1),appl(R2), is preferred(R1,R2)·
SinceM is an answer set ofγi(Π), it is closed under the constraint. Hence, the follow-
ing holds:

∀r1,r2 is preferred(r1,r2) ∈M →{appl(r1),appl(r2)} 6⊆M · (23)

Equation (22) follows from (23), and the definitions ofρ(r ,Π) andR(M ,Π). Finally,
from (22) and Lemma 4, we obtain (21).
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To conclude, we prove that〈S (M ,Π),R(M ,Π)〉 satisfies condition (3) of Definition
2.5, that is:

∀ρ ρ ∈ R(M ,Π)→ S (M ,Π) |= body(ρ)· (24)

Consider the constraint:

← bodytrue(R),appl(R)· (25)

from Definition 3.1. SinceM is closed under (25),

∀r appl(r) ∈M → bodytrue(r) ∈M · (26)

Consider now the rule:

bodytrue(r)← l1, . . . ,not ln · (27)

from Definition 3.1, wherel1, . . . ,not ln is the body ofρ(r ,Π). Since (27) is the only
definition ofbodytrue(r) andM is closed under (27), it follows that:

∀r bodytrue(r) ∈M iff S (M ,Π) |= body(ρ(r ,Π))· (28)

From (26) and (28) we obtain:

∀r appl(r) ∈M → S (M ,Π) |= body(ρ(r ,Π))· (29)

Equation (24) follows from (29) and the definitions ofρ(r ,Π) andR(M ,Π).
3

Lemma 10 For every CR-Prolog programΠ, if 〈S ,R〉 is a view ofΠ, then there exist
M and0≤ i ≤ |cr(Π)| such that:

1. S (M ,Π) = S , R(M ,Π) = R, and

2. M is an answer set ofα∗(γi(Π)).

Proof.Let i = |R| andM be the union ofS with:

• {is preferred(r1,r2) |prefS (r1,r2)};
• {appl(r) |ρ(r ,Π) ∈R}∪{¬appl(r) |ρ(r ,Π) 6∈R};
• {bodytrue(r) |S |= body(ρ(r ,Π))}.

We will prove thatM andi satisfy conditions (1) and (2) above.

To begin, notice thatS (M ,Π) = S andR(M ,Π) = R by construction ofM . Hence,
condition (1) is satisfied.

Next, we prove that condition (2) is satisfied. According to item (1) of Definition 2.5,
the following holds:

S ∈ α∗(reg(Π)∪θ(R))· (30)
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Consider the following sets of rules from Definitions 3.1 and 3.2:

K1 =



 ← not i{appl(R)}i ·

K2 =
{

bodytrue(r)← l1, . . . ,not ln ·
← bodytrue(R),appl(R)·

K3 =



 {appl(R)}·

K4 =





is preferred(R1,R2)← prefer(R1,R2)·
is preferred(R1,R2)← prefer(R1,R3), is preferred(R3,R2)·

← appl(R1),appl(R2), is preferred(R1,R2)·

LetT1 = {appl(r) |ρ(r ,Π) ∈R}∪{¬appl(r) |ρ(r ,Π) 6∈R}. From (30) and Lemma
4, it follows that:

(S ∪T1) ∈ α∗(γi(Π)\ (K1∪K2∪K3∪K4)∪T1)· (31)

Let T2 = {is preferred(r1,r2) |prefS (r1,r2)}. From (31) and Lemmas 3 and 4, we
obtain:

(S ∪T1∪T2) ∈ α∗(γi(Π)\ (K1∪K2∪K3)∪T1)· (32)

From (32) and Lemma 1, we conclude:

(S ∪T1∪T2) ∈ α∗(γi(Π)\ (K1∪K2))· (33)

Now, letT3 = {bodytrue(r) |S |= body(ρ(r ,Π))}. Then, (33) and Lemmas 4 and 3,
imply:

(S ∪T1∪T2∪T3) ∈ α∗(γi(Π)\K1)· (34)

Notice that|(S ∪T1∪T2∪T3)∩ atom(appl ,hr(Π))| = i by construction. Hence,
from (34) and Lemma 3, we obtain:

(S ∪T1∪T2∪T3) ∈ α∗(γi(Π))· (35)

SinceM = S ∪T1∪T2∪T3 by construction, we have proven thatM ∈ α∗(γi(Π)).
3

Lemma 11 For every CR-Prolog programΠ, if M1 is an answer set ofγi(Π) and
τ(M1,Π) is inconsistent, then〈S (M1,Π),R(M1,Π)〉 is a candidate answer set ofΠ.

Proof. By Lemma 9,V1 = 〈S (M1,Π),R(M1,Π)〉 is a view ofΠ. Next, we prove by
contradiction thatV1 is a candidate answer set ofΠ. Let us assume thatV1 is not a
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candidate answer set and let us prove that the hypothesis of inconsistency ofτ(M1,Π)
is contradicted.

By Definition 2.7, it follows that there exists a view,V2, of Π such that:

V2 dominatesV1· (36)

By applying Lemma 10 toV2, we obtain that:

∃M2, i2 s.t.S (M2,Π) = V S
2 ∧R(M2,Π) = V R

2 ∧M2 ∈ α∗(γi2(Π))· (37)

Notice that, from Definition 3.2 and Lemma 3, it follows that:

M2 ∈ α∗(hr(Π))· (38)

We useM2 to construct an answer set ofτ(M1,Π). LetM3 consist of the union ofM2

and:

• {o appl(r) |appl(r) ∈M1};
• {o is preferred(r1,r2) | is preferred(r1,r2) ∈M1};
• {dominates}.

Let alsoK denote the set of rules:

dominates ← appl(R1),o appl(R2),
is preferred(R1,R2),o is preferred(R1,R2)·

← not dominates·
From (38), Definition 3.3, and the construction ofM3, it is not difficult to see that
M3 \ {dominates} is an answer set ofτ(M1,Π) \K . Hence, to prove thatM3 is an
answer set ofτ(M1,Π), we need to show thatM3 is closed under the rules inK and
minimal w.r.t. set-theoretic inclusion.

ThatM3 is closed under the rules inK follows directly from its construction: in fact,
the head of the first rule ofK is satisfied, and the body of the second rule is not.

SinceM3\{dominates} is an answer set ofτ(M1,Π)\K , we prove the minimality of
M3 by showing that there is at least one ground instance of the first rule ofK whose
body is satisfied byM3\{dominates}.
By (36) and Definition 2.6:

∃r1,r2 s.t. ρ(r1,Π) ∈ V R
1 ∧ρ(r2,Π) ∈ V R

1 ∧pref(V S
1 ∩V S

2 )(r2,r1)· (39)

From (39) and (37), it follows that:

∃r1,r2 s.t. ρ(r1,Π) ∈ R(M1,Π)∧ρ(r2,Π) ∈ R(M2,Π)∧
pref(S(M1,Π)∩S(M2,Π))(r2,r1)· (40)

From (40) and the definition ofR(M ,Π), we have:

∃r1,r2 s.t.appl(r1) ∈M1∧appl(r2) ∈M2∧
pref(S(M1,Π)∩S(M2,Π))(r2,r1)· (41)
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By construction ofM3, (41) implies:

∃r1,r2 s.t.{o appl(r1),appl(r2)} ⊆M3∧pref(S(M1,Π)∩S(M2,Π))(r2,r1)· (42)

Notice thatM1 andM2 are both answer sets ofhr(Π). Then, by (42) and Lemma 4 we
have:

∀r1,r2 pref(S(M1,Π)∩S(M2,Π))(r2,r1) iff is preferred(r2,r1) ∈ (M1∩M2)· (43)

Hence, from (42), (43), and the construction ofM3, we obtain:

∃r1,r2 s.t.{o appl(r1),appl(r2)} ⊆M3∧
{is preferred(r2,r1),o is preferred(r2,r1)} ⊆M3· (44)

Equation (44) proves that there exists at least one instance of the first rule ofK whose
body is satisfied. Hence,M3 is minimal.

This concludes the proof thatM3 is an answer set ofτ(M1,Π). But the conclusion con-
tradicts the hypothesis thatτ(M1,Π) is inconsistent. Therefore,〈S (M1,Π),R(M1,Π)〉
is a candidate answer set ofΠ.

3

Lemma 12 For every CR-Prolog programΠ, if 〈S ,R〉 is a candidate answer set of
Π, then there existM and0≤ i ≤ |cr(Π)| such that:

1. S (M ,Π) = S , R(M ,Π) = R,

2. M is an answer set ofγi(Π), and

3. τ(M ,Π) is inconsistent.

Proof. Conditions (1) and (2) follow from Definition 2.7 and Lemma 10. Now let us
prove thatτ(M ,Π) is inconsistent.

Let V1 denote〈S ,R〉. SinceV1 is a candidate answer set ofΠ, from Definition 2.7 it
follows that, for every viewV2 of Π

V2 does not dominateV1· (45)

By Lemmas 10 and 9, for each viewV2 of Π there exist exactly one pairM2, i2 such
that:

V2 = 〈S (M2,Π),R(M2,Π)〉 ∧ M2 ∈ α∗(γi2(Π))· (46)

From (45) and (46), we obtain that, for everyi2 and answer setM2 of γi2(Π):

〈S (M2,Π),R(M2,Π)〉 does not dominate〈S (M ,Π),R(M ,Π)〉· (47)

From Definition 2.6, it follows that, for eachM2:

¬∃r1,r2 s.t. ρ(r1,Π) ∈ R(M ,Π) ∧ ρ(r2,Π) ∈ R(M2,Π)∧
pref(S(M ,Π)∩S(M2,Π))(r2,r1)· (48)
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By the definitions ofS (M ,Π) andR(M ,Π), and Lemma 4, we obtain:

¬∃r1,r2 s.t.appl(r1) ∈M ∧appl(r2) ∈M2∧
is preferred(r2,r1) ∈ (M ∩M2)· (49)

LetK1 denote the constraint (see Definition 3.3):

K1 =



 ← not dominates· (50)

and letτ− denoteτ(M ,Π)\K1.

Recall that, by construction, for every answer setM3 of τ−, if appl(r) ∈ M1, then
o appl(r) ∈ M3, and similarly for is preferred(r1,r2) and o is preferred(r1,r2).
Also, notice that everyM2 is an answer set ofhr(Π), andτ− is obtained fromhr(Π)
by the addition of the rule:

K2 =
{

dominates ← appl(R1),o appl(R2),
is preferred(R1,R2),o is preferred(R1,R2)· (51)

and of appropriate definitions ofo appl ando is preferred . Then, by Lemma 4, for
eachM2 there exists one and only oneM3⊇M2 such thatM3 ∈ α∗(τ−).

Hence, (49) becomes:

¬∃r1,r2 s.t.o appl(r1) ∈M3∧appl(r2) ∈M3∧
o is preferred(r2,r1) ∈M3∧
is preferred(r2,r1) ∈M3·

(52)

Equation (52) implies that the body of rule (51) is not satisfied by any answer set ofτ−.
Hence, the answer sets ofτ− do not satisfy constraint (50). Sinceτ− = τ(M ,Π)\K1,
from Lemma 3 it follows thatτ(M ,Π) has no answer set.

3

We are now ready to prove the two main theorems of this section. In the following
discussion, we useCRMODELS(Π) to denote the collection of sets of literals returned
by theCRMODELSalgorithm with CR-Prolog programΠ in input. Notice that Theorem
1 guarantees the existence of such set for anyΠ.

Theorem 2 (Soundness)For every CR-Prolog programΠ, if J ∈ CRMODELS(Π),
thenJ is an answer set ofΠ.

Proof. In the rest of this proof,V i denotes the value of variableV , from the algorithm,
at the beginning of iterationi of theouter loop(see Figure 3). When we need to refer
to the value ofV at the beginning of a specific iteration of the inner loop, we use the
notationV i

j .

Letn = |cr(Π)|. By Lemma 7, the iteration indexes will range between1 andn +1.
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Let J ∈ CRMODELS(Π). From the final step of the algorithm (line20 in Figure 3), it
follows that:

J ∈A n+1· (53)

The only update toA in the algorithm occurs on line11, and consists of the addition
of a new set of literals. The set of literals used for the update is computed on line9. By
observing line9, we conclude that there exist iterationsi andj , of the outer and inner
loops respectively, andM , such thatJ = M ∩Σ(Π), and:

M ∈ α∗(γi(Π)∪C i
j )· (54)

By (54), Lemma 3, and the observation that the contents ofC monotonically increases:

M ∈ α∗(γi(Π)∪C i), (55)

M ∈ α∗(γi(Π))· (56)

From (53) and the observation that the condition of step10must be true, we obtain:

τ(M ,Π) is inconsistent. (57)

From (55), (57), and Lemma 11, it follows that:

〈S (M ,Π),R(M ,Π)〉 is a candidate answer set ofΠ· (58)

Notice thatS (M ,Π) = J . To prove thatJ is an answer set ofΠ, we need to prove that
condition 2 of Definition 2.8 is satisfied, i.e. that:

for every candidate answer set〈S ′,R′〉 of Π,R′ 6⊂ R(M ,Π)· (59)

Proceeding by contradiction, let us assume the existence of a candidate answer set
〈S ′,R′〉 of Π such that:

R′ ⊂ R(M ,Π)· (60)

By Lemma 12, there existM ′, 0≤ i ′ ≤ |cr(Π)| such that:S (M ′,Π) = S ′, R(M ′,Π) =
R′, and:

S (M ′,Π) = S ′,R(M ′,Π) = R′, (61)

M ′ ∈ α∗(γi ′(Π)), (62)

τ(M ′,Π) is inconsistent. (63)

We now prove that the existence ofM ′ contradicts the hypothesis thatJ ∈
CRMODELS(Π). To do this, we show thatM cannot have been computed by line9.

Let us begin by noticing that, from (62), (63), and line12of the algorithm:

(C ′)i
′+1⊇ {← λ (M ′∩atoms(appl ,hr(Π)))·}· (64)
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Because of line17, the following also holds:

C i ′+1⊇ {← λ (M ′∩atoms(appl ,hr(Π)))·}· (65)

By (65) and Lemma 3, the sets of literals computed at line9 after iteration i ′ of the
outer loop do not containM ′ ∩ atoms(appl ,hr(Π)). However, from (60), it follows
that M containsM ′ ∩ atoms(appl ,hr(Π)). Then, what we need to prove to have a
contradiction isi > i ′.

From (61) and (60), it follows that:

|R(M ′,Π)|< |R(M ,Π)|· (66)

From (55), (62), and Lemma 8,

|R(M ′,Π)|= i ′ ∧ |R(M ,Π)|= i · (67)

Equations (66) and (67) imply:

i ′ < i · (68)

Hence,M does not satisfyC i . By Lemma 3:

M 6∈ α∗(γi(Π)∪C i), (69)

which contradicts (55).
3

Theorem 3 (Completeness)For every CR-Prolog programΠ, if J is an answer set of
Π, thenJ ∈ CRMODELS(Π).

Proof.As before,V i denotes the value of variableV at the beginning of iterationi of
the outer loop, atV i

j denotes the value ofV at the beginning of iterationj of the inner
loop, during iterationi of the outer loop.

SinceJ is an answer set ofΠ, from Definition 2.8, we know that:

∃RJ ⊆ cr(Π) s.t. 〈J ,RJ 〉 is a candidate answer set ofΠ· (70)

By (70) and Lemma 12, there existM andi such that:

S (M ) = J ∧R(M ) = RJ , (71)

M ∈ α∗(γi(Π)), (72)

τ(M ,Π) is inconsistent· (73)

Now let us prove thatM is also an answer set ofγi(Π)∪C i
j for some iterationj of the

inner loop. Let us proceed by contradiction, and assume that:

∀j M 6∈ α∗(γi(Π)∪C i
j )· (74)

wherej is an iteration of the inner loop.

28



By construction of the algorithm,C i = C i
j . Hence, (74) implies:

M 6∈ α∗(γi(Π)∪C i)· (75)

By (75), (73), and Lemma 3,M does not satisfy the constraints inC i . By inspection of
the algorithm (lines12, and17) we conclude that there existM ′ andi ′ < i such that:

M ′ ∈ α∗(γi ′(Π)), (76)

R(M ′,Π)⊆ R(M ,Π), (77)

τ(M ′,Π) is inconsistent· (78)

By (76), (78), and Lemma 11,

〈S (M ′,Π),R(M ′,Π)〉 is a candidate answer set ofΠ· (79)

From (77), Lemma 8, andi ′ < i , it follows that:

R(M ′,Π)⊂ R(M ,Π)· (80)

From (79), (80), and condition 2 of Definition 2.8, we conclude thatJ is not an answer
set ofΠ. Contradiction. Hence there exists an iterationj of the inner loop such that:

M is an answer set ofγi(Π)∪C i
j · (81)

For simplicity, let us assume thatM = α1(γi(Π)∪C i
j ) (it this is not the case, it is

not difficult to prove that the statement becomes true for somej ′ > j ). Sinceτ(M ,Π)
is inconsistent (see (73), from steps10 and 11 of the algorithm, it follows thatJ ∈
A i+1. SinceA grows monotonically and, by Theorem 1, the algorithm terminates,
J ∈ CRMODELS(Π).

3

5 Implementing CRMODELS

In this section, we describe interesting issues involved in the implementation ofCR-
MODELS, which for clarity we will refer to asCRMODELSI .

Notice that the computation of answer sets (lines6, 9, and10 from Figure 3) is by
far the most demanding task of the entire algorithm. Hence, reducing the time spent
computing answer sets is critical to improve the practical applicability ofCRMODELSI .

To accomplish this, we have refined the implementation of the algorithm in two direc-
tions:

• Reducing the time spent in each computation of answer sets.

• Reducing the number of overall computations of answer sets.
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The first goal can be achieved by storing and re-using the results of earlier compu-
tations. The second goal can be achieved by employing more sophisticated search
techniques.

Let us now discuss the issue of storing and re-using earlier results. We begin by giving
some background information on the implementation of the task of finding answer
sets of A-Prolog programs. InCRMODELSI , the computation of answer sets of A-
Prolog programs is performed by calls to a state-of-the-art A-Prolog inference engine
consisting of the pair of programsLPARSE [27] andSMODELS [21, 26, 22]. We refer
to the inference engine asLPARSE–SMODELS, and, whenever possible, we abbreviate
it to SMODELS.

Like all state-of-the-art inference engines for A-Prolog,SMODELSworks by first com-
puting the ground instance2 of the program in input, and then finding the answer sets
of the ground program. In the case ofLPARSE–SMODELS pair, LPARSE grounds the
input, whileSMODELScomputes the answer sets.

Let us now turn our attention to the time spent computing answer sets in a straight-
forward implementation of theCRMODELS algorithm (Figure 3). At each iteration of
the inner loop, if the condition of line6 is satisfied,CRMODELS makes three calls to
both LPARSE andSMODELS (lines6, 9, and10). As a first obvious improvement, the
computation at line9 can be easily removed by caching the result from line6.

An important observation that allows us to improve efficiency further is that programs
γi(Π) and τ(M ,Π) do not differ much from each other. In fact, both are obtained
by adding a few rules tohr(Π) (see Sections 3.2 and 3.3), whilehr(Π) itself does not
change throughout the algorithm. A variation of the main algorithm that is based on this
observation is shown in Figure 4 below and is calledCRMODELSI1. In the algorithm,
γHR
i (Π) denotes the program obtained fromγi(Π) by replacinghr(Π) by its grounding

HR. Similarly, τHR(M ,Π) indicates the replacement ofhr(Π) in τ(M ,Π). The call
to the inference engine to test the consistency ofτHR(M ,Π) (step9) has been made
explicit for sake of clarity.

2Obtained by replacing the variables in the program with all the possible variable-free terms.
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Algorithm: CRMODELS I
1

input: Π: CR-Prolog program
output: the answer sets ofΠ

var:
i : number of cr-rules to be applied
M : a set of literals or⊥
A : a set of answer sets ofΠ
C ,C ′: sets of constraints
HR: grounding ofhr(Π)

1. C := /0; A := /0
2. HR := ground(hr(Π)) { first we groundhr(Π) }
3. i := 0 { first we look for an answer set ofreg(Π) }
4. while (i ≤ |cr(Π)|) do { outer loop }
5. C ′ := /0
6. repeat { inner loop }
7. M := α1(γHR

i (Π) ∪ C )
8. if M 6=⊥ then
9. if α1(τHR(M ,Π)) =⊥ then { answer set found}
10. A := A ∪ {M ∩Σ(Π) }
11. C ′ := C ′ ∪ { ← λ (M ∩atoms(appl ,hr(Π)))· }
12. end if
13. C := C ∪ { ← λ (M ),ν(M )· }
14. end if
15. until M =⊥
16. C := C ∪ C ′
17. i := i +1 { consider views obtained with a larger number of cr-rules}
18. done
19. return A

Figure 4: AlgorithmCRMODELSI1

Notice that bothγHR
i (Π) andτHR(M ,Π) contain non-ground rules (see Sections 3.2

and 3.3). Hence, the computations at steps7 and9 still involve grounding, but on a
significantly smaller program. To take advantage of the situation, we can use the “-g”
option ofLPARSE. This option allows the user to load a previously grounded program
and add new (possibly non-ground) rules to it.

Example 5.1 Consider the following program,P4.

p(1) · p(2)·
q(X )← p(X ),not r(X )·
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Its ground instance,Pg
4 , consists of the rules:

p(1) · p(2)·
q(1)← p(1),not r(1)·
q(2)← p(2),not r(2)·

and can be computed3 by the executing “lparse P4”.

Suppose now we would like to compute the ground instance ofP4 together with the
following constraint,K :

← q(X ),X > 1,not d(X )·
Obviously, this can be done by invokingLPARSEonP4∪K . However, ifPg

4 is already
available, we can obtain the same result by executing “lparse -g Pg

4 K .” The com-
mand line tellsLPARSEto combine a ground program,Pg

4 , with a possibly non-ground
set of rules,K .

In conclusion, lines7 and9 of Figure 4 can be implemented by calls toLPARSEof the
form “lparse -g HR ΠN ” whereΠN is the set of rules to be added toHR according
to Sections 3.2 and 3.3 respectively. Unfortunately, experiments showed thatLPARSE

does not perform well on partially grounded programs. A possible explanation is that,
although a relatively small amount of time is spent processing the previously grounded
rules, the large number of them causes the total processing time to raise unacceptably.

A more efficient way to store and re-use the grounding ofhr(Π) is to use a specialized
grounding algorithm for partially-ground programs, to be used at steps7 and9 instead
of LPARSE. The specialized algorithm that we have developed is calledSGA, and takes
as input a ground program and a (possibly non-ground) set of rules, and returns the
ground instance of the union of the two sets of rules.

Intuitively, given a programΠ and a (possibly non-ground) set of rules to be added to
it, ΠN , SGA is applicable under the following conditions:

1. The heads of the rules ofΠN are either empty (i.e. the rules are constraints), or
fresh atoms.

2. The (non-empty) heads of the rules ofΠN with non-empty body have arity0.

3. The literals in the bodies of the rules ofΠN with arity greater than0, either are
obtained from the signature ofΠ or are facts inΠN .

More precisely:

Proposition 1 Let ground(Π) denote the grounding ofΠ. For every set of rulesΠ,
ΠN , satisfying conditions (1)–(3):

SGA(ground(Π),ΠN ) = ground(Π∪ΠN )· (82)

3For simplicity, in this example we ignore the simplifications thatLPARSE performs on the program to
improve the efficiency of the inference engine.
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It is not difficult to show that the sets of rules added tohr(Π) to obtainγi(Π)∪C and
τ(M ,Π) satisfy the premise of Proposition 1.

For efficiency,SGA contains a specific grounding procedure for each type of rule added
to hr(Π) by γi(Π)∪C andτ(M ,Π). The approach is pretty straightforward and, to
save space, we illustrate it by means of an example. Consider the following rule from
τ(M ,Π) (Section 3.3):

dominates ← appl(R1),o appl(R2),
is preferred(R1,R2),o is preferred(R1,R2)·

Let us assume that atomso appl(r) ando is preferred(r1,r2) from Section 3.3 have
already been added to the grounding. Then, the grounding procedure for the rule above
is:

1. Extract fromground(hr(Π)) all the ground instances ofis preferred(R1,R2).

2. For every corresponding instantiation of variablesR1 andR2, 〈r1,r2〉, generate
the ground instance:

dominates ← appl(r1),o appl(r2),
is preferred(r1,r2),o is preferred(r1,r2)·

In the actual implementation ofSGA, the ground instances are encoded directly in the
LPARSEoutput language [27], where ground literals are replaced by the corresponding
indexes in the symbol table associated with the program. To merge the ground and
non-ground sets of rules,SGA first augments the symbol table, for example with a new
entry for atomdominates. Next, if i0, i1, i2, i3, i4 are, respectively, the indexes of
atomsdominates, appl(r1), . . . ,o is preferred(r1,r2) in the symbol table, then one
of the ground instances of the rule above, generated by the implementation ofSGA, is
represented by the string:

1 i0 4 0 i1 i2 i3 i4

which denotes a “type1 rule” (a conventional A-Prolog rule), with the literal with
index i0 (i.e. dominates) in the head, and4 literals in the body, of which0 under
default negation, corresponding to indexesi1, . . . , i4 (for more details on theLPARSE

output format, the reader is invited to refer to [27]).

As expected, experiments showed thatSGA is substantially more efficient thanLPARSE

in processing partially-ground programs. Figure 5 shows the algorithm, calledCR-
MODELSI

2, resulting from the adoption ofSGA. CRMODELSI2 and CRMODELSI1 also
differ in that the calls toα1 have been replaced by explicit calls toSMODELSandSGA.
More precisely,SMODELS1 denotes an invocation of theSMODELSalgorithm to com-
pute a single answer set andSGA(HR,P) denotes a call toSGA with argumentsHR
andP \HR.
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Algorithm: CRMODELS I
2

input: Π: CR-Prolog program
output: the answer sets ofΠ

var:
i : number of cr-rules to be applied
M : a set of literals or⊥
A : a set of answer sets ofΠ
C ,C ′: sets of constraints
HR: grounding ofhr(Π)

1. C := /0; A := /0
2. HR := LPARSE(hr(Π)) { first we groundhr(Π) }
3. i := 0 { first we look for an answer set ofreg(Π) }
4. while (i ≤ |cr(Π)|) do { outer loop }
5. C ′ := /0
6. repeat { inner loop }
7. M := SMODELS1(SGA(HR,γHR

i (Π) ∪ C ))
8. if M 6=⊥ then
9. if SMODELS1(SGA(HR,τHR(M ,Π))) =⊥ then

{ answer set found}
10. A := A ∪ {M ∩Σ(Π) }
11. C ′ := C ′ ∪ { ← λ (M ∩atoms(appl ,hr(Π)))· }
12. end if
13. C := C ∪ { ← λ (M ),ν(M )· }
14. end if
15. until M =⊥
16. C := C ∪ C ′
17. i := i +1 { consider views obtained with a larger number of cr-rules}
18. done
19. return A

Figure 5: AlgorithmCRMODELSI2

The other direction taken to improve the efficiency of the implementation ofCRMOD-
ELS consists in reducing the number of overall computations of answer sets by employ-
ing more sophisticated search techniques.

If we look atCRMODELSI2 from the standpoint of the search technique used, it is easy to
see that the algorithm uses linear search over the number of cr-rules applied. Intuitively,
performance could be improved by adopting a more sophisticated search strategy, such
as binary search.

Unfortunately binary search is not suitable for a direct modification of the outer loop,
because the sequentiality of the search procedure is essential to ensure the minimality
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of the candidate answer sets found at line9 of CRMODELSI2 (for details, refer to the
final part of the proof of Theorem 2). However, binary search can be used to determine
the smallest number of cr-rules for which a view exists (right now the search begins
by settingi = 0 at line3). After the number has been determined, linear search can be
used. To employ binary search effectively, the following conditions must be met:

• We need to be able to determine the existence of a view whose number of cr-rules
is in a specifiedinterval.

• The time taken to look for a view in an interval must be roughly independent of
the interval examined.

To meet the first condition, let us consider the programη〈j ,i〉(Π), obtained fromγi(Π)
by replacing the rule (see Section 3.2):

← not i{appl(R)}i ·
with:

← not j{appl(R)}i ·
The answer sets ofη〈j ,i〉(Π) have the following important property.

Proposition 2 For every CR-Prolog programΠ and integers0≤ j ≤ i ≤ |cr(Π)|, if
M is an answer set ofη〈j ,i〉(Π), then〈S (M ,Π),R(M ,Π)〉 is a view ofΠ and j ≤
|R(M ,Π)| ≤ i .

The proof of the proposition is a simple extension of the proofs of Lemmas 9 and 8.

According to Proposition 2,η〈j ,i〉(Π) can be used to meet the first condition above.
The second condition is also met: experimental results in fact show that, when the
input toCRMODELSI2 is a program of medium to large size, the time taken to compute
one answer set ofη〈j ,i〉(Π) is, within certain limits, independent ofj andi .

Figure 6 showsCRMODELSI , the final version of the implementation ofCRMODELS.
CRMODELSI extendsCRMODELSI2 by the addition of binary search. In the algorithm,
ηHR
〈j ,i〉(Π) denotes, as usual, the program obtained fromη〈j ,i〉(Π) by replacinghr(Π)

with HR.
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Algorithm: CRMODELS I

input: Π: CR-Prolog program
output: the answer sets ofΠ

var:
i : number of cr-rules to be applied
M : a set of literals or⊥
A : a set of answer sets ofΠ
C ,C ′: sets of constraints
HR: grounding ofhr(Π)
i1, i2: binary search interval

1. C := /0; A := /0
2. HR := LPARSE(hr(Π)) { first we groundhr(Π) }
4. i1 := 0; i2 := |cr(Π)|
5. while (i1 < i2) { binary search loop}
6. i := (i1 + i2)/2
7. M := SMODELS1(SGA(HR,ηHR

〈i1,i〉(Π)))
8. if M 6=⊥ then
9. i2 := |M ∩atom(appl ,hr(Π))|−1
10. else
11. i1 := i +1
12. end if
13. done
14. i := i1 { The termination condition above impliesi1 = i2 }
14. while (i ≤ |cr(Π)|) do { outer loop }
15. C ′ := /0
16. repeat { inner loop }
17. M := SMODELS1(SGA(HR,γHR

i (Π) ∪ C ))
18. if M 6=⊥ then
19. if SMODELS1(SGA(HR,τHR(M ,Π))) =⊥ then

{ answer set found}
20. A := A ∪ {M ∩Σ(Π) }
21. C ′ := C ′ ∪ { ← λ (M ∩atoms(appl ,hr(Π)))· }
22. end if
23. C := C ∪ { ← λ (M ),ν(M )· }
24. end if
25. until M =⊥
26. C := C ∪ C ′
27. i := i +1 { consider views obtained with a larger number of cr-rules}
28. done
29. return A

Figure 6: AlgorithmCRMODELSI
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It is interesting to notice that step9 above is slightly non-standard, asi2 is not assigned
i −1. Step9 exploits the fact that, when at step7 an answer set is found, information
becomes available about the number of cr-rules applied to obtain the answer set. Since
this value can be easily shown to be less than or equal toi , it can be used in the update
of i2 and obtain a possibly smaller search interval.

The performance improvement yielded by the introduction of binary search is particu-
larly evident when a large number of cr-rules needs to be applied before a view ofΠ
can be found, and whenΠ is inconsistent. In particular, the inconsistency of a program
with n cr-rules can be detected inlog(n) calls toSMODELS, while with CRMODELSI2
the corresponding number of calls toSMODELS is n.

6 Related Work

There are no previous published results on the design and implementation of an in-
ference engine for CR-Prolog. However, this paper builds on years of research on
the topic, which resulted in various prototypes. In particular, here we extend previous
work by Loveleen Kolvekar [19], where the first complete description of theCRMOD-
ELS algorithm was given. The algorithm presented here is a substantial simplification
of the one from [19], with performance improvements that reduced the computation
time of several orders of magnitude. We also made several improvements (in particular
in terms of accuracy) and simplifications to the theoretical results.

7 Conclusions

In this paper we have described our design and implementation of an inference engine
for CR-Prolog. The inference engine is aimed at allowing practical applications of
CR-Prolog that require the efficient computation of the answer sets of medium-size
programs.

The efficiency ofCRMODELShas been demonstrated experimentally on2000planning
problems by using a modified version of the experiment from [23]. The modifica-
tion consisted in replacing the A-Prolog planning module from [23] with a CR-Prolog
based module capable of finding plans that satisfy (if at all possible)3 sets of non-
trivial requirements, aimed at improving plan quality. The planning module has been
tested both with and without preferences on the sets of requirements. The experiments
have been successful (refer to [5] for a more detailed discussion of experiments and
results): the average time to find a plan was about200seconds, against an average time
of 10 seconds for the original A-Prolog planner4, with an increase of about one order
of magnitude in spite of the substantially more complex reasoning task (the quality of
plans increased, depending on the parameters used to measure it, between19% and
96%). Moreover, the average time obtained with the CR-Prolog planner was substan-
tially lower than the limit of practical use by NASA for this application, which is20
minutes.

4All the experiments were run on the same computer.

37



The implementation described in this paper is available for download from
http://www.krlab.cs.ttu.edu/Software/, and corresponds to version1.5 of the
system.
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