Computing Answer Sets of CR-Prolog Programs

Marcello Balduccini
Computer Science Department
Texas Tech University
Lubbock, TX 79409 USA

marcello.balduccini@ttu.edu

December 19, 2006

Abstract

CR-Prolog is an extension of the knowledge representation language A-Prolog.
The extension is built around the introductionaainsistency-restoring rulesr-

rules for short), and allows an elegant formalization of events or exceptions that
are unlikely, unusual, or undesired. The flexibility of the language has been ex-
tensively demonstrated in the literature, with examples that include planning and
diagnostic reasoning.

In this paper we present the design and implementation of an inference engine
for CR-Prolog that is efficient enough to allow the practical use of the language
for medium-size applications. The capabilities of the inference engine have been
successfully demonstrated with experiments on an application independently de-
veloped for use by NASA.

1 Introduction

In recent years, A-Prolog — a knowledge representation language based on the answer
set semantics [17] — was shown to be a useful tool for knowledge representation and
reasoning (e.g. [24, 15, 7]). The language is expressive and has a well understood
methodology of representing defaults, causal properties of actions and fluents, various
types of incompleteness, etc. Over time, several extensions of A-Prolog have been
proposed [12, 22, 15, 13, 4, 11, 9], aimed at improving event further the expressive
power of the language.

One of these extensions, called CR-Prolog [4, 6], is built around the introduction of
consistency-restoring rulggr-rules for short). The intuitive idea behind cr-rules is
that they are normally not applied, even when their body is satisfied. They are only
applied if the regular program (i.e. the program consisting only of conventional A-
Prolog rules) is inconsistent. The language also allows the specification of a partial
preference order on cr-rules, intuitively regulating the application of cr-rules.



One of the most immediate uses of cr-rules is an elegant encoding of events or excep-
tions that are unlikely, unusual, or undesired (and preferences can be used to formalize
the relative likelihood of these events and exceptions).

The flexibility of CR-Prolog has been extensively demonstrated in the literature [4, 1,
9, 2, 16, 5], with examples including planning and diagnostic reasoning. For example,
in [4], cr-rules have been used to model exogenous actions that may occur, unobserved,
and cause malfunctioning in a physical system. In [1, 5], cr-rules have been applied to
the task finding high quality plans. The technique consists in encoding requirements
that high quality plans must satisfy, and using cr-rules to formalize exceptions to the
requirements, that should be considered only as a last resort. In [16], cr-rules are used
to model interruptions of sequences of actions that an agent intends to perform.

Most of the uses of CR-Prolog in the literature are not strongly concerned with com-
putation time, and use relatively simple prototypes of CR-Prolog inference engines.
However, to allow the use of CR-Prolog for practical applications, an efficient infer-
ence engine is needed.

In this paper, we present the design and implementation of an inference engine for CR-
Prolog that is efficient enough to allow the practical use of CR-Prolog for medium-size
applications. The paper is organized as follows. In the next section, we introduce the
syntax and semantics of CR-Prolog. Section 3 contains a description of the algorithm
of the inference engine, whose soundness and completeness are proven in Section 4.
In Section 5, we discuss interesting implementation issues. Finally, in Sections 6 and
7 we talk about related work draw conclusions.

2 CR-Prolog

Like A-Prolog, CR-Prolog is a knowledge representation language that allows the
formalization of commonsense knowledge and reasoning. The consistency-restoring
rules introduced in CR-Prolog allow the encoding of statements that should be used
“as rarely as possible, and only if strictly necessary to obtain a consistent set of con-
clusions,” with preferences intuitively determining which statements should be given
precedence. The language has been shown to allow the elegant formalization of various
sophisticated reasoning tasksthat are problematic to encode in A-Prolog.

The syntax of CR-Prolog is determined by a typed signakumnsisting of types,

typed object constants, and typed function and predicate symbols. We assume that the
signature contains symbols for integers and for the standard functions and relations of
arithmetic. Terms are built as in first-order languages.

By simple arithmetic termef Z we mean its integer constants. Bgmplex arithmetic
termsof Z we mean terms built from legal combinations of arithmetic functions and
simple arithmetic terms (e.@+ 2-5is a complex arithmetic term, b@t+ - 2 5is not).

Atoms are expressions of the forpits,...,t,), wherep is a predicate symbol with
arity n andt's are terms of suitable types. Atoms formed by arithmetic relations are
called arithmetic atoms Atoms formed by non-arithmetic relations are caljg@din



atoms We allow arithmetic terms and atoms to be written in notations other than
prefix notation, according to the way they are traditionally written in arithmetic (e.qg.
we write3 = 1+ 2 instead of= (3,+(1,2))).

Literals are atoms and negated atoms, i.e. expressions of the-foftm ..., ¢, ). Lit-
eralsp(ty,...,t,) and—p(ty,...,t,) are calledcomplementary By | we denote the
literal complementary to.

The syntax of the statements of CR-Prolog is defined as follows.

Definition 2.1 Aregular ruleo is a statement of the form:
7:hy ORhp OR ... OR hy < l1,lp,...1,,,N0Ot [, 1,N0t [, 4 2,...,n0t [,,- (1)

wherer is a term that uniquely denotgs (called name of the rule),...,I,, are
literals, andh;’s and l,, 1, ...,1, are plain literals. We calli; OR hy OR ... OR hy
the headof the rule ead(r)); l,b,...ly,N0t l;,+1,N0t I, 12,...,not [, is its body
(body(r)), andpos(r), neg(r) denote, respectively/s, ..., 1, } and{l,+1,...,0. }.

The informal reading of the rule (in terms of the reasoning of a rational agent about its
own beliefs) is the same used in A-Prolog: “if you beliéve. ., [, and have no reason

to believel,,+1,...,1,, then believe one ofy, ..., h.” The connective “not” is called
default negationTo simplify the presentation, we allow the rule name to be omitted
whenever possible.

A rule such thak = O is calledconstraintand is considered a shorthand of:

false «— not false,l1, b, ... l,,,n0t [, 1,N0t [, 1 2,...,N0t [,
Definition 2.2 A consistency-restoring rul@er cr-rule) is a statement of the form:

rihy OR hp OR ... OR hy <= Iy, b, ... 1y, NOt 1 1,NO Lo, ...,NOt Ly (2)

wherer, h;'s andl;’s are as before.

The intuitive reading of a cr-rule is “if you beliewvk,..., ., and have no reason to
believel,,.1,...,1,, then youmay possiblybelieve one ofiy,...,h;.” The implicit
assumption is that this possibility is used as little as possible, and only to restore con-
sistency of the agent’s beliefs.

Definition 2.3 A CR-Prolog prograns a pair (2, 1), whereZ is a typed signature and
MM is a set of regular rules and cr-rules.

In this paper we often denote programs of CR-Prolog by their second element. The
corresponding signature is denotedXy1). We also extend the basic operations on
sets to programs in a natural way, so that, for exanipie, N, is the program whose
signature and set of rules are the unions of the respective componéht&ntil,.

The terms, atoms and literals of a program are denoted respectively by
terms(M), atoms(M) and literals(M). Given a set of relationgp1,...,pm},
atoms({p1,...,pm },) denotes the set of atoms from the signatur€ldbrmed by



everyp;. literals({p1,...,pm},M) is defined in a similar way. To simplify notation,
we allow the use ofitoms(p,) as an abbreviation aftoms({p},M) (and similarly
for literals).

Given a CR-Prolog progran], the regular parof I is the set of its regular rules, and
is denoted byeg (). The set of cr-rules dfl is denoted byr(I1).

Example 2.1 Consider the following program:

{ TLID OqunOtr-
S.

The regular part of the program, consisting of factis consistent. Hence, the is no
reason to apply the cr-rule, and the agent is only forced to believe

Example 2.2 Now consider the program:

1 p OR qinotr-
s.
<~ not p,not ¢q-

This time, the regular part of the program is inconsistent. The cr-rule can be applied
to restore consistency, and the agent is forced to believe efther or {s, ¢}.

It is also possible to have cases when different cr-rules can be applied, like in the
following example.

Example 2.3
TP < not r-
™ q < not r-
S.
< not p,not q-

Again, the regular part of the program is inconsistent. Consistency can be restored
by applying either or 7, or both. Since cr-rules should be applied as little as possi-
ble, the last case is not considered. Hence, the agent is forced to believe{githér
or {s,q}.

When different cr-rules are applicable, it is possible to specify preferences on which
one should be applied by means of atoms of the form

prefer(ry, 12),

wherery, r, are names of cr-rules. The atom informally says “do not consider solutions
obtained using» unless no solution can be found using’ The next example shows
the effect of the introduction of preferences in the program from Example 2.3.

Example 2.4
TP < not r-
™ q < not r-
prefer(ry, r2)-
S.
< not p,not ¢-



The preference prevents the agent from applyingnless no solution can be found
usingri1. We have seen already that is sufficient to restore consistency. Hence, the
agent has only one set of beliefs, p, prefer(ri,r2)}

Notice that our reading of the preference atpmafer(r1,r2) rules out solutions in
which r; and r, are applied simultaneously, as the usergfis allowed only if no
solution is obtained by applying.

It is important to observe that the definition of the syntax of CR-Prolog does not allow
the use of variables. As usual, we assume that programs containing variables (denoted
by capital letters) are shorthands for the sets of their ground instantiations, obtained by
substituting the variables with all the terms of appropriate type from the signature of the
program. The approach is justified for the so called closed domains, i.e. domains sat-
isfying the domain closure assumption [25] that all objects in the domain of discourse
have names in the language of the program. An (A-Prolog oriented) investigation of
open domains can be found in [8, 18].

In the rest of this section, we define the semantics of CR-Prolog. In the following
discussion[1 denotes an arbitrary CR-Prolog program. Also, for evBhC cr(M),
6(R') denotes the set of regular rules obtained frBftby replacing every connective

&£ with —. Notice that the regular part of any CR-Prolog program is an A-Prolog
program. We will begin by introducing some terminology.

An atom is innormal formif it is an arithmetic atom or if it is a plain atom and

its arguments are either non-arithmetic terms or simple arithmetic terms. Notice that
literals that are not in normal form can be mapped into literals in normal form by
applying the standard rules of arithmetic. For examp(d,+ 1) is mapped inte(5).

For this reason, in the following definition of the semantics of CR-Prolog, we assume
that all literals are in normal form.

Aliteral [ is satisfiedby a consistent set of plain literafs(denoted byS = ) if:

e [is an arithmetic literal and is true according to the standard arithmetic interpre-
tation;

e [isaplain literal and € S.

If 1 is not satisfied bys, we write S |~ [. An expression not, where! is a plain literal,
is satisfied byS if S |~ [. A set of literals and literals under default negation (fjot
is satisfied byS if each element of the set is satisfied By A rule is satisfied bys' if
either its head is satisfied or its body is not satisfied.

Next, we introduce the transitive closure of relatiorfer. To simplify the presenta-

tion, we use, whenever possible, the same term to denote both a rule and its name. For
example, given rules;, r, € cr(M), the fact thatr is preferred ta» will be expressed

by a statemenprefer(r1,72). Notice that this is made possible by the fact that rules
are uniquely identified by their names.



Definition 2.4 For every set of literalsS, from the signature of1, and everyry,m
from cr(M), prefs(r1, ro) is true iff

prefer(ry,m2) € S, or
there existss € cr(IM) such thaprefer(r, r3) € S andprefs(rs, 12)-
To see how the definition works, consider the following example.

Example 2.5 GivenS = {prefer(ri,m2), prefer(rs, r3), a, q,p} and c¢r(M) consisting
of cr-rulesry, o, r3:

e prefs(ri,m2) holds (becauserefer(ry, r) € S).

e prefs(ry,m3) holds (becauserefer(rp, r3) € S).

e prefs(ry,3) holds (becauserefer(ri, rp) € S andprefs(r2, r3) holds).
The semantics of CR-Prolog is given in three steps. Intuitively, in the first step we look
for combinations of cr-rules that restore consistency. Preferences are not considered,

with the exception that solutions deriving from the simultaneous use of two cr-rules
between which a preference exists are discarded.

Definition 2.5 Let S C literals(IM) andR C ¢r(M). ¥ = (S, R) is aview of M if:
1. Sis an answer set ofg(M)UB(R), and
2. for everyry, ro, if prefs(r1,12), then{r,»} € R, and
3. for everyrin R, body(r) is satisfied byS.

We denote the elements 8f by 7 and ¥ * respectively. The cr-rules i  are said
to beapplied

Example 2.6 Consider the programf’;:

+
it — -

.+
2.p—q
.+

3.8 -

.+
T4 Q-

«— not ¢,not p,not s-

prefer(ry, r3)-

First of all, notice that the regular part of the program is inconsistent. Hence, cr-rules
are applied. According to Definition 2.5,

1= ({t,prefer(ry,r3)},{r1})



is a view ofPy. In fact: (1) 7% is an answer set ofeg(P1) U 8(#%); (2) {r1, 3} €
74%; and (3) the body ofy is trivially satisfied. On the other hand,

Ve = ({t,s,prefer(ri,r3)},{r1,13})

is not a view ofP;, because it does not satisfy condition (2) of the definition. In fact,
pref,,/ls(rl, r3) holds but{ry, 3} C #,%. Similarly,

¥y = ({t,prefer(r1,r3)}, {r1,m2})

is not a view ofP;. In this case, condition (3) of the definition is not satisfied, as the
body ofr, does not hold iﬁVlS. Itis not difficult to show that the views &% are (from
now on, we omit preference atoms, whenever possible, to save space):

i={t}{n}) V2= ({t,q},{r1, ra})
V3= ({s},{rs}) Ya=({s,q},{rs,ma})

Vs = <{p,q},{7"2,7"4}> Vo = <{37p7q}7{72a7ﬂ3;7ﬂ4}>
7= ({t,p,q},{r1,r2,74})

The second step in the definition of the answer sef3 obnsists in selecting the best
views with respect to the preferences specified. Particular attention must be paid to the
case when preferences are dynamic. The intuition is that we consider only preferences
on which there is agreement in the views under consideration.

Definition 2.6 For every pair of views of1, 1 and¥5, ¥1 dominatesy; if there exist
r1 € 1, 2 € 45" such thapref s s (11, 72).

Example 2.7 Let us consider the views of prograi® from Example 2.6. View
71 dominatesys: in fact, %% N #5% = {prefer(r1,r3)} and PTef{prefer(ri,ra)} (T1573)
obviously holds. On the other hand/; does not dominate¥s, as neither
pref{prefer(rl,m)}(rlvT.Z) nor pref{prefer(rl,m)}(rlvr4) hold.

Definition 2.7 A view, 7, is a candidate answer setldfif, for every view ¥ of 1,

" does not dominate’.

Example 2.8 According to the conclusions from Example 24g,is not a candidate
answer ofP1, as it is dominated byi. Conversely, it is not difficult to see th#f is

not dominated by any other view, and is therefore a candidate answer set. Overall, the
candidate answer sets 6% are:

N={t3An}) Y2={tqa}{r,ma}) 5= ({p,q},{r2,7a})

Finally, we select the candidate answer sets that are obtained by applying a minimal set
(w.r.t. set-theoretic inclusion) of cr-rules.

Definition 2.8 A set of literals,S, is ananswer sebf I if:

1. there existsk C ¢r(M) such that S, R) is a candidate answer setfdf and



2. for every candidate answer §&t', R') of I, R’ ¢ R.

Example 2.9 Considery; and ¥ from the list of the candidate answer setd®ffrom
Example 2.8. Sinc@flR - ”I/ZR, ¥5 is not an answer set dP;. According to Definition
2.8, the answer sets &f; are:

=t} {n}) ¥5={p.a}.{r2.ra})

3 TheCcRMODELS Algorithm

The algorithm for computing the answer sets of CR-Prolog programs is based on a
generate-and-test approach. We begin our descripticrmODELS by presenting the
algorithm at a high level of abstraction. Next, we increase the level of detail in various
steps, until we have a complete specificatiorMODELS.

At a high level of abstraction, one answer set of a CR-Prolog progtaran be com-
puted as show below (Figure 1). Notice that, in the algorithnis used to indicate the
absence of a solution.

Algorithm: CRMODELS1

input: : CR-Prolog program
output: one answer set dil

var i: number of cr-rules to be applied

1. ¢ := 0 { first we look for an answer set @ég(I1) }
2. while (i < |cer(M)|) do  { outer loop }

3. repeat { inner loop }

4. generate new view of M s.t. |7 £| = i; if none is found,» := L
5. if ¥ is candidate answer set@fthen { testfails if¥ = L }

6. return ¥ { answer set found

7. end if

8. until ¥V = 1

9. i := 1+ 1 { consider views obtained with a larger number of cr-rjles
10. done

11. return L { signal that no answer set was fouhd
Figure 1: AlgorithmCRMODELS

The algorithm begins by looking for a view such that#» | = 0. If one is found,
CRMODELS, checks that is a candidate answer setldf(line 5). Notice that, because

|7 | = 0, the condition of Definition 2.6 is never satisfied (as there is-ro ¥ 7).
Hence, if a view if found fori = 0O, that view is a candidate answer set, which causes



the test at lineb to succeed. Such a candidate answer set is also minimal w.r.t. set-
theoretic inclusion or¥' *, which implies that#“ is an answer set dfl according to
Definition 2.8. Hence, the algorithm returttS® and terminates.

Now let us consider what happens if no view is found fot 0. According to line

4, v is set to L, which causes the test on lirteto fail. Because the termination
condition of the inner loop (lin®) is true, the loop terminates,is incremented and,
assuming1 contains at least one cr-rule, execution goes back todinehere a view

¥ with |7 | = 1is computed. It is important to notit¢hat, because of the iteration
over increasing values afin the outer loop (line€-10), the first candidate answer
set found by the algorithm is always guaranteed to be set-theoretically minimal (with
respect to the set of cr-rules used). Hence, according to Definitio#Z.8& an answer

set ofl1. That explains why the return statement at Iéis executed without further
testing. If no candidate answer set is found fet 1, the iterations of the outer loop
continue for increasing values ofuntil either a candidate answer set is found or the
condition on line2 becomes false (i.e. all possible combinations of cr-rules have been
considered). In this case, the algorithm retutns

In our approach, both the generation and the test steps diaed5 in Figure 1) are
reduced to the computation of answer setAeProlog programs To allow a com-

pact representation of the A-Prolog programs involved in these steps, we introduce the
following macros

e A macro-rule of the form:
{p(X)}- @)
informally says that any' can have property, and stands for the rules:

p(X) — not ~p(X).
=p(X) — not p(X)-

e A macro-rule of the form:

—not i{p(X)};- @
informally states that only betweerand; X's can have property and is ex-
panded as follows. Letdenote the cardinality of the ground atoms of the form
p(X) andA(m) denote the collection of inequalities:

Xy # Xy, VEkhstl<k<m,1<h<m,k#h
The macro-rule stands for:

— p(Xl)ap(X2>7' .. 7p(Xj)7p(Xj+l)aA(j +1)
— nOtp(Xl)vnOtp(XZ)a .. '7n0tp(Xj7i)7A(j - Z)

1A refinement of this statement will be proven later in the paper.



Adopting a terminology similar to [22], we call (3) @oice macraand (4) acardi-

nality macro The use of these macros allows us to keep a compact description of the
programs, later in the paper, without committing to a particular extension of A-Prolog
(and to its inference engine). Moreover, the structure of the macros is simple enough to
allow their translation, at the time of the implementation of the algorithm, to more effi-
cient expressions, such as choice rules and cardinality constraints [26, 22], statements
about sets from the language of A-Prolog with sets [15], or statements about aggregates
from the language abLv [13].

Central to both steps is the notion bérd reducobf a CR-Prolog program, which we
introduce next.

3.1 The Hard Reduct

The hard reduct of a CR-Prolog progrdiy denoted byar (M), mapsl into an A-
Prolog program. The importance af-() is in the fact thatthere is a one-to-one
correspondence between the viewdband the answer sets é6f (1), as shown by
Lemmas 9 and 10 later in this paper.

The signature ofr (M) is obtained from the signature Bfby the addition of predicate
symbolsappl, is_preferred, bodytrue, o_appl, o_is_preferred, dominates. For sim-
plicity we assume that none of those predicate names occurs in the signaturevef
also assume that the signaturdbélready contains the predicate namefer. In the
description of the hard reduct that follows, varialile possibly indexed, ranges over
the names of cr-rules.

Definition 3.1 (Hard Reduct of 1) Letl be a CR-Prolog program. The hard reduct
of M, hr(M), consists of:

1. Every regular rule fronfl.

2. For every crrule r € ¢r(M) with head k3 OR ... OR hy and body
l,...ln,notl,1,...,n0t [, two rules:

h1 OR ... OR Ay < l1,... Ly, NOt Ly 41, ..., NO Ly, appl(r)- (5)
and
bodytrue(r) < lp,...lm,N0t Ly 41,...,NOt L,- (6)

3. Thegenerator rulgintuitively allowing the application of arbitrary sets of cr-
rules:

{appl(R)}-

4. A constraint prohibiting the application of a cr-rule when its the body is not
satisfied (intuitively corresponding to condition (3) of Definition 2.5):

«— not bodytrue(R), appl(R)-

10



5. Rules defining the transitive closure of relatiprefer:

is_preferred(R1, Ry) < prefer(Ry, Rp)-
is_preferred(R1, R) < prefer(R1, R3), is_preferred(R3z, R2)-

6. A rule prohibiting the application of cr-rules; and r, if r1 is preferred tor,
(intuitively corresponding to condition (2) of Definition 2.5):

— appl(R1), appl(R2), is_preferred(R1, R2)-
Example 3.1 Let us compute the hard reduct of the following progréts,

rlipinotq-

.t
2.8 <«

r3 1= Not p,not s-

4@ prefer(ry, ro)-

According to item (1) above,r(P,) contains the regular ruless and r4. For cr-rule
1, hr(P2) contains:

p < not q, appl(ry)-
bodytrue(ry) < not ¢-

For 1y, hr(P,) contains:

s — appl(r2)-
bodytrue(ry)-

Items (3 — 6) result in the addition of the rules:

{appl(R)}-
«— not bodytrue(R), appl(R)-

is_preferred(Ra, Ro) < prefer(R1, R2)-
is_preferred(R1, R2) «— prefer(R1, R3), is_preferred(Rs, Rp)-

— appl(R1), appl(Ry2), is_preferred(R1, R2)-

The answer sets @f-(P») are:

{p, appl(r1), bodytrue(ry), bodytrue(rs), prefer(ri, r2), is_preferred(ri,r2) }
{5, appl(r2), bodytrue(ry), bodytrue(ry), prefer(ri,2), is_preferred(ri,m2)}

which correspond to the views:

N = ({p,prefer(ri,r2)}{n}) V2= ({s,prefer(ri,m2)},{r2})

11



3.2 The Generation Step

In the generation step of the algorithm (liddrom Figure 1), we find a view of N

such that # has a specified cardinality(the task of finding aewview satisfying the
condition will be addressed later). The task is reduced to that of computing an answer
set of hr(M) containing exactlyi occurrences of atoms of the forappl(R). In turn,

this is reduced to finding an answer set of thgenerator oF1, y;(IM), defined below.

Definition 3.2 (i-Generator of 1) Let N be a CR-Prolog program, and a non-
negative integer such that< |cr(M)|. Thei-generator of1 is the program:

hr(M)U{ <« noti{appl(R)}i }

It is not difficult to show that; () has the following properties (for more details, see
Section 4):

e M is an answer set gb(M) iff M N (M) is an answer set okg ().
e Every answer set of;(I1M) is an answer set dfr(IM).
e Every answer sel/ of y;(IN) contains exactly atoms of the formuppl(R).

Example 3.2 Consider programP, from Example 3.1. Thé-generators forP, for
various values of and the corresponding answer sets are as follows:

e \o(P2)=hr(P2) U{ < notO{appl(R)}0 }.

The program has no answer sets, since the constraint prevents any cr-rules from
being applied and the regular part @ is inconsistent.

o Vi(P2)=hr(P2) U{ «—notl{appl(R)}1 }.
The program allows the application &fcr-rule at a time. Its answer sets are:
{p, appl(r1), bodytrue(ri), bodytrue(rz), prefer(ri, r2), is_preferred(ry, r2) }
{s, appl(ry), bodytrue(ry), bodytrue(ry), prefer(ry, r2), is_preferred(ry,2) }
o Vo(P2):=hr(P2) U{ «not2{appl(R)}2 }.

The program is inconsistent. In fact, of the only two cr-rules one is pre-
ferred to the other, and the constraint addeditq P,) by item (6) of Definition

3.1 prevents the application of two cr-rules if one of them is preferred to the
other.

Intuitively, the task of generating rew view at each execution of liné of the algo-

rithm can be accomplished, with(I1), by keeping track of the answer setsypf1)

found so far and by adding suitable constraints to prevent them from being generated
again. More precisely, for each answer 8étthat has already been found, we need a
constraint:

—A(M),v(M)-

12



where A (M) is the list of the literals that occur i/ and v(M) is a list
not Iz,not b, ..., not [, containing all the literals from the signature /of() that do
not belong toM. Let U be the set of the constraints for all the answer sets that have
already been found. It is not difficult to see that the answer sets of the program:

vi(MuU

correspond exactly to the “new” answer setygf1).

3.3 The Test Step

The test step of the algorithm (lirefrom Figure 1) checks whether a vie@ found
during the generation step is a candidate answer get bet M be the answer set cor-
responding to”. The testis reduced to checking whether a suitable A-Prolog program
is consistent. The A-Prolog program is called tasterfor M w.r.t I, and is defined
below.

Definition 3.3 (Tester for M w.r.t. M, T(M,M)) LetN be a CR-Prolog program and
M be an answer set corresponding to a vigof M. Thetesterfor M w.rt. 1,
7(M,N), contains:

1. The hard reduct of1.

2. For each atomuppl(r) € M, arule:
o-appl(r)-

3. For each atomis_preferred(ri, 1) € M, a rule:
o_is_preferred(ry, 1)

4. The rules:

dominates «— appl(R1), 0_appl(R2),
is_preferred(R1, R2), 0_is_preferred(R1, Rp)-
«— not dominates-

Intuitively, relationso_appl and o_is_preferred are used to store information about
which cr-rules have been applied to obtdihand which preferences hold in the model.
The first rule of item (4) above embodies the conditions of Definition 2.6, while the
constraint enforces Definition 2.7.

The following is a list of important properties of M, M) (see Section 4):
e If M does not contain any atom formed bypl, T(M,I1) is inconsistent.

e Every answer set of (M, I1) contains an answer set bf(MN) (they differ only
by the atoms formed by relationsappl, o_is_preferred, anddominates).
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e M'is an answer set af( M, ) iff the view corresponding td/’ dominates the
view encoded by .

e T(M,N) is inconsistent iff there exists no view Bfthat dominates the view/,
encoded by (i.e. ¥ is a candidate answer set according to Definition 2.7).

Example 3.3 Consider programP, from Example 3.1 and the answer séf,, of
y:(M):
{s, appl(ry), bodytrue(ry), bodytrue(rz), prefer(ri,r2), is_preferred(ry, r2) }-

The tester forM w.r.t. P,, T(M, P;) consists ofur(P,) together with (the constraint
from item (4) of Definition 3.3 has been grounded for sake of clarity):

o_appl(ra2):
o_is_preferred(ry, rp)-

dominates «— appl(r1), appl(r2),is_preferred(ry, r2), o-is_preferred(ri, r2)-
< not dominates-

It is not difficult to show that (M, P») has a unique answer set:

{p, appl(r1), bodytrue(ry), bodytrue(ra), prefer(ri, r2), is_preferred(r1, r2),
o_appl(ry), o_is_preferred(ri,r2), dominates}

In fact, view¥; = ({s},{r2}) is no a candidate answer set, as it is dominated by
Yo = {{p},{r1}). On the other hand;(M’, P»), whereM’ is the answer set encoding
¥5 is inconsistent, implying that; is a candidate answer set.

3.4 The Algorithm

In this section we describe the completemoDELSalgorithm. We begin by describing
CRMODELS, a detailed version oERMODELS;. First of all, let us introduce some
terminology.

Given an A-Prolog prograrf, the set of the answer setslofis denoted by, (). We
also define an operator; (1), which returns non-deterministically one of the answer
sets off1, or L is 1 is inconsistent.

Recall from Section 3.2 that, given a set of literdlsfrom the signature ofir(I1),
A (M) denotes the list (as opposed to the set) of the literals that océdramdv (M)
is the list notly, not &, . .. ,not [, containing all the literals from the signature/of(IT)
that do not belong td/.

Algorithm CRMODELS, is shown in Figure 2 below.
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Algorithm: CRMODELS>

input: M: CR-Prolog program
output: the answer sets é1

var:
i number of cr-rules to be applied
M: a set of literals orL
C': a set of constraints

1L.C:=0
2.1 :=0{ first we look for an answer set otg(I1) }
3. while (i < |er(M)|) do  { outer loop }

4 repeat { inner loop }

5. if v;(M) U C is inconsistenthen

6. M:=1

7 else

8 M:=ai(y;(MUC)

0. if T(M,N) is inconsistenthen

10. return M NZ(M) { answer set found
11 end if

12. C:=CU{ <AM),v(M) }

13. end if

14. until M = L

15. i =14 1{ consider views obtained with a larger number of cr-rjles

16. done
17. return L { signal that no answer set was fouhd

Figure 2: AlgorithmCRMODELS

The algorithm works as follows. At the time of the first execution of bnéhe consis-

tency ofy(IM) is checked ' is 0). From the properties of thegenerator (see Section

3.2), it follows thatyo (M) is consistent iffreg (1) is consistent. If the test succeed$,

is set to one of the answer setsypfl1) and the consistency af M, M) is tested. Since

no cr-rules were used to generdte (i is 0), (M ,M) must be inconsistent according

to the properties of (M, M) from Section 3.3. Hence, the restriction &f to Z(I1) is
returned and the algorithm terminates. Notice that the set returned corresponds to an
answer set ofeg(I), as expected.

If insteadyy(IM) is inconsistent) is set toL, the inner loop terminates and a new iter-

ation of the outer loop is performed. When liiés executed againy (M) is checked

for consistency. If the program is inconsistent, the algorithm proceeds to gsigtk

etc. On the other hand, j£ (M) is consistent, one of its answer sets is assigned to

and consistency af(M, M) is tested. If the program is inconsistent, it follows tht
encodes a candidate answer set (as well as an answer set, as explained at the beginning
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of Section 3) and its restriction &(M) is returned.

Finally, if insteadt(M,M) is found to be consistent, the algorithm needs to prevent
future computations of the answer sets/gfi1) U C (lines5 and8) from considering
M again. This is accomplished on lid@ by adding a suitable constraint to gt

We are now ready to present tateMoDELSalgorithm. Differently fromCRMODELS;

Algorithm: CRMODELS

input: : CR-Prolog program
output: the answer sets &1

var:
i number of cr-rules to be applied
M: a set of literals orL
<. a set of answer sets bf
C, C': sets of constraints

1.C:=0 o :=0
2.7 :=0{ first we look for an answer set @ég(I1) }
3. while (i < |er(M)|) do  { outer loop }

! .

4 =

5. repeat { inner loop }

6. if v;(M) U C is inconsistenthen

7 M:=1

8 else

0. M:=ai(y;(MUC)

10. if T(M,N) isinconsistenthen { answer set foundl
11 of = U{MNZ(M)}

12, C":=C"U{ « A(Mnatoms(appl,hr(N)))- }
13 end if

14. C=CU{ —AM),v(M)- }

15. end if

16. until M = L

17. c:=Ccuc’

18 i =i+ 1{ consider views obtained with a larger number of cr-rles
19. done

20. return of

Figure 3: AlgorithmCcRMODELS

andCRMODELS, CRMODELScomputesall the answer sets of the program. Informally
speaking, to do this we need to store additional information to ensure that the set of cr-
rules applied at each generation step is minimal. The complete algorithm is shown in
Figure 3.
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With respect toccRMODELS;, CRMODELS uses two new data-structures. Sgtcon-
tains the answer sets bif found. SetC’ has a key role in guaranteeing the minimality
of the candidate answer sets identified at st8p As can be seen from ling2, ev-

ery time an answer set &f is found, we add ta”’ a constraint whose body contains
the atoms of the formuppl(R) that occur in the answer set. The idea is to G8e

to prevent any strict superset of the corresponding cr-rules from being applied in the
future generation steps (lin€sand9). However, particular attention must be paid to
the way (" is used, because each constrain€incan prevent the generation step from
usingany superset of the corresponding cr-rulesnet only the strict supersetshis
would affect the computation when multiple answer sets exist for a fixed choice of cr-
rules (see Example 3.4 later). Therefore, the use of the constraints ad@éduoing

one iteration of the outer loop is delayed until the beginning of the following iteration,
when the cardinality of the sets of cr-rules considered is increaséd Blis ensures
that only the strict supersets of the constraint§€irare considered at all times.

Example 3.4 To better understand the issue, consider what would happen, for in-
stance, if we were to replace liri& of the algorithm in Figure 3 with:

14.C:=CUC U{ «A(M),v(M) }
and used the resulting algorithrafRMODELS|, to compute the answer sets of the pro-
gram:

p<«notgq,r-
q < notp,r-

P3= — not p,not ¢-

.+
rLIT -

Since the regular part oP; is inconsistent, the first iteration of the outer loop incre-
mentsi, and does not alter the other data-structures. At the next execution & lihe

test succeeds (as the applicationrofmakes the program consistent). Let us suppose
that at line9 M is set to:

{p, appl(r1), bodytrue(r1)}-

SinceP; does not contain any preference statements, the test ofilisecceeds, and
the following constraintgy, is added toC”:

— appl(r1)-

Because of the change to lidg, the constraint is immediately added & Next, a

new iteration of the inner loop is performed (becauge# 1). It is not difficult to

see that this timey;(P3) U C' is inconsistent: in fact, applying; is the only way to
restore consistency ogg(P3), but doing so is prevented by constraint Therefore,

the algorithm terminates returningp, appl(r1), bodytrue(r1)} as the unique answer

set of P3. The algorithm is of course incomplete, since, according to the semantics of
CR-Prolog,P3 has asecondanswer set:

{q, appl(r1), bodytrue(ry)}-
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4 Properties of theCRMODELS Algorithm

In this section we prove various propertiesocsfMoDELSfor arbitrary finite CR-Prolog
programs, including the algorithm’s termination, soundness, and completeness.

To begin, we summarize some useful properties of A-Prolog programs. All of them
are direct applications of the Splitting Set Lemma [20, 28]. Several variants of these
properties are present in the literature, e.g. in [10, 3, 14].

Lemma 1 (Choice Elimination) For every A-Prolog progranil, relation p not oc-
curring in the head of any rule dfl, and choice macrdl. of the form{p(X)}, M is
an answer set dil UMM . iff M is an answer set dfl U (M N literals(p,T)).

Let literals™ (p, M) denote the negative literals from the signatur€ldbrmed by rela-
tion p (e.g.—p(t)). The following holds.

Lemma 2 (Positive Choice Elimination) Let 1, p, and M, be as in Proposition 1
and M be a set of literals such that/ N literals™(p,M) = 0. If no literals from
literals™ (p,M) occur in the rules of1, then M U {—p(z)|p(z) ¢ M} is an answer
set of MU, iff M is an answer set dfl U (M N atoms(p,)).

Lemma 3 (Constraint Elimination) For every A-Prolog progranil and set of con-
straintsl1, in the signature of1, M is an answer set dfl Uy, iff M is an answer set
of N satisfying the constraints iA.

Notice that the above Lemma holds also for cardinality macros.

Lemma 4 (Definition Elimination) Let I be an A-Prolog program() be a set of
literals not occurring in the head or in the negative part of the body of any rulé,of
andll, be a set of rules of the form:

q—T

whereq € Q and no element of) occurs in the bodies of the rules @f;. LetM’ be
obtained fronT1 by replacing every rule of the form

b—1h,...,q,....,Lpn,N0t [, 1 1,...,n0Ot [,
with a rule:
b—b,....,I,....0,notl,11,...,n0t [,

Then,M is an answer set dfl UM ; iff M \ @ is an answer set dfl’.

The following lemma is useful in connecting relatigmnef from Definition 2.4 and
relationis_preferred from the hard reduct (Definition 3.1).

Lemma5 For every CR-Prolog prograrfil, answer sef\ of hr(IT), and cr-rulesry,
ro fromr1,

prefsov ny (1, r2) iff is_preferred(ry1,m2) € M-
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Now we prove the termination of tteRMODELSalgorithm.

Lemma 6 For every CR-Prolog prograrfl and integer0 < j <|cr ()|, if variable
has valuej, then the inner loop o£RMODELS(M) performs at mosta,(y;(M))| + 1
iterations.

Proof. We will prove the claim by showing that, at the end of iteration(y;(M))| + 1
of the inner loop, the termination condition on lidé is true.

Given a set of constraintsK = {c,c,...,cn}, let pos(K) denote
{pos(c1),...,pos(cym)}. Let alsoC* denote the value of variabl€ at the beginning
of thek*" iteration of the inner loop.

It is not difficult to show that an invariant of the inner loop is:

a.(vi(MU C*) = a.(vi(M)) \ pos(C*)- ()
which implies:

|a:(v:(M) U CF)| = |au(vi(M))| = [pos(C*)]- 8)
From the fact thatpos(C*)| = | C*¥|, (8) becomes:

|a:(y:(M) U CF)| = |a(vs(M))| = | C*|- (9)

Letn = |a.(y;(M))| and assume that, far= j, the inner loop didn’t terminate before
the n + 1% iteration. From (9), it we obtain:

o (vi(Mu C™h)| = n—[C"*Y (10)

Since a new element is added to variablaluring each iteration of the inner loop, it
follows that| C™*1| > n. In other words, for some non-negative integer

|C™ Y = n+ k- (11)
From (10) and (11), we obtain:

@ (MU ™) =n—n—k- (12)
Sincek is a non-negative integer, (12) implies:

a.(p(Mmucr) =o. (13)
From 13 and the definition of operatof:

ai(y;(Mu ™) is inconsistent (14)

Hence, the condition of thg statement on liné is satisfied andV/ is assigned value
L, thus making the termination condition of the inner loop true.
<&
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Lemma 7 For every CR-Prolog programl, the inner loop ofcRMODELS(IT) termi-
nates in exactlycr(I)|+ 1 iterations.

Proof. From Lemma 6, it follows that the inner loop terminates for any iteration of
the outer loop. Since the value of variahlén the algorithm increases by after
each termination of the inner loop, the termination condition of the outer loop &line
becomes false in exactlyr(I)| + 1 iterations.

&

Theorem 1 (Termination of CRMODELS (IM)) cRMODELS(IM) terminates for any
CR-Prolog prograntl.

Proof. From Lemma 7, the outer loop terminates. When that hapmsgpDELS(M)
returns the collection of sets of literals found and terminates.
&

To prove soundness and completeness, we introduce the following terminology and
lemmas. Given a ground term p(r, M) denotes the cr-rule frol whose name is.
Also,

S(M,N)= M N literals(MN), and
R(M,1) ={p(r,M) | appl(r) € M}-

Lemma 8 For every CR-Prolog progranfl, if M is an answer set of; (1), then
|R(M,M)| =i,

Proof. By Lemma 3/ satisfies the cardinality macro (see Definition 3.2):
K ={ «—noti{appl(R)}i- (15)

Hence, the body oK is not be satisfied by/. By definition of the cardinality macros,
M does not satisfy the body &f if |M N atoms(appl,)| = i. From the definition of
R(M,N), it follows that| R(M,M)| = i.

O

Lemma 9 For every CR-Prolog programl and integer0 < i < |er(M)|, if M is an
answer set of; (M), then(S(M,MN), R(M,M)) is a view off1.

Proof. We need to prove tha5 (M, M), R(M,M)) satisfies the conditions of Definition
2.5. Let us start by proving that item (1) holds, i.e. that

S(M,M) is an answer set afeg(M) U B(R(M,M))- (16)
Let 71 = atoms(bodytrue, hr(M)), K1 the set of rules:

bodytrue(r) « l,...,not I,
«— bodytrue(R), appl(R)-

—not i{appl(R)}i-
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from Definitions 3.1 and 3.2. From the hypothesis that a.(y;(M)), and Lemmas 4
and 3, it follows that, if\/ € a.(y;(IT)), then

(M\ T1) € a.(y: (M) \ K1)- 17)
LetnowT> = Ty and K, be obtained fronk by the addition of the rule
{appl(R)}:

from Definition 3.1 andK,” = M N atoms(appl, hr(M)). From (17) and Lemma 1, it
follows that:

(M\ T2) € au(y; (M) \ K UK ). (18)

Next, letTs = ToU atoms(is_preferred, hr(M)), K5 = K,", and K5 be K, together
with rules (again, from Definition 3.1):

is_preferred(R1, Ry) < prefer(Ry, Rp)-
is_preferred(R1, Rp) < prefer(R1, R3),is_preferred(R3z, R2)-

« appl(Ra), appl(R2), is_preferred(Ry, Ry)-
From (18) and Lemmas 4 and 3, it follows that:
(M\ Ts) € a.(y; (M) \ K3 UKS): (19)
Finally, let T4 be T5U atoms(appl, hr(I)). From (19) and Lemma 4,
(M\ Ta) € a.(reg(M) UO(R(M,)))- (20)
SinceM \ T, = S(M,M), (16) is proven.

Next, we prove thatS (M, M), R(M,M)) satisfies condition (2) of Definition 2.5. More
precisely, we need to show that:

Vr1, 12 prefsiany(rir2) — {p(r1,M),p(r2,M)} € R(M, 1) (21)
Let us begin by proving that:

Vry,r2 is_preferred(ry,r2) € M — {p(r1,N),p(r2,M)} M- (22)
Consider the constraint from Definition 3.1:

« appl(Ry), appl(R2), is_preferred(Ry, R2)-

SinceM is an answer set of; (1), it is closed under the constraint. Hence, the follow-
ing holds:

Vi, is_preferred(ry,m2) € M — {appl(r1), appl(r2)} € M- (23)

Equation (22) follows from (23), and the definitionsagf-, M) and R(M, ). Finally,
from (22) and Lemma 4, we obtain (21).
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To conclude, we prove thas (M, M), R(M,)) satisfies condition (3) of Definition
2.5, that is:

¥p p € R(M,M) — S(M,N) = body(p). (24)
Consider the constraint:

— bodytrue(R), appl(R)- (25)
from Definition 3.1. Sincé/ is closed under (25),

Vr appl(r) € M — bodytrue(r) € M- (26)
Consider now the rule:

bodytrue(r) < lg,...,not - (27)

from Definition 3.1, wheré, ... not [, is the body ofp(r,M). Since (27) is the only
definition ofbodytrue(r) and M is closed under (27), it follows that:

Vr bodytrue(r) € M iff S(M,N) = body(p(r,M))- (28)
From (26) and (28) we obtain:
Vr appl(r) € M — S(M,N) = body(p(r,MN))- (29)

Equation (24) follows from (29) and the definitionspdf-, M) and R(M, 7).
<&

Lemma 10 For every CR-Prolog prograrfl, if (., %) is a view off1, then there exist
M and0 < i < |er(M)| such that:

1. S(M,N)=.7, R(M,N) =%, and

2. M is an answer set af.(y;(I)).

Proof.Leti = |%| and M be the union of” with:
o {is_preferred(ri,r2)| prefo(r1,m2)};
o {appl(r)|p(r,M) € Z}U{—appl(r)|p(r,N) & Z};
o {bodytrue(r)|.7 k= body(p(r,M))}.
We will prove thatl andi satisfy conditions (1) and (2) above.

To begin, notice thaf (M,MN) = . and R(M,MN) = % by construction of\/. Hence,
condition (1) is satisfied.

Next, we prove that condition (2) is satisfied. According to item (1) of Definition 2.5,
the following holds:

7 € a,(reg(MNUB(Z))- (30)
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Consider the following sets of rules from Definitions 3.1 and 3.2:
K= { —not i{appl(R)}i-

o bodytrue(r) < li,...,not -
27\« bodytrue(R), appl(R)-

K3 = { {appl(R)}-

is_preferred(R1, Ry) < prefer(Ry, Rp)-
is_preferred(R1, Rp) < prefer(R1, R3),is_preferred(R3z, R2)-
— appl(R1), appl(R2), is_preferred(R1, Rp)-

Let Ty = {appl(r)|p(r,M) € Z} U{—appl(r)|p(r,N) & %Z}. From (30) and Lemma
4, it follows that:

(LUTy) € a(y,(M\ (K1UKUK3UKy)UTy) (32)

Let T, = {is_preferred(ri,r2)| prefs(r1,12)}. From (31) and Lemmas 3 and 4, we
obtain:

(LUTIUTy) € a(y;(M\ (K1UKUK3)U T)- (32)
From (32) and Lemma 1, we conclude:
(LU T1U T2) € au(v; (M) \ (K1U K2))- (33)

Now, let T3 = {bodytrue(r)|.~ = body(p(r,M))}. Then, (33) and Lemmas 4 and 3,
imply:

(LU TLU ToU Ts) € a, (y; (M) \ K1)- (34)

Notice that|(.” U Ty U T> U T3) N atom(appl, hr(M))| = ¢ by construction. Hence,
from (34) and Lemma 3, we obtain:

(LUT1UToU T3) € a.(y(N))- (35)

SinceM = .U T1U T> U T3 by construction, we have proven thit € a..(y;(M)).
<

Lemma 11 For every CR-Prolog progranfl, if M is an answer set of; (M) and
7(M1,N) is inconsistent, the(S (M1,M), R(Mq,M)) is a candidate answer set Bf.

Proof. By Lemma 91 = (S(M1,M), R(M1,M)) is a view off1. Next, we prove by
contradiction that?; is a candidate answer set bf. Let us assume that; is not a
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candidate answer set and let us prove that the hypothesis of inconsistern(@y0f1)
is contradicted.

By Definition 2.7, it follows that there exists a viety, of I such that:

¥ dominates/;- (36)
By applying Lemma 10 t#>, we obtain that:

My, ip .t S(Ma, M) = ¥5° A R(Ma, M) = 455 A Mp € at, (i, (1))- (37)
Notice that, from Definition 3.2 and Lemma 3, it follows that:

M, € a,(hr(M))- (38)

We usell/, to construct an answer set of M1,1M). Let M3 consist of the union aff»
and:

o {o-appl(r)|appl(r) € Ma};
o {o_is_preferred(r1, r2) |is_preferred(ri, r2) € M},
e {dominates}.

Let alsoK denote the set of rules:

dominates «— appl(R1), o_appl(R2),
is_preferred(Ra, R2), o_is_preferred(R1, Rp)-
< not dominates-

From (38), Definition 3.3, and the construction bfs, it is not difficult to see that
Mz \ {dominates} is an answer set of (M;,1) \ K. Hence, to prove thal/s is an
answer set of (M3,11), we need to show thalfs is closed under the rules ik and
minimal w.r.t. set-theoretic inclusion.

That M3 is closed under the rules i follows directly from its construction: in fact,
the head of the first rule ok is satisfied, and the body of the second rule is not.

SinceMs\ {dominates} is an answer set af(My,MM) \ K, we prove the minimality of
M3 by showing that there is at least one ground instance of the first rul¢ whose
body is satisfied bz \ { dominates}.

By (36) and Definition 2.6:
Jry,m2 8.t p(r, M) € 1 Ap(r2,M) € 11 Aprefiyseys) (r2, ) (39)

From (39) and (37), it follows that:
Ir1, 2 8.4 p(r1, M) € R(M1, M) Ap(r2, M) € R(Ma, M)A

40
prefis(v,mns (m,m)) (72, 71)- (40)

From (40) and the definition a® (M, 1), we have:
ry, 12 S.tappl(r1) € Ma A appl(r2) € MaA (41)

prefis(my,mns (m,n)) (12, 11)-

24



By construction of\f3, (41) implies:
3y, r2 s.t.{o-appl(r1), appl(r2)} © Mz A prefis(v,mns(mz.ny)(172,71)- (42)

Notice thatM; and M, are both answer sets &f-(IT). Then, by (42) and Lemma 4 we
have:

Vi, m2 prefisan.nyns(my,ny) (12, 1) iff is_preferred(rz, 1) € (M1N M) (43)
Hence, from (42), (43), and the constructionidf, we obtain:

Ir1,ro s.t. {o_appl(r1), appl(r2)} C MaA

{is_preferred(ro, 1), 0_is_preferred(rp, 1)} C Ms- (44)

Equation (44) proves that there exists at least one instance of the first ridendfose
body is satisfied. Hencé/3 is minimal.

This concludes the proof thafs is an answer set af( M3, ). But the conclusion con-
tradicts the hypothesis thaf M1,M) is inconsistent. ThereforéS (M1,M), R(M1,M))
is a candidate answer set Df.

<&

Lemma 12 For every CR-Prolog programl, if (., %) is a candidate answer set of
M, then there exisd/ and0 < ¢ < |cr(M)| such that:

1. S(M,N)=2,R(M,N)=2%,
2. M is an answer set of;(M), and

3. (M, M) is inconsistent.

Proof. Conditions (1) and (2) follow from Definition 2.7 and Lemma 10. Now let us
prove thatt (M, ) is inconsistent.

Let ¥1 denote(.”,Z). Since?; is a candidate answer set Bff, from Definition 2.7 it
follows that, for every view5 of N

¥, does not dominate] - (45)

By Lemmas 10 and 9, for each viety of I there exist exactly one paitfz, i, such
that:

V2= (S(Mz,N), R(Mp, 1)) A Mp € a.(yip(I))- (46)
From (45) and (46), we obtain that, for eveyand answer sei/; of y;,(I):

(S(Mp, M), R(Mp,M)) does not dominatéS (M, M), R(M,M))- 47)
From Definition 2.6, it follows that, for eachfs:

—3dry, e s.t.p(r, M) € R(M,M) A p(r2,1) € R(Ma, ) A

48
prefis(vm,mns(vp,n)) (12, 71)- (48)
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By the definitions of (A/,1M) and R(M, M), and Lemma 4, we obtain:

—3ry, 12 St appl(r1) € M A appl(r) € MaA

is_preferred(rz,m1) € (M N Mp)- (49)
Let K7 denote the constraint (see Definition 3.3):
Ky =< < notdominates- (50)

and lett~ denoter (M ,M)\ K.

Recall that, by construction, for every answer 3éf of 7, if appl(r) € Mi, then
o_appl(r) € Mz, and similarly for is_preferred(ri,r2) and o_is_preferred(ry, 7).
Also, notice that every/, is an answer set oir(1), and 1~ is obtained fromhr (1)
by the addition of the rule:

o — dominates «— appl(R1), 0_appl(R2), (51)
2= is_preferred( Ry, Rp), 0_is_preferred(R1, Ry)-

and of appropriate definitions af_appl and o_is_preferred. Then, by Lemma 4, for
eachM; there exists one and only oé; O M, such thatMs € a.(17).

Hence, (49) becomes:

=3y, 12 St o_appl(r1) € Mz A appl(r2) € MaA
o_is_preferred(ra,r1) € MaA (52)
is_preferred(rp,r1) € Ma-

Equation (52) implies that the body of rule (51) is not satisfied by any answer set of
Hence, the answer sets of do not satisfy constraint (50). Sinee = t(M,MN)\ K1,
from Lemma 3 it follows that(M, M) has no answer set.

O

We are now ready to prove the two main theorems of this section. In the following
discussion, we useRMODELS(M) to denote the collection of sets of literals returned
by thecrRMODELSalgorithm with CR-Prolog prograii in input. Notice that Theorem

1 guarantees the existence of such set forlany

Theorem 2 (Soundness)or every CR-Prolog progranfl, if J € cRMODELS(),
thenJ is an answer set dfl.

Proof. In the rest of this proof)/ ¢ denotes the value of variablié, from the algorithm,

at the beginning of iteration of theouter loop(see Figure 3). When we need to refer
to the value ofl/ at the beginning of a specific iteration of the inner loop, we use the
notation V;".

Letn = |cr(MM)]. By Lemma 7, the iteration indexes will range betwg&emdn + 1.
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Let J € cRMODELS(M). From the final step of the algorithm (lir0in Figure 3), it
follows that:

Je ™t (53)

The only update te7 in the algorithm occurs on liné1, and consists of the addition
of a new set of literals. The set of literals used for the update is computed dh Bie
observing lined, we conclude that there exist iterationandy, of the outer and inner
loops respectively, andl/, such that/ = M NZ(M), and:

M € a.(y(MuUCy)- (54)
By (54), Lemma 3, and the observation that the contentsmonotonically increases:

M € a.(y;(Much), (55)

M € a.(y:(M))- (56)

From (53) and the observation that the condition of st@must be true, we obtain:
7(M,N) is inconsistent. (57)
From (55), (57), and Lemma 11, it follows that:
(S(M,N),R(M,N)) is a candidate answer set bff: (58)

Notice thatS (M, M) = J. To prove that/ is an answer set dfl, we need to prove that
condition 2 of Definition 2.8 is satisfied, i.e. that:

for every candidate answer sgf’, R') of M, R’ ¢ R(M, M) (59)

Proceeding by contradiction, let us assume the existence of a candidate answer set
(S’,R") of M such that:

R' c R(M,N). (60)

By Lemma 12, there exi#i’, 0 < i/ < |cr(M)|suchthat:S(M',M)=S", R(M',N) =
R’, and:

S(M'\M)y=8" R(M' N)=R, (61)
M’EC{*(%/(H)), (62)
T(M’,N) is inconsistent. (63)

We now prove that the existence #f’ contradicts the hypothesis thal €
CRMODELS(MM). To do this, we show thdt/ cannot have been computed by Ihe

Let us begin by noticing that, from (62), (63), and lit@of the algorithm:

(C")" L D {— A(M' N atoms(appl, hr(MN)))-}- (64)

27



Because of lind7, the following also holds:
cito {+ A(M' N atoms(appl, hr()))-}- (65)

By (65) and Lemma 3, the sets of literals computed at Sirdter iterations’ of the
outer loop do not contain’ N atoms(appl, hr(M)). However, from (60), it follows
that M contains M’ N atoms(appl, hr(M)). Then, what we need to prove to have a
contradiction isi > 4’

From (61) and (60), it follows that:

[R(M',M)| < |R(M,M)] (66)
From (55), (62), and Lemma 8,

|[R(M' ;)| =i A|R(M,N)| =i (67)
Equations (66) and (67) imply:

i’ < i (68)
Hence,M does not satisfy’*. By Lemma 3:

M ¢ a.(y,(MUC), (69)

which contradicts (55).
&

Theorem 3 (Completeness)or every CR-Prolog prograrfl, if J is an answer set of
M, thenJ € cRMODELS(M).

Proof. As before,V* denotes the value of variablé at the beginning of iteratiofi of
the outer loop, athi denotes the value df at the beginning of iteratiof of the inner
loop, during iteration: of the outer loop.

SinceJ is an answer set dil, from Definition 2.8, we know that:
ARy C er(M) s.t.{J, R;) is a candidate answer set bif: (70)
By (70) and Lemma 12, there exigt and such that:

S(M)=JAR(M)=Ry, (71)
7(M,N) is inconsistent (73)

Now let us prove that/ is also an answer set ¢f (M) U CJ? for some iteratiory of the
inner loop. Let us proceed by contradiction, and assume that:

Vi M ¢ a.(y(MU C))- (74)

wherej is an iteration of the inner loop.
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By construction of the algorithnG* = C/. Hence, (74) implies:
M ¢ a.(y,(Mu C*): (75)

By (75), (73), and Lemma 3/ does not satisfy the constraints@¥. By inspection of
the algorithm (linesl2, and17) we conclude that there exi3f’ and i’ < i such that:

M’ € a,(yy(M)), (76)
R(M'.I) C R(M,M), (77)
T(M',N) is inconsistent (78)

By (76), (78), and Lemma 11,

(S(M’,N),R(M’',M)) is a candidate answer set Bf (79)
From (77), Lemma 8, and < 1, it follows that:

R(M',N) C R(M,N):- (80)

From (79), (80), and condition 2 of Definition 2.8, we conclude th& not an answer
set off1. Contradiction. Hence there exists an iteratipof the inner loop such that:

M is an answer set of,(IM) U C;- (81)

For simplicity, let us assume thatl = ay(y;(M) U C;) (it this is not the case, it is
not difficult to prove that the statement becomes true for sdmej). Sincet (M, M)
is inconsistent (see (73), from step8 and 11 of the algorithm, it follows that/ €
/1. Sincess grows monotonically and, by Theorem 1, the algorithm terminates,
J € CRMODELS(M).

<&

5 Implementing CRMODELS

In this section, we describe interesting issues involved in the implementatior-of
MODELS, which for clarity we will refer to a&RMODELS'.

Notice that the computation of answer sets (liBe®, and 10 from Figure 3) is by
far the most demanding task of the entire algorithm. Hence, reducing the time spent
computing answer sets is critical to improve the practical applicabilityrofiODELS' .

To accomplish this, we have refined the implementation of the algorithm in two direc-
tions:

e Reducing the time spent in each computation of answer sets.

e Reducing the number of overall computations of answer sets.
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The first goal can be achieved by storing and re-using the results of earlier compu-
tations. The second goal can be achieved by employing more sophisticated search
techniques.

Let us now discuss the issue of storing and re-using earlier results. We begin by giving
some background information on the implementation of the task of finding answer
sets of A-Prolog programs. IoRMODELS', the computation of answer sets of A-
Prolog programs is performed by calls to a state-of-the-art A-Prolog inference engine
consisting of the pair of program®ARSE[27] andSMODELS[21, 26, 22]. We refer

to the inference engine aPARSE-SMODELS, and, whenever possible, we abbreviate

it to SMODELS

Like all state-of-the-art inference engines for A-ProlegioDELSworks by first com-
puting the ground instanéef the program in input, and then finding the answer sets
of the ground program. In the case IFfARSE-SMODELS pair, LPARSE grounds the
input, whileSMODELScomputes the answer sets.

Let us now turn our attention to the time spent computing answer sets in a straight-
forward implementation of theRMODELS algorithm (Figure 3). At each iteration of

the inner loop, if the condition of liné is satisfied CRMODELS makes three calls to
bothLPARSEandsMODELS (lines6, 9, and10). As a first obvious improvement, the
computation at lin@® can be easily removed by caching the result from @ne

An important observation that allows us to improve efficiency further is that programs
y;(M) and (M ,M) do not differ much from each other. In fact, both are obtained
by adding a few rules tar () (see Sections 3.2 and 3.3), while(MN) itself does not
change throughout the algorithi# variation of the main algorithm that is based on this
observation is shown in Figure 4 below and is catsMODELS!. In the algorithm,

yH% () denotes the program obtained frgni) by replacinghr (M) by its grounding

HR. Similarly, T#% (M, M) indicates the replacement bf (M) in 7(M,M). The call

to the inference engine to test the consistency’®f(1/,M) (step9) has been made
explicit for sake of clarity.

2Obtained by replacing the variables in the program with all the possible variable-free terms.
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Algorithm: CRMODELS]

input: M: CR-Prolog program
output: the answer sets dé1

var:
i number of cr-rules to be applied
M: a set of literals orL
<7 a set of answer sets Of
C, C': sets of constraints
HR: grounding ofhr(IT)

1L.C=0, /=0
2. HR := ground(hr(M)) { first we groundsr (M) }
3. 7:=0{ first we look for an answer set @ég(I1) }
4. while (i < |er(M)|) do { outer loop }

! .

5. =

6. repeat { inner loop }

7. M=o (yIEM)u 0)

8. if M # 1 then

Q. if a(THR(M,M)) = L then { answer set found

10. o == U{MNZ(M)}

11 C':=C"U{ « A(Mnatoms(appl,hr(N)))- }
12, end if

13 C:=CU{ —AM),v(M) }

14. end if

15. until M = L

16. c=Ccuc

17. i =1+ 1{ consider views obtained with a larger number of cr-rjles
18. done

19. return of

Figure 4: AlgorithmCRMODELS]

Notice that bothy//# () and t#£(1,M) contain non-ground rules (see Sections 3.2
and 3.3). Hence, the computations at sté@sd9 still involve grounding, but on a
significantly smaller program. To take advantage of the situation, we can use the “-g”
option of LPARSE This option allows the user to load a previously grounded program
and add new (possibly non-ground) rules to it.

Example 5.1 Consider the following progrant;s.

p(1)- p(2):
q(X) < p(X),not r(X)-
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Its ground instancep’;, consists of the rules:

p(1)- p(2)
q(1) < p(1),not r(1)-
q(2) < p(2),not r(2)-

and can be computédy the executing tparse Py’

Suppose now we would like to compute the ground instanég tdgether with the
following constraint K :

—q(X),X >1notd(X)

Obviously, this can be done by invokingaRSEon P4U K. However, ifP] is already
available, we can obtain the same result by executitgarse -g P K. The com-
mand line tells. PARSEto combine a ground progran®, with a possibly non-ground
set of rules K.

In conclusion, line§ and9 of Figure 4 can be implemented by callsi.teaRSE of the

form “1parse -g HR My” wherely is the set of rules to be added HR according

to Sections 3.2 and 3.3 respectively. Unfortunately, experiments showedrrsE

does not perform well on partially grounded programs. A possible explanation is that,
although a relatively small amount of time is spent processing the previously grounded
rules, the large number of them causes the total processing time to raise unacceptably.

A more efficient way to store and re-use the groundingirdf1) is to use a specialized
grounding algorithm for partially-ground programs, to be used at Stepsl9 instead

of LPARSE The specialized algorithm that we have developed is caleg and takes

as input a ground program and a (possibly non-ground) set of rules, and returns the
ground instance of the union of the two sets of rules.

Intuitively, given a prograniil and a (possibly non-ground) set of rules to be added to
it, My, SGAis applicable under the following conditions:

1. The heads of the rules &ty are either empty (i.e. the rules are constraints), or
fresh atoms.

2. The (non-empty) heads of the rulesldf; with non-empty body have arit.

3. The literals in the bodies of the rules @fy with arity greater tha®, either are
obtained from the signature 6F or are facts ifH1y.

More precisely:

Proposition 1 Let ground (M) denote the grounding dfl. For every set of rule§l,
My, satisfying conditions (1)—(3):

SGA(ground(M),My) = ground(MUM y)- (82)

SFor simplicity, in this example we ignore the simplifications theaRSE performs on the program to
improve the efficiency of the inference engine.
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It is not difficult to show that the sets of rules added:t@IM) to obtainy;(M)uU C and
7(M,N) satisfy the premise of Proposition 1.

For efficiency,SGA contains a specific grounding procedure for each type of rule added
to hr(M) by y;(M)u C and1(M,MN). The approach is pretty straightforward and, to
save space, we illustrate it by means of an example. Consider the following rule from
7(M,N) (Section 3.3):

dominates «— appl(R1), o_appl(R7),
is_preferred(R1, R2), o_is_preferred(R1, R2)-

Let us assume that atomsappl(r) and o_is_preferred(ri,r2) from Section 3.3 have
already been added to the grounding. Then, the grounding procedure for the rule above
is:

1. Extract fromground (hr(IT)) all the ground instances @f_preferred (R, R2).

2. For every corresponding instantiation of variablesand Ry, (r1,2), generate
the ground instance:

dominates «— appl(r1), o_appl(r2),
is_preferred(r1,12), 0_is_preferred(ry, r2)-

In the actual implementation &fGA, the ground instances are encoded directly in the
LPARSEOUtput language [27], where ground literals are replaced by the corresponding
indexes in the symbol table associated with the program. To merge the ground and
non-ground sets of rulesGAa first augments the symbol table, for example with a new
entry for atomdominates. Next, if i, i1, i, i3, i4 are, respectively, the indexes of
atomsdominates, appl(r1),...,o-is_preferred(r1,r2) in the symbol table, then one

of the ground instances of the rule above, generated by the implementasamof
represented by the string:

149 4 0 4 i i3 i

which denotes a “typd rule” (a conventional A-Prolog rule), with the literal with
index ig (i.e. dominates) in the head, and literals in the body, of whictD under
default negation, corresponding to indexgs. ., s (for more details on thePARSE
output format, the reader is invited to refer to [27]).

As expected, experiments showed that is substantially more efficient thamARSE
in processing partially-ground programs. Figure 5 shows the algorithm, cafted
MODELS}, resulting from the adoption d8GA. CRMODELS, and CRMODELS! also
differ in that the calls tar; have been replaced by explicit callsgmODELSandSGA.
More preciselySMODELS; denotes an invocation of tremoDELS algorithm to com-
pute a single answer set as¢A(HR, P) denotes a call t&GA with argumentsiR
andP\ HR.
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Algorithm: CRMODELS}

input: M: CR-Prolog program
output: the answer sets dé1

var:
i number of cr-rules to be applied
M: a set of literals orL
<7 a set of answer sets Of
C, C': sets of constraints
HR: grounding ofhr(IT)

1L.C=0, /=0
2. HR := LPARSE hr(IT)) { first we groundhr () }
3.7 :=0{ first we look for an answer set @ég(I1) }
4. while (i < |er(M)|) do { outer loop }

! .

5. =
6. repeat { inner loop }
7. M := SMODELS (SGA(HR, y"E(M) U C))
8. if M # 1 then
Q. if SMODELS)(SGA(HR, THE(M,M))) = L then
{ answer set foundl
10. o =o U{MNZN)}
11 C':=C" U{ «— A(Mnatoms(appl,hr(M)))- }
12, end if
13. C=CU{ —AM),v(M)- }
14. end if
15. until M = L
16. c:=Ccuc’
17. i =i+ 1{ consider views obtained with a larger number of cr-rles
18. done
19. return of

Figure 5: AlgorithmcRMODELS}

The other direction taken to improve the efficiency of the implementatiarrafoD-
ELS consists in reducing the number of overall computations of answer sets by employ-
ing more sophisticated search techniques.

If we look atcRMODELS}, from the standpoint of the search technique used, itis easy to
see that the algorithm uses linear search over the number of cr-rules applied. Intuitively,
performance could be improved by adopting a more sophisticated search strategy, such
as binary search.

Unfortunately binary search is not suitable for a direct modification of the outer loop,
because the sequentiality of the search procedure is essential to ensure the minimality
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of the candidate answer sets found at Ifhef cRMODELS] (for details, refer to the

final part of the proof of Theorem 2). However, binary search can be used to determine
the smallest number of cr-rules for which a view exists (right now the search begins
by setting: = 0 at line 3). After the number has been determined, linear search can be

used. To employ binary search effectively, the following conditions must be met:

e \We need to be able to determine the existence of a view whose number of cr-rules
is in a specifiednterval

e The time taken to look for a view in an interval must be roughly independent of
the interval examined.

To meet the first condition, let us consider the program, (M), obtained fromy; (1)
by replacing the rule (see Section 3.2):

—not i{appl(R)}i-
with:
—notj{appl(R)}i-
The answer sets af; ;) (M) have the following important property.

Proposition 2 For every CR-Prolog progranil and integers0 < j < i < |cr(M)], if
M is an answer set ofy; ;y (), then(S(M,M), R(M,M)) is a view off1 and j <
|[R(M,M)] <.

The proof of the proposition is a simple extension of the proofs of Lemmas 9 and 8.

According to Proposition 21, ;y () can be used to meet the first condition above.
The second condition is also met: experimental results in fact show that, when the
input to CRMODELS}, is a program of medium to large size, the time taken to compute
one answer set of ; ;y (M) is, within certain limits, independent gfand.

Figure 6 showsRMODELS', the final version of the implementation 0RMODELS.
CRMODELS! extendscRMODELS, by the addition of binary search. In the algorithm,
ng_%(l'l) denotes, as usual, the program obtained frpm, (M) by replacinghr(I)
with HR.
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Algorithm: crRMODELS?

input: M: CR-Prolog program
output: the answer sets dé1

var:
i number of cr-rules to be applied
M: a set of literals orL
<7 a set of answer sets Of
C, C': sets of constraints
HR: grounding ofhr(IM)
i1, i2: binary search interval

1.C:=0 o:=0

2. HR := LPARSE hr(I)) { first we groundhr (1) }
4.4 :=0; i:=|er(N)]

5. while (ig < i) { binary search loop}

6. i=(i1+1)/2

7. M = SMODELSL(SGA(HR,na%(FI)))

8. if M # L then '

9. ip '=|M N atom(appl, hr(M))| —1
10. else

11 ni=1+1

12, end if

13. done

14. i := 41 { The termination condition above impliés= i, }
14. while (i <|cr(M)]) do { outer loop }
/.

15. c'=0
16. repeat { inner loop }
17. M := SMODELS; (SGA(HR, y#(M) U 0))
18 if M # 1 then
19. if SMODELS)(SGA(HR, THE(M,M))) = L then
{ answer set found
20. o = U{MNZ(M)}
21 C':=C"U{ <« A(Mnatoms(appl,hr(N)))- }
22, end if
23, C=CU{ —A(M),v(M) }
24 end if
25. until M = L
26. c=Ccuc’
27. i =i+ 1{ consider views obtained with a larger number of cr-rles
28. done
209. return of

Figure 6: AlgorithmcRMODELS'
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Itis interesting to notice that st&pabove is slightly non-standard, &ds not assigned

i — 1. Step9 exploits the fact that, when at stémn answer set is found, information
becomes available about the number of cr-rules applied to obtain the answer set. Since
this value can be easily shown to be less than or equialitcan be used in the update

of i and obtain a possibly smaller search interval.

The performance improvement yielded by the introduction of binary search is particu-
larly evident when a large number of cr-rules needs to be applied before a viéw of
can be found, and whdn is inconsistent. In particular, the inconsistency of a program
with n cr-rules can be detected lng(n) calls toSMODELS, while with CRMODELS}

the corresponding number of calls3®ODELSIs n.

6 Related Work

There are no previous published results on the design and implementation of an in-
ference engine for CR-Prolog. However, this paper builds on years of research on
the topic, which resulted in various prototypes. In particular, here we extend previous

work by Loveleen Kolvekar [19], where the first complete description ofdR&OD-

ELS algorithm was given. The algorithm presented here is a substantial simplification

of the one from [19], with performance improvements that reduced the computation

time of several orders of magnitude. We also made several improvements (in particular
in terms of accuracy) and simplifications to the theoretical results.

7 Conclusions

In this paper we have described our design and implementation of an inference engine
for CR-Prolog. The inference engine is aimed at allowing practical applications of
CR-Prolog that require the efficient computation of the answer sets of medium-size
programs.

The efficiency ofcRMODELShas been demonstrated experimentally2680planning
problems by using a modified version of the experiment from [23]. The modifica-
tion consisted in replacing the A-Prolog planning module from [23] with a CR-Prolog
based module capable of finding plans that satisfy (if at all posst#ets of non-

trivial requirements, aimed at improving plan quality. The planning module has been
tested both with and without preferences on the sets of requirements. The experiments
have been successful (refer to [5] for a more detailed discussion of experiments and
results): the average time to find a plan was al2@@tseconds, against an average time

of 10 seconds for the original A-Prolog planfiewith an increase of about one order

of magnitude in spite of the substantially more complex reasoning task (the quality of
plans increased, depending on the parameters used to measure it, b&d#eand

96%). Moreover, the average time obtained with the CR-Prolog planner was substan-
tially lower than the limit of practical use by NASA for this application, whicl2®
minutes.

4All the experiments were run on the same computer.
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The implementation described in this paper is available for download from
http://www.krlab.cs.ttu.edu/Software/, and corresponds to versiars of the
system.
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